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Abstract 

Patients with the ‘aggressive’ form of MS accrue disability at an accelerated rate, typically 

reaching EDSS >= 6 within 10 years of symptom onset. Several clinicodemographic factors 

have been associated with aggressive MS, but less research has focused on clinical markers 

that are present in the first year of disease. The development of early predictive models of 

aggressive MS is essential to optimise treatment in this MS subtype. We evaluated whether 

patients who will develop aggressive MS can be identified based on early clinical markers, 

and to replicate this analysis in an independent cohort. Patient data were obtained from 

MSBase. Inclusion criteria were (a) first recorded disability score (EDSS) within 12 months 

of symptom onset, (b) at least 2 recorded EDSS scores, and (c) at least 10 years of 

observation time. Patients were classified as having ‘aggressive MS’ if they: (a) reached 

EDSS >= 6 within 10 years of symptom onset, (b) EDSS >=6 was confirmed and sustained 

over >=6 months, and (c) EDSS >=6 was sustained until the end of follow-up. Clinical 

predictors included patient variables (sex, age at onset, baseline EDSS, disease duration at 

first visit) and recorded relapses in the first 12 months since disease onset (count, pyramidal 

signs, bowel-bladder symptoms, cerebellar signs, incomplete relapse recovery, steroid 

administration, hospitalisation). Predictors were evaluated using Bayesian Model Averaging 

(BMA). Independent validation was performed using data from the Swedish MS Registry. Of 

the 2,403 patients identified, 145 were classified as having aggressive MS (6%). BMA 

identified three statistical predictors: age > 35 at symptom onset, EDSS >= 3 in the first year, 

and the presence of pyramidal signs in the first year. This model significantly predicted 

aggressive MS (AUC = .80, 95% CIs = .75, .84). The presence of all three signs was strongly 

predictive, with 32% of such patients meeting aggressive disease criteria. The absence of all 

three signs was associated with a 1.4% risk. Of the 556 eligible patients in the Swedish MS 

Registry cohort, 34 (6%) met criteria for aggressive MS. The combination of all three signs 

was also predictive in this cohort (AUC = .75, 95% CIs = .66, .84). Taken together, these 

findings suggest that older age at symptom onset, greater disability during the first year, and 

pyramidal signs in the first year are early indicators of aggressive MS. 
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Relapsing remitting multiple sclerosis (MS) is associated with the accrual of disability, 

typically due to incomplete recovery from relapses (Jokubaitis et al., 2016). A subset of patients 

accrue disability at an accelerated rate. While the rate of disability accrual in MS can represents 

a continuum, the European Committee for Treatment and Research in MS recognises that the 

rapidly progressing phenotype warrants a distinct clinical definition (European Committee for 

Treatment and Research in Multiple Sclerosis, 2018). An early attempt to define this group of 

patients was ‘malignant MS’, which was defined as “disease with a rapid progressive course, 

leading to significant disability in multiple neurologic systems or death in a relatively short 

time after disease onset” (Lublin and Reingold, 1996). It is estimated that malignant MS 

describes approximately 5-10% of patients (Gholipour et al., 2011).  

More recently, the term ‘aggressive MS’ has gained increased acceptance (Gholipour et al., 

2011). There is, however, no universally accepted definition of aggressive MS and a number 

of different criteria have been used. For example, in terms of the rate of disability accrual, Rush 

and colleagues suggest that reaching an expanded disability status scale (EDSS) of 4 within 5 

years of symptom onset is a core feature of the phenotype (Rush et al., 2015). Some researchers 

used more severe criteria, requiring an EDSS of 6 or greater within 5 years (Menon et al., 

2017), while others have required a gain of 2 or more EDSS points over a two year period 

(Scott et al., 2013). The diverse definitions used to describe this phenotype render 

interpretation of the literature challenging.   

The determinants and clinical predictors of aggressive MS are not well understood; however a 

number of risk factors of more rapid disability accrual have been identified (see Rush et al 

(2015) for a recent review). Patient characteristics, such as being older at symptom onset or of 

male sex, have been recognised (Kantarci et al., 1998; Held et al., 2005; Tremlett et al., 2006; 

Ribbons et al., 2015). Several relapse characteristics have also been implicated, including: the 

presence of multifocal relapses (Kraft et al., 1981; Wolfson and Confavreux, 1987; Amato et 

al., 1999; Bergamaschi et al., 2001); partial or incomplete recovery from relapse; (Trojano et 

al., 1995; Scott and Schramke, 2010); greater frequency of relapses (Weinshenker et al., 1989; 

Confavreux et al., 2003; Ebers, 2005); and reduced time between relapses (Weinshenker et al., 

1989; Trojano et al., 1995). Relapses associated with motor, cerebellar, bowel/balder, and 

cognitive signs have also been implicated (Citterio et al., 1989; Weinshenker et al., 1989; 

Phadke, 1990; Runmarker and Andersen, 1993; Weinshenker et al., 1996; Amato et al., 1999; 

Zarei et al., 2003; Langer-Gould et al., 2006; Kalincik, 2015). Neuroimaging signs have also 

been investigated, and the presence of high T2 lesion burden (Filippi et al., 1994; O'riordan et 
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al., 1998; Brex et al., 2002; Rudick et al., 2006; Uher et al., 2017); multiple gadolinium-

enhancing lesions (Kappos et al., 1999; Rudick et al., 2006); T1 lesions (Tomassini et al., 

2006); early atrophy (Kornek and Lassmann, 2003; Lukas et al., 2010; Vaneckova et al., 2012); 

and infratentorial lesions (Sailer et al., 1999) have been shown to raise the risk of more rapid 

disability accrual.  

