Prevalence of diabetic foot ulcer and its association with duration of illness and residence in Ethiopia: a systematic review and meta-analysis.

Authors

Henok Mulugeta, BSc, MSc
Lecturer of Nursing, Department of Nursing, College of Health Science, Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: mulugetahenok68@gmail.com

Fasil Wagnew, BSc, MSc
Lecturer of Nursing, Department of Nursing, College of Health Science, Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: fasilw.n@gmail.com

Haymanot Zeleke, BSc, MSc
Lecturer of Nursing, Department of Nursing, College of Health Science, Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: haymanotzeleke89@gmail.com

Bekele Tesfaye, BSc, MSc
Lecturer of Nursing, Department of Nursing, College of Health Science, Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: bekeletesfaye76@gmail.com

Haile Amha, BSc, MSc
Lecturer of Nursing, Department of Nursing, College of Health Science, Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: haileleul19@gmail.com

Cheru Tesema Leshargie, BSc, MPH
Lecturer of Environmental Health, Department of Environmental Health, College of Health Science, Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: chertesema@gmail.com

Henok Biresaw, BSc, MSc
Lecturer of Nursing, Department of Nursing, School of Health Science, College of Medicine and Health Science, Bahir Dar University
Address: P.O. Box 79, Bahir Dar, Ethiopia
Email: henok22@ymail.com

Getenet Dessie, BSc, MSc
Lecturer of Nursing, Department of Nursing, School of Health Science, College of Medicine and Health Science, Bahir Dar University
Address: P.O. Box 79, Bahir Dar, Ethiopia
Email: ayalew.d16@gmail.com

Yihalem Abebe Belay, BSc, MPH
Lecturer of Public Health, Department of Public Health, Debre Markos University
Address: P.O. Box 269, Debre Markos, Ethiopia
Email: yih2000ho@gmail.com

Tesfa Dejenie Habtewold, BSc, MSc
Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
Email: tesfadej2003@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Prevalence of diabetic foot ulcer and its association with duration of illness and residence in Ethiopia: a systematic review and meta-analysis.

Henok Mulugeta, Fasil Wagnew, Haymanot Zeleke, Bekele Tesfaye, Haile Amha, Cheru Tesema Lesharge, Henok Biresaw, Getenet Dessie, Yihalem Abebe Belay, Tesfa Dejenie Habtewold

Abstract

Background: Diabetic foot ulcer (DFU), devastating complications of diabetes mellitus, is a major public health problem, and one of the leading reasons for hospital admission, amputations, and even death among diabetic patients in Ethiopia. Despite its catastrophic health consequences, the national burden of diabetic foot ulcer remains unknown in Ethiopia. Hence, the objective of this systematic review and meta-analysis was to estimate the national prevalence of diabetic foot ulcer and investigate the association with duration of illness and patient residence among diabetic patients.

Methods: We searched PubMed, Google Scholar, Cochrane Library, CINAHL, EMBASE, and PsycINFO databases for studies of diabetic foot ulcers prevalence that published from conception up to June 30, 2019. Quality of each article was assessed using a modified version of the Newcastle-Ottawa Scale for cross-sectional studies. All statistical analyses were done using STATA version 14 software for Windows, and meta-analysis was carried out using a random-effects method. The pooled national prevalence of diabetic foot ulcers was presented using a forest plot.

Results: A total of 10 studies with 3,029 diabetic patients were included. The pooled national prevalence of diabetic foot ulcers among Ethiopian diabetic patients was 11.27% (95% CI 7.22, 15.31%, I^2=94.6). Duration of illness (OR: 3.91, 95%CI 2.03, 7.52, I^2=63.4%) and patients’ residence (OR: 3.40, 95%CI 2.09, 5.54, I^2=0.0%) were significantly associated with a diabetic foot ulcer.

