
1 
 

The fecal microbiome in diverticulitis and asymptomatic diverticulosis: A case-control study in the US 

 

Meredith A. J. Hullar1, Richard S. Sandstrom 2, John A. Stamatoyannopoulos 2,3,4,  Johanna W. Lampe 1,  
Lisa L. Strate5 

 

1 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, 
WA 98109 

2Altius Institute for Biomedical Sciences, 2211 Elliott Avenue, Seattle, Washington, 98121 

3 Department of Genome Sciences, University of Washington, Foege Building, 3720 15th Ave NE, Seattle, 
WA 98195-5065 

4 Division of Oncology, University of Washington School of Medicine, Seattle, WA 98195 

5 Division of Gastroenterology, University of Washington School of Medicine, Harborview Medical 
Center, 325 Ninth Ave, Box 359773, Seattle, WA 98104 

 

*Corresponding Author:  lstrate@uw.edu (LS) 

 

 

 

 

  

All rights reserved. No reuse allowed without permission. 
certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/19001404doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:lstrate@uw.edu
https://doi.org/10.1101/19001404


2 
 

Objective:  The intestinal microbiota are hypothesized to play a role in the pathogenesis of diverticulitis.  

We compared fecal microbial communities in individuals with diverticulitis to those with uncomplicated 

diverticulosis.  

Methods:  We used 16S ribosomal RNA gene sequencing to assess and compare the microbiota 

composition of fecal samples from 10 patients presenting with acute diverticulitis (cases) and 10 

controls with asymptomatic diverticulosis matched on age and sex.   

Results:   We found differences in the distribution of relative abundances of bacterial phyla and genera 

in diverticulitis cases versus diverticulosis controls. At the phyla level, Verrucomicrobia was more 

abundant on average in diverticulitis cases at the time of diagnosis than in diverticulosis controls 

(p=0.07).   Univariate analysis identified a significant increase in the genera Coriobacteria (p=0.050), 

Anaerotruncus (0.046), Subdoliganulum (p=0.034), Marvinabryantia (p=0.006), and Akkermansia 

(p=0.04), and a decrease in Barnesiella (p=0.035) and Coprococcus (p=0.035) in diverticulitis cases at the 

time of diagnosis compared to diverticulosis controls.  However, after correction for multiple 

comparisons, these differences were no longer significant. Partial least squares discriminant analysis on 

all microbial genera showed partial separation of diverticulitis cases at diagnosis and diverticulosis 

controls.  The microbial alpha diversity was higher in diverticulitis cases at time of diagnosis vs controls 

but this was not significant (Shannon diversity index 7.4±0.6 vs 6.8±0.7, p=0.08).   

Conclusions:  Individuals with diverticulitis differ from those with asymptomatic diverticulosis based on 

components of the fecal microbiome.  
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Introduction 

Diverticulosis is one of the most common gastrointestinal disorders in Western societies.(1-3)    

In the US, more than $2 billion are spent annually on hospitalizations for diverticulitis.(1) This figure 

does not account for the costs associated with the 3 million outpatient visits for diverticulitis each year, 

or for the indirect costs associated with this disease.(1) 

The etiopathogenesis of diverticulitis remains unknown.  Traditional theories postulate that 

diverticulitis occurs when a diverticular sac is obstructed by a fecalith or food particle resulting in 

trauma, local ischemia, and bacterial stasis.(4) However, there are no data to support this theory, and 

the importance of the intestinal microbiota in other intestinal disorders has inspired revised disease 

concepts.  Newer theories posit that alterations in the intestinal microbiota composition in patients with 

diverticulosis lead to chronic mucosal inflammation and ultimately to acute diverticulitis.(5-7) Indirect 

evidence supports this theory. The pathophysiology of diverticulitis involves the translocation of 

bacteria across the colon mucosal barrier and standard treatment includes antibiotics.(8) Well-

established risk factor for diverticulitis, including dietary red meat,(9) dietary fiber,(10-12) and 

obesity,(13, 14) influence the gut microbiota composition and function.(15-21) Global geographical 

differences in the intestinal microbial community also correspond to differences in the prevalence of 

diverticular disease.(21-23) Several studies have examined the intestinal microbial composition in 

patients with symptomatic asymptomatic diverticular disease (24-26) and in asymptomatic 

diverticulosis.(27, 28) Only two small studies have explored the intestinal microbiota in patients with 

diverticulitis.(29, 30)  