While a number of risk factors have been described, the early clinical identification of patients 

at risk of aggressive MS presents a significant gap in current understanding. There is a paucity 

of large-scale observational studies that have interrogated multiple markers of aggressive MS 

simultaneously. To the best of our knowledge none have been conducted with the specific aim 

of clinical prediction and risk stratification. Critically, new evidence has demonstrated that 

early second-line therapy markedly improves disability outcomes over the long-term 

(Vaneckova et al., 2012; Fernández, 2017). However, identification of high-risk patients who 

are most likely to benefit from proactive treatment strategies remains an unmet need. The aim 

of this study was to define early clinical markers that identify patients who will later meet 

criteria for aggressive MS. To maximise clinical translation, we focused on markers are 

accessible to clinicians within the first 12 months following symptom onset. We focussed on 

estimating the risk of aggressive disease in individual patients and have conducted a validation 

in an independent cohort.  

 
Methods 

Participants 

For the primary analysis, patient data were obtained from the international MSBase cohort 

study (WHO ICTRP ID: ACTRN12605000455662) (Butzkueven et al., 2006). The study was 

approved by the Melbourne Health Research Ethics Committee and site-specific ethics 

committees where relevant. All participants provided informed consent. Data from 58,589 

patients attending 139 clinical centres in 34 countries were extracted from the MSBase registry 

in March 2018. Inclusion criteria were: (a) a diagnosis of clinically definite relapse-onset 

MS(Polman et al., 2011) (b) age at onset >= 18 years, (c) first expanded disability status score 

(EDSS) recorded within 12 months of symptom onset, (d) at least 2 recorded EDSS scores 

within 10 years of symptom onset, and (e) at least 10 years of observation time. All data were 

entered into the iMed patient record system or the MSBase online system as part of routine 
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clinical practice. Data quality assurance procedures were performed as described elsewhere 

(Kalincik et al., 2017).  

A second cohort of patients from the Swedish MS Registry (Hillert and Stawiarz, 2015) was 

used as an independent validation sample. Data from 19,520 patients were extracted from the 

registry in April 2018. The same inclusion criteria were applied as described above.  

Definition of aggressive MS 

Patients were classified as having aggressive MS if they: (a) reached EDSS >= 6 within 10 

years of symptom onset, (b) EDSS >=6 was confirmed and sustained over >=6 months, and (c) 

EDSS >=6 was sustained until the end of follow-up (>=10 years). 

Early clinical markers 

Based on a survey of the relevant literature described above, a set of clinically translatable 

predictor variables was chosen. Patient characteristics included sex and age at symptom onset.  

The following predictors were included based on observation over the first 12 months 

following symptom onset: median EDSS, number of relapses, number of severe relapses 

(relapses that significantly affected activities of daily living or required hospitalisation), 

administration of steroids, hospitalisation (both used as a proxy for severe relapses), incomplete 

recovery after a relapse, pyramidal signs, bowel-bladder signs, cognitive signs, and cerebellar 

signs. The following nuisance variables were included: disease duration at first visit (maximum 

of 365 days), total observation time (minimum of 10 years), proportion of time spent on first-

line (glatiramer acetate, interferon, dimethyl fumarate, teriflunomide) or second-line 

(mitoxantrone, natalizumab, cladribine, fingolimod, alemtuzumab, autologous stem cell 

transplantation, daclizumab, ocrelizumab, ofatumumab, rituximab, siponimod) therapy 

(Tramacere et al., 2015) over the first year since symptom onset, and proportion of time spent 

on first and second line therapy over the first 10 years since symptom onset. Magnetic 

resonance imaging (MRI) findings in the first year since symptom onset (presence of 

gadolinium enhancing, infratentorial, juxtatentorial, or periventricular lesions) and oligoclonal 

band results (positive or negative) were available for a subset of patients.  

Statistical analyses 

All statistical analyses were performed in R (Version 3.4.4) (R Core Team, 2019). Generalised 

linear models (GLMs) were used to determine the statistical predictors of aggressive disease 

status.  Aggressive disease was entered as the binary dependent variable and a binomial 
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response distribution with logistic link function was chosen. The following baseline variables 

were entered as predictors: gender, age at symptom onset. The following events within the first 

year of symptom onset were also entered: median EDSS, any hospitalisation associated with a 

relapse, any treatment with steroids, number of severe relapses, number of any relapses, 

pyramidal signs, bowel/bladder signs, cerebellar signs, partial recovery from a relapse. The 

following nuisance variables were also entered: disease duration at first visit, disease duration 

at last visit (total observation time), proportion of time over the first year on first or second-

line therapy, proportion of time over the 10-year observation period on first or second-line 

therapy.  

The use of these 17 predictors of interest resulted in 217 = 131,072 possible statistical models 

(i.e., different combinations of predictors). The selection of variables represents a well 

understood source of bias and it is difficult to know whether a particular set of predictors 

represents the ‘true’ model (Miller, 2002; Lukacs et al., 2010). We used a Bayesian model 

averaging (BMA) to address this issue (Raftery et al., 1997). Briefly, for p predictors BMA 

estimates all possible models corresponding to the 2p possible combinations of predictors. The 

fit of each model was then evaluated using the log of the posterior odds. Parameter estimates 

were averaged over all models, weighted for the fit of each model, which inherently adjusted 

for the uncertainty associated with model selection bias.  