Conclusion: In Ethiopia, at least one out of ten diabetic patients had diabetic foot ulcers. Healthcare policymakers (FMoH) need to improve the standard of diabetic care and should design effective preventive strategies to improve health care delivery for people with diabetes and reduce the risk of foot ulceration.

Keywords: Diabetes mellitus, foot ulcers, prevalence, Ethiopia.
Background

Diabetes is a chronic disorder characterized by hyperglycemia that occurs either due to insulin deficiency or resistance[1, 2] that has been increasing rapidly worldwide. According to the American Diabetes Association 2014 report, the global prevalence of diabetes among adults is 8.5%[2, 3]. In Africa, an estimated 12.1 million people were living with diabetes in 2010, and this figure is more likely to be 23.9 million by 2030[4].

Diabetes has several acute and chronic complications including diabetic foot ulceration. A diabetic foot, which is the formation of foot ulceration that manifested by neuropathy, ischemia, and infection, is one of the major public health problems affecting diabetic patients throughout the world[5, 6]. About 10% to 15% of diabetes patients are at risk of developing a foot ulcer during their lifetime[7]. The annual population-based incidence of diabetic foot ulceration ranges from 1.0% to 4.1%, and its prevalence among diabetic patients ranges from 4% to 10%[5, 8].

Diabetes foot problems are responsible for high morbidity and mortality of diabetes in Africa. In sub-Saharan Africa, the burden of a diabetic foot ulcer is increasing due to late diagnosis, poor awareness among patients, and poor access to diabetic care[9, 10]. The presence of foot ulcers in diabetes patient increases the risk of lower extremity amputations, worsens the physical, psychological, and social quality of life[11-13]. Furthermore, patients living with diabetic foot ulcers(DFUs) has a great economic burden and poor health-related quality of life[14].

Diabetic foot ulceration has been associated with various risk factors, such as longer duration of diabetes mellitus (DM), residence, lack of awareness, poor foot care practice, poor glycemic control, poor hygienic condition, foot trauma, peripheral neuropathy and presence of vascular
Interestingly, most of the risk factors can be prevented easily with health education, careful foot care, and glycemic control[20].

Despite the huge burden of diabetic foot ulceration and it is one of the challenging health concerns in Ethiopia, the overall prevalence of diabetic foot ulcer among diabetic patients at the national level remains unknown. Therefore, the objective of this systematic review and meta-analysis was to estimate the national prevalence of foot ulcers among diabetic patients and investigate the association with duration of illness and residence in Ethiopia. The findings of this study will be important to provide valuable information regarding the burden of the diabetic foot and to inform healthcare policymakers for areas of improvement in diabetic care in Ethiopia.

Methods

Search strategy and selection criteria

This systematic review and meta-analysis were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline[21]. We searched articles reporting the prevalence of diabetic foot ulcers among diabetic patients from PubMed, Cochrane Library, Google Scholar, CINAHL, and EMBASE databases using the following search terms: “prevalence”, ”diabetic”, ”diabetic foot”, ”ulcers”, ”diabetic foot ulcers”, ”patients”. Boolean operators like “AND” and “OR” were used to combine search terms. EndNote (version X8) software for Windows was used to search, download, organize, and cite the related articles. The reference lists of eligible articles were also searched to retrieve additional relevant articles.

All published and unpublished studies that report the prevalence of diabetic foot ulcers among diabetic patients in Ethiopia were included. Studies, which investigated the association between duration of illness and patient residence with foot ulceration, were also included. Only these two factors such as diabetic duration and patient residence have been similarly assessed across the
included studies. Therefore, we estimate the pooled effects of these factors to determine their
association with diabetic foot ulcers. The search for published studies was restricted to articles
published in English language. Furthermore, due to limited literature, we reviewed all
publications irrespective of publication year. Nevertheless, related articles which failed to report
the prevalence of diabetic foot ulcers were excluded. The articles were searched from March
2019 to June 2019.