Currently, we lack methods to identify individuals with diverticulosis who are at high risk of 

diverticulitis.  This is important because more than half of adults in developed countries have 

diverticulosis, but fewer than 5% of these individuals will experience diverticulitis.(31, 32) Furthermore, 
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there are no proven means to prevent incident or recurrent diverticulitis short of prophylactic 

colectomy.(33)   

A better understanding of the intestinal microbiota composition in patients with diverticulitis as 

compared to patients with asymptomatic diverticulosis could lead to the development of a risk-

stratification tool as well as preventive interventions.  Therefore, we profiled and compared the fecal 

microbiota in individuals with acute diverticulitis and individuals with asymptomatic diverticulosis using 

high-resolution, next-generation sequencing of 16S ribosomal RNA (rRNA) gene to assess whether 

specific differences in the microbial communities could be identified. 

Methods 

Study Participants 

The study population included 10 patients with diverticulitis and 10 controls with asymptomatic 

diverticulosis from the University of Washington Medical Center, a quaternary care center, and 

Harborview Medical Center, a trauma and safety net hospital in Seattle, WA.  Cases of acute 

diverticulitis were identified and recruited at the time of presentation, and the first stool after diagnosis 

was sampled.  However, all cases were treated promptly and received antibiotics prior to stool 

collection (range 1 to 57 hours). All diagnoses of diverticulitis were confirmed by abdominal CT scanning.  

Diverticulitis cases were excluded if emergency surgery was planned for perforation or peritonitis as 

these patients usually did not have a bowel movement prior to surgery and post-surgical anatomy may 

alter the microbiome. Controls with asymptomatic diverticulosis matched on age and sex to cases were 

identified from colonoscopy reports and contacted regarding interest in study participation. Both cases 

and controls were excluded if they had a history of bowel resection, gastrointestinal cancer, 

inflammatory bowel disease, irritable bowel syndrome, ongoing chemotherapy or immunosuppression, 
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or antibiotic therapy or bowel preparation in the previous 3 months (except for antibiotics given for the 

index diverticulitis episode) . All participants provided written informed consent and the study was 

approved by the institutional review board at the University of Washington School of Medicine.  

 At a one-time study visit, data were obtained regarding past medical history including 

gastrointestinal illnesses and symptoms, current medication use and smoking history (in pack years of 

exposure). In addition, height, weight and waist and hip circumference measurements were obtained in 

clinic by trained study staff, and body mass index (BMI; kg/m2) was calculated.  At the time of each stool 

sample collection, participants also completed a self-administered, validated 120-item food frequency 

questionnaire (FFQ) developed by the Nutrition Assessment Shared Resource, Fred Hutchinson Cancer 

Research Center, Seattle, WA.(34)  

Fecal Sample Collection and Processing 

Two fecal samples were obtained from each participant, one at the time of diagnosis 

(diverticulitis cases) or study recruitment (diverticulosis controls) and another at least 45 days later 

(post-treatment for cases).  This sampling schema was used to account for possible changes in the 

microbiota due to acute inflammation and/or antibiotic exposure.  We used methods previously tested 

by our group for fecal collection, preservation and DNA extraction.(35) Briefly, participants collected 

fecal samples using a home fecal collection kit.  Two pea-sized samples were immediately placed in a 

tube containing RNAlater, shaken vigorously to disperse the sample, and sent to the lab where they 

were frozen at -80°C until further processing.    Fecal bacterial DNA was extracted using the QIAmp DNA 

stool minikit (Stool Kit, Qiagen, Valencia, CA).  

16S Ribosomal RNA Pyrosequencing  
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The 16S rRNA gene was amplified and sequenced using primers 27f and 519r (V1-V3;)(35) for 

amplicon pyrosequencing (bTEFAP(36)) at Research and Testing (Shallowater, Texas) using Roche 454 

FLX titanium instruments and reagents and following the manufacturer's guidelines. Sequences have 

been deposited in the Sequence Read Archive of NCBI under accession number SUB2127005.  