The importance of each predictor was evaluated by the posterior inclusion probability (PIP) 

value, which was the probability that the parameter is not zero given the data. More formally, 

this is given as 𝑃(𝐵 ≠ 0|𝐷) where B is the parameter estimate for the predictor and D are the 

data. This value was computed from the posterior distribution of B, which is given as: 

𝑃(𝐵 ≠ 0|𝑌) = +𝑃
,

,-.

(𝐵|𝑀,, 𝐷)	𝑃(𝑀,|𝐷) 

Where B is the parameter estimate for the predictor, D are the data, and M1 to Mk are the models 

considered. This therefore represented the average of the posterior distribution for each 

parameter averaged over all models and weighted by the posterior probability (Hoeting et al., 

1999). Predictors with PIP values > .5 were considered ‘important’. Predictions of aggressive 

disease status for each patient were computed using the posterior predictive distribution 

averaged across all models. Two sensitivity analyses were conducted. First, Bayesian 

generalised linear mixed models were computed to investigate the importance of modelling a 
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random intercept across clinical sites. Second, all BMA analyses were repeated using a 

subgroup of patients who had an EDSS < 6 at first visit. 

Receiver operating characteristic (ROC) curves were then computed for the combined model, 

the ‘reduced’ model containing important predictors only (also known as the median 

probability model), and for each of the important continuous predictors separately. The optimal 

cut-off probability was determined using Youden’s method (Youden, 1950). Key analyses were 

repeated using conventional frequentist generalised linear models, which were estimated using 

iteratively reweighted least squares. Robust standard errors were computed via 

heteroskedasticity-consistent sandwich estimation. Confidence intervals were computed based 

on these standard errors and are presented at the 95% level. Robust p values were also 

computed, with the critical α set at .05.  

BMA was performed using the Bayesian adaptive sampling package (Clyde et al., 2011). The 

intercept was included in all models. The robust mixture of g-priors defined by Bayarri and 

colleagues (2012) was placed on each model coefficient. A beta-binomial prior was placed on 

each model with parameters α = 1 and β = 1.  Bayesian adaptive sampling without replacement 

was used with uniform sampling probabilities specified across all parameters (Clyde et al., 

2011). Bayesian generalised linear mixed models were estimated using the brms package to 

evaluate the need for random terms nested within clinical site (Bürkner, 2017, 2018). ROC 

curves were computed using the pROC package (Robin et al., 2011). Frequentist robust 

standard errors were computed using the sandwich package (Zeileis, 2004, 2006). The best 

model identified by BMA was replicated in the Swedish MS Registry cohort. Only the clinical 

predictors most strongly supported by the evidence were used for replication, with beta 

coefficients taken from the original model (rather than being re-estimated).  

Results 

Sample characteristics 

The included sample comprised 2,403 patients, of whom 145 (6%) met criteria for aggressive 

disease. The average time from symptom onset to meeting aggressive disease criteria was 6.05 

years (SD = 2.79, range = 0 – 9.89 years). As shown in Table 1, patients with aggressive disease 

tended to be older at symptom onset, have higher median EDSS during the first year, and a 

greater number of relapses in the first year. At a descriptive level of analysis, they were also 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted July 16, 2019. ; https://doi.org/10.1101/19002063doi: medRxiv preprint 

https://doi.org/10.1101/19002063
http://creativecommons.org/licenses/by-nc-nd/4.0/


more likely to experience hospitalisation, partial recovery from relapse, cerebellar signs, 

bowel/bladder signs, and pyramidal signs within the first year of symptom onset.  

Predictors of aggressive disease 

BMA revealed several important predictors of aggressive disease. The top 20 models, sorted 

by posterior probability, are showing in Figure 1. The posterior inclusion probabilities (PIPs) 

are shown in Figure 2. The strongest evidence was observed for age at symptom onset and first 

year EDSS (PIPs = 1). The presence of pyramidal signs was also strongly supported (PIP = 

0.75), as was the proportion of time spent on second-line treatment over 10 years (PIP = 1.00). 

As shown in Table 2, the remaining predictors had PIPs < .5. When averaged across the whole 

model space, the standardised parameter estimates for age of symptom onset, first year EDSS, 

and time spent on second-line therapy were significant independent predictors of aggressive 

disease, with their respective confidence intervals not capturing zero. The estimate for 

pyramidal signs, however, was less precise and included 0 as a plausible value at the 95% level. 

Taken in the context of the PIP value greater than .5, this indicates that this predictor is 

important to include in any well-fitting model, but there is considerable uncertainty regarding 

the specific magnitude of this relationship.  

MRI and OCB 

The same Bayesian model averaging approach was repeated in the subgroup of patients with 

information about cerebral MRI (n = 359) and CSF oligoclonal bands (n = 1,169) available. 

For the MRI data, the presence of gadolinium enhancing, infratentorial, juxtatentorial, or 

periventricular lesions were added to the full set of predictors as described above. For the OCB 

data, positive OCB status was added to the full set of predictors.  All MRI markers had PIPs < 

.5 (range .01 – .04) which suggested they were not important predictors in the model. The PIP 

for oligoclonal bands positive status was .07, which also indicates that this was not an important 

predictor of aggressive disease. Model output for these analyses is included in Appendix A. 