Data extraction
All the downloaded studies were independently screened for inclusion by two authors (HM and
GD). From each included study, information on the name of the first author, year of publication,
study area (region), health facility, study design, sample size, response rate, prevalence of
diabetic foot ulcers and determinant factors (Diabetic duration and patient residence) were
extracted using a pre-piloted template prepared in a Microsoft Excel spreadsheet. H.M. and H.A.
conducted the primary data extraction and then B.T., F.W., and H.Z. examined the extracted data
independently. Any disagreement and inconsistencies were resolved by discussion.

Quality assessment
We used the modified version of the Newcastle-Ottawa Scale for cross-sectional studies adapted
from Modesti et al to assess the methodological and other quality of each relevant article. The
key criteria in the Newcastle–Ottawa scale are representativeness of the sample, response rate,
measurement tool used, comparability of the subject, appropriateness of the statistical test used
to analyze the data[22]. Two authors (B.T. and H.B) independently assessed the quality of each
article. Any disagreement was resolved through discussion and consensus.

Statistical Analysis
A random-effects model using the DerSimonian and Laird method[23] was employed to estimate
the pooled national prevalence and OR of risk factors with a 95% confidence interval (CI). The
result was presented using a forest plot. Heterogeneity across the studies was assessed by
Cochrane’s Q test and I^2 statistic. I^2 statistic ranges from 0 to 100 percent. We used the accepted
I^2 statistic > 50% to define significant heterogeneity across the included studies[24, 25].
Moreover, we explored the source of between-study heterogeneity using meta-regression
analysis. A funnel plot was used for visual assessment of publication bias. Asymmetry of the
funnel plot indicates the presence of publication bias[26, 27]. Egger’s tests were also used to
assess the significance of publication bias with a p-value less than 0.05[28]. Finally, a sensitivity
analysis was performed to assess whether the pooled prevalence estimates were influenced by
individual studies. All data manipulation and statistical analyses were performed using Stata
version 14.0 software for Windows.

Results

Study selection

The online search process initially yielded 1079 articles. Of which 21 articles duplicate records
were identified and removed. After reviewing the title and abstract, we excluded 1016 irrelevant
articles. From the remaining 42 articles, 32 articles were excluded since they failed to meet
eligibility criteria and having poor quality based on the Newcastle-Ottawa Scale. Finally, a total
of 10 relevant articles with 3,029 diabetic patients were included in the meta-analysis (Figure 1).

Study characteristics

The studies were conducted from 2000 to 2017 in different regions of the country. Of the 10
studies, three were conducted in Addis Ababa[29-31], three were in Amhara[32-34], two were in
Oromia[35, 36], and the other two[37, 38] were from other regions. All the included studies were cross-sectional by study design and their sample size ranged from 198 to 724 patients (Table 1).

Figure 1: PRISMA Flowchart diagram of the study selection
Table 1: Characteristics of studies included in the meta-analysis of foot ulcers among diabetic patients in Ethiopia