Microbiome Analysis  

 To classify bacterial taxonomy, sequences were aligned and identified in MOTHUR (V.1.28.0) to 

the Silva 16S rRNA gene reference alignment (www.arb-silva.de)(37, 38) Sequences were converted to 

standard FASTA format from .sff files. Sequences were removed if they were <300 bp, had 

homopolymers >8 bp, more than one mismatch to the forward primer, more than one mismatch to the 

barcode, or ambiguous bases. Potentially chimeric sequences were removed (39),sequences were 

denoised (40), and aligned to the Silva 16S rRNA gene reference alignment (www.arb-silva.de) using the 

NAST algorithm. (41-43)  The pre.cluster option in MOTHUR was used to minimize any overestimation 

errors in microbial diversity.(44)  Sequences were grouped into operational taxonomic units (OTU) using 

the mean Neighbor-Joining algorithm. Sequences that did not align to the appropriate 16S rRNA gene 

region were removed. Low abundance sequences were merged to the high abundant sequences using 

the pre.cluster option in MOTHUR to minimize the effect of pyrosequencing errors in overestimating 

microbial diversity.(32) Bacterial taxa were removed if they represented less than 0.005% of the total 

sequences. (45, 46) The number of sequences in each genera was converted to the relative percentage 

of the total sequence abundance per individual for multivariate analysis. 

Statistical Analysis 

We computed the Jensen Shannon divergence distances (JSD)(47, 48) on pairs of samples. We 

then performed a global analysis of the microbiome using non-metric multidimensional scaling (NMS) 
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analysis of the JSD distances at the genera level. Unsupervised clustering using unweighted pair group 

method with arithmetic mean (UPGMA) was performed followed by multi-response permutation 

procedures (MRPP) to test for differences in community composition in the clusters.(49) A joint plot was 

used to show the relationship between the bacterial genera and the ordination scores generated from 

the JSD matrix. Only the vectors with a correlation of >0.5 relative to the NMS axes were shown. A 

logistic regression model using the NMS axes that described the microbial community composition, 

adjusted for time from antibiotic treatment (in days), dietary intake of fat, fiber, animal protein, 

vegetable protein and total energy, smoking (current, past, never), and BMI was used to test whether 

global differences in all of the genera in the microbiome could distinguish between participants with 

diverticulitis and diverticulosis. 

Differences in the relative abundance at the phyla and genera level between diverticulitis cases 

and diverticulosis controls, and pre and post-diverticulitis treatment were tested using the unpaired 

(Mann-Whitney) or paired non-parametric (Wilcoxon signed-rank) test.  We used the Benjamini-

Hochberg approach to account for multiple comparisons.(50) 

To investigate whether cases and controls segregated based on specific components of the fecal 

microbial community, we employed partial least squares discriminant analysis (PLSDA).  PLSDA was 

performed to sharpen the separation between predetermined groups of individuals, and is utilized when 

the number of observations is low and the number of explanatory variable is high.(51) The input 

variables were arcsine transformed relative abundances of the bacterial genera. To test the predictive 

performance of the model, we used a leave one out approach. We assessed the consistency between 

the predicted and actual data using the Q2 statistic and considered a value of >0.4 indicative of good 

discrimination. (52) We used  R2 to assess the degree of fit to the data along the PLSDA decomposition 

associated with the x and y axes.(53) To estimate the influence of each bacterial genera on the first two 
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axes of the PLSDA model, we calculated the variable of importance (VIP). VIP values rank input variables 

according to their ability to distinguish different groups.   Values greater than 1 are indicative of 

variables that have an important contribution to the model. (54) To examine how well this model 

segregated cases and controls, we tested a 20% random selection of samples and calculated R2 and Q2 

statistics.   

 We estimated alpha variation (within-person) in the overall microbial composition after 

rarefaction using the Shannon diversity index.(55) Differences in diversity between diverticulitis cases 

pre and post-diagnosis and diverticulosis controls were tested using the unpaired or paired Tukey’s t-

test. 

PC-ORD (version 6.0, Glenenden, OR) and XL-STAT (version 2016.04.3233, New York, NY) were 

the statistical packages used for the analyses.  

Results 

The mean age of study participants was 55 (range 38-67) (Table 1).  There were 12 males and 8 

females.  Most cases of diverticulitis were asymptomatic; 80% modified Hinchey class 1a and 20% 

Hinchey class 1b (small, pericolic abscess). There were no statistically significant differences between 

diverticulitis cases and diverticulosis controls in the mean BMI (30.2 vs. 27.7 kg/m2, P=0.39), mean daily 

total energy intake (1794 vs. 1520 kcal/day, P=0.21), or the proportion of current smokers (20% vs 40%, 

P=0.33).  However, on average, cases consumed more fiber than controls (22.4 vs. 15.8 g/day, P=0.02). 