Sensitivity analyses and assumption checks 

The first sensitivity analysis was performed to investigate whether the clustering of cases 

within clinical sites should be explicitly modelled via a random effects analysis. Two Bayesian 

generalised linear models were estimated; the first with the intercept fixed across all cases, and 

the second with a random intercept for each clinical site. The fit of each model was computed 

in the form of the leave-one out information criteria (LOOIC). As described in Appendix B, the 

fixed intercept model was a better fit to the data (LOOIC = 922.19) compared to the random 
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intercept (LOOIC = 923.20). As such, the fixed intercept model, as implemented in the BMA 

analysis, was deemed most appropriate for all analyses.  

A second sensitivity analysis was performed in the subgroup of patients who had an EDSS < 6 

at the time of first visit. As shown in Appendix C, these results largely replicated the findings 

of the main analysis. Age at symptom onset (PIP = 1.00), EDSS at first visit (PIP = 1.00), and 

the presence of pyramidal signs in the first year (PIP = .74) were all important predictors. The 

proportion of time spend on a second-line therapy over the 10-year observation period was also 

an important predictor (PIP = .99).  

Frequentist analysis 

All analyses were repeated using a conventional frequentist approach. As shown in Table 3, 

the strongest evidence supported age and symptom onset and first year EDSS as significant 

predictors of aggressive MS (p < .001). Relatively weaker evidence was observed for the 

presence of pyramidal signs (p = .017). The proportion of time spent on second-line treatment 

over 10 years was statistically significance (p < .001). As shown in Appendix C, these findings 

were confirmed in the subgroup of patients with EDSS < 6 at first clinical visit. 

Individual predictive accuracy 

When averaged across the model space using BMA, the overall model was predictive of 

aggressive disease status. The area under the curve was .82 [95% CI = .78, .85] for the overall 

model, and .80 [95% CI = .75, .84] when using only the three important predictors (reduced 

model). Using the optimal cut-off of 0.06, the positive predictive value was 15%, compared to 

sample prevalence of aggressive disease of 6%. The negative predictive value was 98%.  As 

shown in Table 4, ROC curves were also computed for each of the numerical predictors 

separately (age at symptom onset and median EDSS during the first year). Optimal thresholds 

were also computed, with patients classified as positive for each sign if their value was greater 

than the respective threshold (except for pyramidal signs, which were already binary). This 

procedure was repeated for a model containing all three of the important predictors identified 

above (age at symptom onset, median EDSS during the first year, pyramidal signs).  

The number of positive signs was then translated into the probability of developing aggressive 

disease. Of the patients with all three signs, 32% had aggressive disease. This was followed by 

any two signs (14%), any one sign (5%), and no signs (1%). The specific combinations of 

positive signs were also computed. As shown in Table 5, this revealed a more complex pattern 
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of relationships. For example, being positive for EDSS and pyramidal signs was associated 

with slightly lower risk of aggressive disease (11%) compared to being positive for age and 

EDSS (21%). 

External validity 

The performance of the three important predictors was evaluated in an independent sample 

obtained from the Swedish MS Registry. The mean age at symptom onset (M = 33.35, SD = 

8.85) and median EDSS during the first year (M = 1.51, SD = 1.28) were comparable to the 

MSBase cohort. The proportion of patients reported to show motor signs in the first year (n = 

95, 17%) was lower than the proportion of MSBase patients with pyramidal signs in the first 

year (n = 795, 33%). Of the 556 patients, 34 met criteria for aggressive disease (6%). This 

prevalence was comparable to the MSBase cohort. The probability of meeting aggressive 

disease criteria was predicted in the Swedish MS Registry using three important predictors 

identified in the MSBase cohort only. The area under the curve was .75 [95% CI .66, .84], only 

marginally lower than in the MSBase cohort, and within the confidence limits. The ROC is 

visualised in Appendix D. Using the optimal cut-off of 0.06 (determined from the primary 

analysis in the MSBase cohort), the positive predictive value was 15%, compared to sample 

prevalence of 6%. The negative predictive value was 97%.   

 

Discussion 

In this study, we investigated a comprehensive set of early predictors of aggressive MS. Using 

data from the international MSBase registry (Butzkueven et al., 2006), we identified early and 

clinically accessible makers that, if observed in the first year since symptom onset, convey 

increased risk of the patient meeting criteria for aggressive disease. Specifically, older age at 

symptom onset, greater disability in the first year, and the presence of pyramidal signs are 

associated with aggressive MS. Conversely, the absence of these signs conveyed lower 

probability of meeting aggressive MS criteria compared to the observed base rate. The 

predictive power of the overall model was replicated using an independent cohort of patients 

from the Swedish MS registry. The Bayesian analytical approach enabled us to estimate 

posterior probabilities of aggressive disease which can be directly applied to individual patients 

who have recently presented with symptoms of relapse-onset MS. 
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Overall, these findings are consistent with a number of previous studies. Several studies have 

reported  general associations of older age at symptom onset (Confavreux et al., 2003; Held et 

al., 2005; Confavreux and Vukusic, 2006), early disability progression (Weinshenker et al., 