<table>
<thead>
<tr>
<th>No</th>
<th>Author/s</th>
<th>Publication Year</th>
<th>Study area, Region</th>
<th>Health Facility Name</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Prevalence % (95% CI)</th>
<th>Risk factors</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yimam A.</td>
<td>2017</td>
<td>Addis Ababa</td>
<td>Black Lion Hospital</td>
<td>Cross-sectional</td>
<td>198</td>
<td>26.0 (19.9,32.1)</td>
<td>-Residence -Duration of diabetes</td>
<td>Addis Ababa University</td>
</tr>
<tr>
<td>2</td>
<td>Ejigu A.</td>
<td>2000</td>
<td>Addis Ababa</td>
<td>Menelik Hospital</td>
<td>Cross-sectional</td>
<td>283</td>
<td>1.70 (0.20,3.20)</td>
<td>---------------</td>
<td>Addis Ababa University</td>
</tr>
<tr>
<td>3</td>
<td>Adem A. et al</td>
<td>2011</td>
<td>Addis Ababa</td>
<td>Black Lion and St. Paul's Hospitals</td>
<td>Cross-sectional</td>
<td>724</td>
<td>9.7 (7.5,11.8)</td>
<td>-Duration of diabetes</td>
<td>Addis Ababa University</td>
</tr>
<tr>
<td>4</td>
<td>Lebeta KR. et al</td>
<td>2017</td>
<td>Bahir Dar, Amhara</td>
<td>Felege Hiwot Referral Hospital</td>
<td>Cross-sectional</td>
<td>344</td>
<td>21.2 (16.9,25.5)</td>
<td>-Duration of diabetes</td>
<td>Bahir Dar University</td>
</tr>
<tr>
<td>5</td>
<td>Abejew AA. et al</td>
<td>2015</td>
<td>Dessie, Amhara</td>
<td>Dessie Referral Hospital</td>
<td>Cross-sectional</td>
<td>216</td>
<td>4.4 (1.7,7.1)</td>
<td>---------------</td>
<td>Wollo University</td>
</tr>
<tr>
<td>6</td>
<td>Mariam TG. et al</td>
<td>2017</td>
<td>Gondar, Amhara</td>
<td>University of Gondar Hospital</td>
<td>Cross-sectional</td>
<td>279</td>
<td>13.6 (9.6,17.6)</td>
<td>-Residence</td>
<td>University of Gondar</td>
</tr>
<tr>
<td>7</td>
<td>Worku D. et al</td>
<td>2010</td>
<td>Jimma, Oromia</td>
<td>Jimma University Specialized Hospital</td>
<td>Cross-sectional</td>
<td>305</td>
<td>4.6 (2.3,6.9)</td>
<td>---------------</td>
<td>Jimma University</td>
</tr>
<tr>
<td>8</td>
<td>Tilahun A. et al</td>
<td>2017</td>
<td>Jimma, Oromia</td>
<td>Jimma University Specialized Hospital</td>
<td>Cross-sectional</td>
<td>236</td>
<td>8.5 (4.9,12.1)</td>
<td>---------------</td>
<td>Jimma University</td>
</tr>
<tr>
<td>9</td>
<td>Gebrekirstos K. et al</td>
<td>2015</td>
<td>Mekelle, Tigray</td>
<td>Ayder Specialized Hospital</td>
<td>Cross-sectional</td>
<td>228</td>
<td>12.0 (7.8,16.2)</td>
<td>---------------</td>
<td>Mekelle University</td>
</tr>
<tr>
<td>10</td>
<td>Deribe B. et al</td>
<td>2014</td>
<td>Arba Minch, SNNP</td>
<td>Arba Minch General Hospital</td>
<td>Cross-sectional</td>
<td>216</td>
<td>14.8 (10.1,19.5)</td>
<td>-Residence -Duration of diabetes</td>
<td>Jimma University</td>
</tr>
</tbody>
</table>

8
Prevalence of diabetic foot ulcers

The pooled national prevalence of diabetic foot ulcers among diabetic patients was 11.27% (95% CI (7.22, 15.31%), $I^2=94.6$). The overall pooled effect size of foot ulceration in diabetes mellitus patients presented using forest plot (Figure2).

Figure 2: Forest plot showing the pooled prevalence of diabetic foot ulcers

Assessment of Heterogeneity

In this meta-analysis, the presence of heterogeneity was checked by I^2 statistics. The result of this meta-analysis using the random-effects model revealed a high heterogeneity across the included studies ($I^2 = 94.6\%, P=0.001$). The sources of variation were assessed using a meta-regression model using publication year and sample size as covariates. The result of the meta-regression analysis showed that both covariates were not statistically significant for the presence of heterogeneity (Table 2).