1989), and motor signs with accelerated worsening of disability (Weinshenker et al., 1989; 

Atkins and Freedman, 2013; Correale et al., 2014). In a number of areas, our results may seem 

to diverge from previously reported findings. For example, we did not find evidence for  an 

independent, unequivocal effect of  sex (Kantarci et al., 1998; Tremlett et al., 2006), partial 

recovery from relapse (Trojano et al., 1995; Scott and Schramke, 2010), severity of relapse 

(Rush et al., 2015), the number of relapses early in the disease course (Weinshenker et al., 

1989; Confavreux et al., 2003; Ebers, 2005), and relapses presenting with cerebellar 

(Weinshenker et al., 1989; Phadke, 1990; Amato et al., 1999) or bowel/bladder (Citterio et al., 

1989; Runmarker and Andersen, 1993; Amato et al., 1999; Langer-Gould et al., 2006) signs 

on the risk of developing aggressive disease. Due to issues of multi-collinearity, we were 

unable to investigate the independent effect of cognitive impairment, which has previously 

been suggested to be a poor prognostic sign (Zarei et al., 2003). The main conceptual difference 

between the present study and the previously published work is its focus on an objectively 

defined aggressive disease form rather than the overall risk of disability worsening used as the 

outcome in this study. Therefore, it is not surprising that several markers, which are predictive 

of disability worsening in general, are not directly associated with the risk of developing 

aggressive disease – a disease form that is at an extreme of the continuum of disease severity.  

Identifying patients who are at a high risk of developing an aggressive MS is of high clinical 

importance. Previously, we have demonstrated that choice of a second-line therapy, in 

particular early in the disease course, has the capacity to prevent or delay development of 

secondary progressive MS form (Brown et al., 2019) and mitigate the evolution of neurological 

disability (He et al., 2018). An objective guidance for treatment of potentially aggressive 

disease at early disease stages in a condition whose management revolves around effective 

prevention disability driven by episodes of CNS inflammation, is an area of unmet need. The 

Bayesian approach used in this study allows us not only to quantify, within a year from disease 

onset, the probability of developing significant restriction of gait within 10 years in individual 

patients, but also to quantify the uncertainty across competing models – a feature that cannot 

be assessed within frequentist frameworks (Raftery et al., 1997). Reassuringly, the direction 

and the magnitude of the associations identified within the Bayesian and the frequentist 

frameworks are almost identical. 
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Many of these predictors share a significant proportion of variance. Our statistical approach of 

combining all predictors into a single analysis enables us to select only those predictors that 

add uniquely to the prediction. This redundancy allows us to focus the resulting predictive 

algorithm on a small number of accessible predictors that are able to the essence of the 

prediction similarly as the full set of available variables (see Table 4 and Figure 3). 

To the best of our knowledge, this is the largest study conducted to identify early clinical 

markers of aggressive MS. It enables direct translation of its results into clinical application. 

We employed a strict set of inclusion criteria, which required all patients to be observed within 

12-months of symptom onset for a minimum of 10 years. This ensured that out control cases 

were truly negative in terms of aggressive MS. By requiring patients to meet criteria for 

aggressive MS to at least 6 months and until the end of follow-up, we ensured that the risk of 

false positives (i.e., patients that met aggressive disease criteria but then reverted to a negative 

status) was minimised. Our statistical approach was also a significant strength. Bayesian model 

averaging (BMA) has a long history in the statistical literature but has not been applied 

extensively in MS research. By averaging the results over all possible models, BMA minimises 

model selection bias (Raftery et al., 1997). This approach advances the approaches used 

previously to predict the course of disability. In our approach, we have not relied on a single, 

arbitrarily selected model, but have reported the result reflects the entire model space and 

combines possible statistical models. 

External validity of its results is imperative for any predictive algorithm (Copas, 1983; Harrell 

et al., 1996) We therefore used an independent, population-based cohort - the Swedish MS 

registry, captures approximately 80% of the Swedish MS population - to validate our findings 

(Hillert and Stawiarz, 2015). This validation analysis confirmed that the overall model derived 

from the BMA analysis provided an accurate prediction in an independent MS cohort, and is 

thus generalisable to the prevalent MS population. At the level of the individual predictors 

contributing to the model, not all variables could be replicated directly. The definition of 

‘motor’ signs in the Swedish MS registry differs from the definition used by MSBase. 

Specifically, MSBase uses the pyramidal functional system score based on EDSS( Kurtzke, 

1983) while the Swedish MS registry reports motor symptoms as a separate entity. This 

difference is further supported by the observation of the relatively lower frequency of motor 

signs in the validation cohort compared to pyramidal signs in the discovery cohort. Further 

limitations are represented by the relative scarcity of formally reported MRI data and CSF 
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information. However, we have conducted secondary analyses in subcohorts in whom this 

information was available; these analyses did not suggest that qualitatively reported MRI and 

CSF oligoclonal bands during the first year contribute meaningfully to the prediction of 

aggressive disease. Finally, the data utilised originate from observational registries based on 

clinical practice and are subjects to multiple sources of error and confounding. In order to 

mitigate these influences, we have applied an objective data quality assessment (Kalincik et 

al., 2017) and have constructed large, inclusive multivariable models that have contributed to 

the final model through the BMA framework.  

In summary, our findings suggest that older age at symptom onset, greater disability in the first 

year since symptom onset, and the presence of pyramidal signs indicate a higher risk of 

developing aggressive disease. Importantly, the absence of any of these signs is associated with 

a much lower risk of aggressive disease compared to the general MS population. For ease of 

clinical implementation, these criteria can be defined as: median EDSS ≥ 3, any pyramidal 

signs on examination in the first year, and age > 35 at symptom onset. An important direction 

for future research will be to determine whether aggressive MS can be prevented by the use of 

aggressive treatment strategies in patients who are predicted to develop aggressive disease.  
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Tables 
 
Table 1. Sample characteristics  
 

Variable Total 
(N = 2,403) 

Non-aggressive disease  
(n = 2,258) 

Aggressive disease 
(n = 145) 

 

Baseline variables    

   Age at symptom onset 31.72 (8.91) 31.3 (8.61) 38.4 (10.8) 
   Female – n (%) 1712 (71.2) 1613 (71.43) 99 (68.28) 
   Disease duration at first visit (days) 119.90 (110.0) 118.00 (110.00) 143.00 (113.00) 
   First year EDSS 1.78 (1.26) 1.69 (1.16) 3.11 (1.83) 
Events within first 12 months    

   No. relapses 0.74 (0.93) 0.72 (0.92) 1.06 (0.96) 

   No. severe relapses 0.12 (0.40) 0.20 (0.40) 0.17 (0.44) 
   Treatment with steroids – n (%) 491 (20.4) 448 (19.84) 43 (29.66) 

   Hospitalisation – n (%) 288 (12.0) 257 (11.38) 31 (21.38) 

   Partial recovery from relapse – n (%) 186 (7.7) 164 (7.26) 22 (15.17) 

   Pyramidal signs – n (%) 795 (33.1) 699 (30.96) 96 (66.21) 
   Bowel/bladder signs – n (%) 154 (6.4) 125 (5.54) 29 (20) 
   Cerebellar signs – n (%) 388 (16.1) 332 (14.70) 56 (38.62) 
Treatment    

   % time on first-line (10y) 46.00 (36.10) 46.30 (36.50) 40.80 (29.99) 

   % time on second-line (10y) 5.30 (14.1) 4.90 (13.7) 11.30 (18.2) 
   % time on first-line (1y) 17.1 (28.00) 17.2 (28.2) 14.80 (23.4) 
   % time on second-line (1y) 0.50 (5.1) 0.40 (4.80) 1.40 (7.70) 
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Table 2. BMA analysis for prediction of aggressive disease status 
 

Variable B SD 95% CI Exp(B) PIP 
Baseline variables      

   Age at symptom onset 0.07 0.01 0.05, 0.09 1.07 1.00 

   Male 0.01 0.06 0.00, 0.00 1.01 0.06 

   Disease duration at first visit 0.00 0.00 0.00, 0.00  1.00 0.15 

   First year EDSS 0.50 0.07 0.36, 0.64 1.65 1.00 
Events within first 12 months      

   No. relapses 0.04 0.10  0.00, 0.29 1.04 0.25 

   No. severe relapses -0.01 0.05 0.00, 0.00 0.99 0.06 

   Treatment with steroids 0.01 0.07 0.00, 0.00 1.03 0.06 

   Hospitalisation 0.02 0.12 0.00, 0.20 1.03 0.09 

   Partial recovery from relapse 0.00 0.05  0.00, 0.00 1.00 0.04 

   Pyramidal signs 0.47 0.36 0.00, 1.00 1.60 0.75 

   Bowel/bladder signs 0.02 0.12 0.00, 0.14 1.02 0.09 

   Cerebellar signs 0.07 0.19 0.00, 0.59 1.07 0.20 

Treatment      

   % time on first-line (10y) 0.00 0.05 0.00, 0.00 1.00 0.04 

   % time on second-line (10y) 2.32 0.52  1.37, 3.36 10.15 1.00 

   % time on first-line (1y) -0.01 0.10 0.00, 0.00  0.99 0.06 

   % time on second-line (1y) -0.05 0.37 0.00, 0.00 0.95 0.06 

Note: B = model coefficients computed as the mean of the posterior distribution. SE = standard deviation of 
the posterior distributions. CI = 95% credible intervals. Exp(B) = odds ratios of the model coefficients. P(B 
!= 0 | Y) = posterior inclusion probability (PIP). 
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Table 3. Frequentist GLM analysis for prediction of aggressive disease status 
 