Table 2: Meta-regression analysis of factors with heterogeneity

<table>
<thead>
<tr>
<th>Heterogeneity source</th>
<th>Coefficients</th>
<th>Std. Err.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>0.009</td>
<td>0.020</td>
<td>0.66</td>
</tr>
<tr>
<td>Publication Year</td>
<td>0.397</td>
<td>0.229</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Assessment of publication bias

Publication bias was examined by using a funnel plot and Egger’s test. Visual inspection of the funnel plot suggests asymmetry, as three studies lay on the left side and seven studies on the right side of the line (Figure 3). Besides, asymmetry of the funnel plot was statistically significant as evidenced by Egger’s test ($P=0.001$), which indicated the presence of publication bias.
bias. Furthermore, trim and fill analysis, which is a nonparametric method for estimating the number of missing studies[39], was performed to reduce and adjust publication bias (Figure 4).

Figure 3: Funnel plot to test the publication bias of the 10 studies

Figure 4: Result of trim and fill analysis after adjusting for publication bias

Association diabetic foot ulcers with diabetic duration and patient residence

Diabetic patients with duration of diabetes more than 10 years were 3.91 times more likely to develop diabetic foot ulcers as compared with patients with duration of diabetes less than 10 years (OR, 3.91, 95% CI 2.03, 7.52, I²=63.4%) (Figure 5). Likewise, those diabetic patients who lived in the rural area were 3.40 times more likely to develop diabetic foot ulcers than those who lived in the urban area [OR = 3.40; 95% CI: 2.09, 5.54, I²=0.0%] (Figure 6).

Figure 5: Forest plot showing the association of patient residence and diabetic foot ulcers

Figure 6: Forest plot showing the association of diabetic duration and diabetic foot ulcers

Discussion

The global prevalence of diabetic complications is rising rapidly[40]. Diabetic foot ulcer (DFU) is one of the major causes of morbidity, and it is responsible for 50% of diabetes-related hospital admissions in hospitals[41]. Moreover, a systematic literature review revealed that diabetes and related complications including foot ulceration are a common problem in Africa[42]. Early diagnosis and management of diabetic foot are critical to prevent its serious consequences such as infection, gangrene, and death[41].

In this study, the pooled national prevalence of diabetic foot among diabetic patients in Ethiopia was 11.27%. This finding was comparable with reports from other similar studies in Asia[43, 44] and Africa [45-47]. This might be due to similarities in the socio-demographic characteristics of...
the study participants. On the other hand, our finding was higher than the global (i.e. 6.3%) and national or continental (7.2% in Africa) prevalence of diabetic foot ulcers[19]. Likewise, our finding is higher than other similar studies[48, 49]. One possible explanation for the high prevalence of diabetic foot in Ethiopian diabetic patients might be due to variations in risk factors such as poor diabetic-related knowledge and poor foot self-care practice. In spite of that, the current study finding was lower than the study finding in Nigeria and Netherlands where the prevalence of diabetic foot ulcers was 41.5% and 20.4% respectively[50, 51]. It could be due to a difference in sample size and study setting.

Even though several factors have been reported as a risk factor of DFU in different literature[15, 44, 52-54], we have identified only two similar factors (duration of diabetes and patient residence) across the included studies for analysis. In agreement with studies conducted in Egypt, Iran and India[43, 54, 55], our study revealed that the duration of diabetes and patients’ residence had a significant association with a diabetic foot ulcer. Diabetic patients with long duration are exposed to multiple complications like neuropathy, which may increase the risk of foot ulceration due to trauma and high focal foot pressures[56]. Regarding residence, the possible reason might be since individuals in rural areas in Ethiopia are farmers and are often barefoot, which can result in damage to the foot and it leads to ulcers. Besides, most of the people in rural areas of the country are poor with low educational level so that they have no adequate knowledge and practice of foot care. However, the controversial result was reported from Sudan where diabetic patients from the urban area have been shown significantly associated with the development of DFU[57].