Variable B SE 95% CIs Exp(B) Sig. 
Baseline variables      

   Age at symptom onset 0.07 0.01 0.05, 0.09 1.07 <0.001 

   Male 0.26 0.21 -0.15, 0.66 1.29 0.210 

   Disease duration at first visit 0.00 0.00 0.00, 0.00 1.00 0.223 

   First year EDSS 0.43 0.09 0.26, 0.60 1.54 <0.001 

Events within first 12 months      

   No. relapses 0.18 0.12 -0.05, 0.41 1.20 0.122 

   No. severe relapses -0.33 0.23 -0.78, 0.12 0.72 0.147 

   Treatment with steroids 0.08 0.26 -0.42, 0.59 1.09 0.745 

   Hospitalisation 0.25 0.32 -0.37, 0.88 1.29 0.429 

   Partial recovery from relapse 0.03 0.32 -0.59, 0.65 1.03 0.935 

   Pyramidal signs 0.56 0.24 0.10, 1.03 1.76 0.017 

   Bowel/bladder signs 0.32 0.29 -0.26, 0.89 1.38 0.276 

   Cerebellar signs 0.34 0.23 -0.10, 0.78 1.41 0.130 

Treatment      

   % time on first-line (10y) -0.19 0.32 -0.80, 0.43 0.83 0.554 

   % time on second-line (10y) 2.27 0.58 1.14, 3.41 9.71 <0.001 

   % time on first-line (1y) -0.29 0.43 -1.14, 0.55 0.75 0.497 

   % time on second-line (1y) -1.36 1.63 -4.56, 1.84 0.26 0.404 

Note: B = model coefficients. SE = robust standard errors computed via heteroskedasticity-consistent 
sandwich estimation. CI = 95% confidence intervals computed using robust SEs. Exp(B) = odds ratios for the 
model coefficients. Sig = significance values were computed using the robust SEs. Bold significance values 
indicate p  <.05. Assumption checks regarding multicollinearity, influential cases, autocorrelation, dispersion, 
and residual distribution were satisfied. 
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Table 4. Classification performance of the BMA analysis and specific variables 
 

Variable AUC  
[95% CIs] Threshold Sensitivity Specificity PPV NPV 

BMA (full) .82 [.78, .85] .05 .78 .71 .15 .98 
BMA (reduced) .80 [.75, .84] .06 .72 .73 .15 .98 

Age at onset .69 [.64, .74] 35 .60 .71 .12 .96 
First year EDSS .74 [.70, .79] 2.5 .53 .85 .19 .97 
Pyramidal signs - - .66 .69 .12 .97 
Note: AUC = area under the curve. Threshold = the optimal cut-off determined using Youden’s method 
(1955). PPV = positive predictive value. NPV = negative predictive value. As the presence pyramidal signs is 
a binary predictor, the AUC and threshold could not be computed. BMA (full) = the entire model with all 17 
predictors. BMA (reduced) = the model with only age at onset, first year EDSS, and pyramidal signs.  

 
 
Table 5. Prognostic value of combinations of positive signs 
 

Age  
> 35 

EDSS  
>= 3 

Pyramidal 
signs n 

Non-aggressive 
disease/aggressive 

disease - n 

% aggressive 
disease 

Relative 
risk (RR) 

✓ ✓ ✓ 125 85/40 32.00 22.85 

✓ ✓  52 41/11 21.15 15.11 

✓  ✓ 177 154/23 12.99 9.28 

 ✓  88 78/10 11.36 8.11 

 ✓ ✓ 142 126/16 11.27 8.05 

  ✓ 351 334/17 4.84 3.46 

✓   397 384/13 3.27 2.34 

   1071 1056/15 1.40 Ref. 
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Figures 
 

 
 
Figure 1. Visualisation of the model space from the Bayesian model averaging (BMA) 

analysis. The top 20 model are shown ranked by the log of the posterior odds. The colour 

indicates the posterior probability of the individual predictors (warmer = higher probability). 

Black squares indicate that the predictor was not included in the model. As shown, age at onset, 

EDSS, and pyramidal signs were consistently included in the best fitting models. The intercept 

was included in all models.  
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Figure 2. Posterior inclusion probabilities (PIP) for each predictor and model parameters 

averaged across the model space. EDSS, age at symptom onset, presence of pyramidal signs 

during the first year since symptom onset, and time spent on first-line therapy over 10 years 

were important predictors (PIPs > .5). All of these predictors were included in the single best 

fitting model. The evidence was not compelling for the other predictors.  
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Figure 3. Full model = Bayesian model averaging analysis containing all predictors weighted 

by model fit. Reduced model = the model that contained only age at symptom onset, first year 

EDSS, and presence or pyramidal signs. Age at symptom onset = only the continuous predictor 

of age at symptom onset. First year EDSS = only the continuous predictor of median EDSS in 

the first year.   
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Appendix A – Analysis of MRI and OCB data 
 

Table S1. Separate BMA analyses for the subset of participants with MRI (n=359) and OCB 
(n=1169) data. All predictors of the full model were included.  
 
 

Variable B SE 95% CI Exp(B) P (B != 0 | Y) 
MRI      
   Gd+ enhancing lesion -0.02 0.16 -0.02, 0.02 0.98 0.03 
   Infratentorial lesion -0.02 0.15 -0.03, 0.02 0.98 0.04 

   Juxtatentorial lesion -0.00 0.06 -0.01, 0.01 1.00 0.02 

   Periventricular lesion 0.00 0.08 -0.01, 0.01 1.00 0.01 

OCB      
   Positive OCB 0.03 0.15 -0.01, 0.34 1.02 0.07 

Note: B = model coefficients computed as the mean of the posterior distribution. SE = standard deviation of 
the posterior distributions. CI = 95% credible intervals. Exp(B) = odds ratios of the model coefficients. P(B 
!= 0 | Y) = posterior inclusion probability (PIP). 
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Appendix B – Investigation of fixed versus random effects models 
 
Two models were computed to investigate whether the random effect of clinical site should be 

included in the final model. The first model was computed with a fixed effect for site. The 

second model was computed with a random intercept for site. All models were computed in 

brms, a package in the R environment. Parameters were estimated using the stan sampler with 

3 chains and 2,000 samples (1,000 warmup and 1,000 actual samples). Chains and relevant 

metrics were inspected to ensure convergence. The same predictors were used as described in 

the main text. Student’s t priors were used for the beta and SD coefficients (location = 0, 

degrees of freedom = 3, scale = 2.5). A Student’s t prior was also placed on the intercept 

(location = 0, degrees of freedom = 3, scale = 10).  