The findings of this meta-analysis have implications for clinical practice. Determining the prevalence of DFU provides up-to-date evidence to develop prevention, public health planning
and management strategy for diabetic foot ulcers. It also used to improve patients’ quality of life and reduce the economic burden. Moreover, identifying determinant factors help clinicians to consider during their routine clinical practice. However, some limitations should be considered in future researches. It was difficult to analyze some important major factors since they were not examined consistently across the studies. Moreover, we identified significant heterogeneity across the included studies and the presence of publication bias so that the interpretation of the results has to be taken cautiously.

Conclusion

Available data suggest that the prevalence of active DFU in people with diabetes in Ethiopia was high, but it is all derived from selected populations. Duration diabetes and Patients’ residence were significant factors for foot ulceration. Diabetes care in Ethiopia needs to develop a high standard of treatment guideline and preventive strategies to reduce the burden of DFU and prevent its risk factors. Health education should be given to patients with a longer duration of diabetes and those living in rural areas to reduce the progression of the disease and improve health outcomes. Moreover, there is a clear need for a large-scale prospective study to determine the extent of this important health care problem.

Abbreviations

Declarations

Consent for publication
Not applicable.

Availability of data and materials
The data analyzed during the current systematic review and meta-analysis is available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable.

Ethics approval and consent to participate
Not applicable.

Authors’ contributions
HM developed the protocol and involved in the design, selection of study, data extraction, and statistical analysis and developing the initial drafts of the manuscript. GD, FW, HZ, BT, and HB involved in data extraction, quality assessment, statistical analysis and revising subsequent drafts. HM, FW and TDH prepared the final draft of the manuscript. All authors read and approved the final draft of the manuscript.

Acknowledgment
We would like to thank all authors of studies included in this systematic review and meta-analysis.

References

Depression Research and Treatment 2018, 2018.

Figure 1: PRISMA Flowchart diagram of the study selection

Records identified through database searches of PubMed, EMBASE, Google scholar, CINAHL, and Cochrane library, n=1079

- 21 Duplicate records identified and removed

Articles enrolled for Title and abstract screen (n=1058)

- 1016 irrelevant articles excluded

Full-text articles assessed for eligibility (n=42)

- 32 articles excluded
 - 16 studies done outside Ethiopia
 - 10 articles did not report the outcome of interest
 - 6 articles with poor quality

Finally, 10 studies included for final systematic review and meta-analysis
Figure 2: Forest plot showing the pooled prevalence of diabetic foot ulcers

<table>
<thead>
<tr>
<th>Study ID</th>
<th>ES (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yimam A. (2017)</td>
<td>26.00 (19.88, 32.11)</td>
<td>8.75</td>
</tr>
<tr>
<td>Ejigu A. (2000)</td>
<td>1.70 (0.19, 3.21)</td>
<td>10.77</td>
</tr>
<tr>
<td>Adem A. et al (2011)</td>
<td>9.70 (7.54, 11.86)</td>
<td>10.60</td>
</tr>
<tr>
<td>Worku D. et al (2010)</td>
<td>4.60 (2.25, 6.95)</td>
<td>10.54</td>
</tr>
<tr>
<td>Tilahun A. et al (2017)</td>
<td>8.50 (4.94, 12.06)</td>
<td>10.08</td>
</tr>
<tr>
<td>Gebrekirstos K. et al (2015)</td>
<td>12.00 (7.78, 16.22)</td>
<td>9.77</td>
</tr>
<tr>
<td>Deribe B. et al (2014)</td>
<td>14.80 (10.06, 19.54)</td>
<td>9.51</td>
</tr>
<tr>
<td>Overall (I-squared = 94.6%, p = 0.000)</td>
<td>11.27 (7.22, 15.31)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis.
Figure 3: Funnel plot to test the publication bias of the 10 studies
Figure 4: Result of trim and fill analysis for adjusting publication bias of the 10 studies
Figure 5: Forest plot showing the association of residence and diabetic foot ulcer
Figure 6: Forest plot showing the association of diabetic foot ulcer with duration of the diseases