 

Model fit was assessed using leave-one-out (LOO) cross validation based on the posterior 

likelihood. Lower values of the LOO information criteria (LOOIC) indicate better fit. LOOICs 

for each model are in Table S2 below. 

 
Table S2. Leave-one-out information criteria (LOOIC) for fixed versus random intercept 
models. 
 
Model LOOIC SE 
Fixed intercept 915.95 57.91 

Random intercept 915.31 57.92 

Random intercept – fixed intercept -0.64 4.24 
 
 
As shown in Table S2, there was no meaningful difference between the two models. Taken 

together, these results do not support the added utility of including a random intercept in the 

model. As such, fixed intercept models were used for subsequent analyses.    
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Appendix C – Sensitivity analysis on baseline EDSS < 6 sub-cohort 
 
Table S3. BMA analysis repeated for participants with EDSS < 6 in first year. 
 

Variable B SD 95% CI Exp(B) P(B != 0 | Y) 
Baseline variables      

   Age at symptom onset 0.06 0.01 0.04, 0.08 1.06 1.00 

   Male 0.01 0.06 0.00, 0.00 1.01 0.04 

   Disease duration at first visit 0.00 0.00 0.00, 0.00 1.00 0.10 

   First year EDSS 0.58 0.10 0.39, 0.76 1.78 1.00 

Events within first 12 months      

   No. relapses 0.02 0.07 0.00, 0.22 1.02 0.12 

   No. severe relapses 0.00 0.05 0.00, 0.00  1.00 0.03 

   Treatment with steroids 0.00 0.05 0.00, 0.00 1.00 0.03 

   Hospitalisation 0.01 0.08 0.00, 0.00 1.01 0.04 

   Partial recovery from relapse 0.00 0.04 0.00, 0.00 1.00 0.02 

   Pyramidal signs 0.37 0.36 0.00, 0.94 1.45 0.57 

   Bowel/bladder signs 0.03 0.14 0.00, 0.32 1.03 0.06 

   Cerebellar signs 0.11 0.25 0.00, 0.71 1.12 0.21 

Treatment      

   % time on first-line (10y) -0.01 0.06  -0.02, 0.01 0.99 0.02 

   % time on second-line (10y) 2.24 0.54 1.29, 3.30 9.42 0.99 

   % time on first-line (1y) -0.02 0.11 -0.03, 0.02 0.98 0.04 

   % time on second-line (1y) -0.04 0.34 -0.05, 0.03 0.96 0.03 

Note: B = model coefficients computed as the mean of the posterior distribution. SE = standard deviation of 
the posterior distributions. CI = 95% credible intervals. Exp(B) = odds ratios of the model coefficients. P(B 
!= 0 | Y) = posterior inclusion probability (PIP). 
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Table S4. Frequentist analysis repeated for participants with EDSS < 6 in first year. 
 

Variable B SE 95% CIs Exp(B) Sig. 
Baseline variables      

   Age at symptom onset 0.06 0.01 0.04, 0.08 1.06 <0.001 

   Male 0.27 0.21 -0.15, 0.68 1.31 0.206 

   Disease duration at first visit 0.00 0.00 0.00, 0.00 1.00 0.181 

   First year EDSS 0.48 0.11 0.26, 0.7 1.62 <0.001 

Events within first 12 months      

   No. relapses 0.17 0.12 -0.08, 0.41 1.18 0.182 

   No. serious relapses -0.31 0.24 -0.78, 0.16 0.73 0.192 

   Treatment with steroids 0.04 0.28 -0.51, 0.58 1.04 0.895 

   Hospitalisation 0.22 0.35 -0.46, 0.90 1.25 0.525 

   Partial recovery from relapse -0.04 0.34 -0.71, 0.62 0.96 0.898 

   Pyramidal signs 0.55 0.24 0.08, 1.02 1.73 0.021 

   Bowel/bladder signs 0.37 0.31 -0.24, 0.98 1.45 0.235 

   Cerebellar signs 0.39 0.24 -0.07, 0.85 1.48 0.098 

Treatment      

   % time on first-line (10y) -0.26 0.32 -0.89, 0.37 0.77 0.414 

   % time on second-line (10y) 2.23 0.59 1.06, 3.39 9.27 <0.001 

   % time on first-line (1y) -0.25 0.45 -1.13, 0.62 0.78 0.571 

   % time on second-line (1y) -1.31 1.65 -4.55, 1.93 0.27 0.429 

Note: B = model coefficients. SE = robust standard errors computed via heteroskedasticity-consistent 
sandwich estimation. CI = 95% confidence intervals computed using robust SEs. Exp(B) = odds ratios for the 
model coefficients. Sig = significance values were computed using the robust SEs. Bold significance values 
indicate p  <.05. Assumption checks regarding multicollinearity, influential cases, autocorrelation, dispersion, 
and residual distribution were satisfied. 
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Appendix D – Cross-validation of predictive model 

 

 
Figure S1. Receiver operating characteristic (ROC) curve for the validation of the three-

predictor model in the Swedish MS Registry cohort.  
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