In cases, the time between starting antibiotics for the treatment of diverticulitis and obtaining the first 

fecal sample ranged from 1 hour to 57 hours (median 22.5 hours).  The mean time between finishing 

antibiotic treatment and obtaining the second fecal sample was 93 days (range 45 to 194). All cases 

received ciprofloxacin and metronidazole for treatment of diverticulitis. In controls, the mean time 
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between undergoing colonoscopy and the first fecal collection was 263 days (range 99 to 721).  One case 

underwent colonoscopy 465 days prior to the first fecal collection. One diverticulitis case sample was 

excluded from the pair comparisons due to insufficient fecal material for DNA extraction and analysis. 

In total, 7.3 x 105 raw sequences were generated resulting in 14,551 ± 3782 sequences per 

participant sample after quality control with an average sequence length of 463 base pairs. These 

sequences represented 58 bacterial genera distributed across 7 phyla (Good’s coverage 0.996±0.003).  

The predominant phyla were Firmicutes (51%) and Bacteroidetes (42%) (Figure 1).  Together, 

Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Tenericutes represented the 

remaining 7% of the phyla.  We found no significant differences in the microbial communities with 

respect to the relative abundance at the phyla and genera level between the two fecal samples taken in 

diverticulosis controls, and therefore, the second samples were removed from the analyses.  However, 

the fecal microbial communities of diverticulitis cases differed at diagnosis and post-treatment.  There 

was an increase in the phyla Bacteroidetes in diverticulitis cases after antibiotic treatment compared to 

at the time of diagnosis (Figure 1 and Table 2).  The genera Coriobacteria, Erysipelotrichaceae, and 

Akkermansia were significantly reduced in diverticulitis cases after treatment when compared to 

diverticulitis at diagnosis (Table 3).  In addition, we found a significant reduction in microbial diversity in 

diverticulitis cases after treatment (Shannon diversity index 7.4±0.5 vs 6.5±0.7, P=0.03). Therefore, we 

analyzed the pre and post-treatment fecal samples for diverticulitis cases separately. 

At the phyla level, Verrucomicrobia tended to be more abundant on average in diverticulitis 

cases at diagnosis than in diverticulosis controls (3.1 vs. 0.04, p=0.07) (Figure 1 and Table 2).  We found 

no significant differences at the phyla level between diverticulitis cases after treatment and 

diverticulosis controls.  
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The relative abundances at the genera level are shown in Table 3. Significant differences in 

Coriobacteria, Anaerotruncus, Barnesiella, Coprococcus, Subdoligranulum, Marvinbryantia, and 

Akkermansia were seen in diverticulitis cases at diagnosis when compared to diverticulosis controls 

(Table 3). However, these findings lost significance after adjustment for multiple comparisons.  No 

significant differences were seen in the genera of diverticulitis cases after treatment and diverticulosis 

controls.  

We performed a global analysis of the microbiome at the genera level using multivariate 

analysis followed by unsupervised clustering. This descriptive analysis tends to cluster participants based 

on the dominant members of the microbial community.(56)  Using nonmetric multidimensional scaling, 

after 500 iterations and a final stress value=9.35, we determined that 3 axes cumulatively explained 92% 

of the variation in the fecal microbial community with 64%, 18%, and 13% of the variation in the data 

attributed to axes 1, 2, and 3 , respectively (Supplemental Figure 1). We identified two clusters using an 

unsupervised clustering approach that were significantly different in their microbiome composition 

(multiple response permutation procedure Cluster 1 vs. Cluster 2, MRPP; T=-17.96, A=0.24, p<0.0001). 

Bacteroides (r>0.5) and Ruminococcus (r>0.5) were the most abundant bacterial genera in the first 

cluster, whereas Prevotella (r>0.5) was the abundant bacterial genera in the second.  We included time 

from antibiotics to fecal sample, diet, smoking and BMI in a logistic regression model. Only time from 

antibiotic treatment remained significant in the final regression model.  After adjustment for time from 

antibiotic treatment, no significant association was seen between diverticulitis and the overall microbial 

composition of dominant organisms, as defined via NMS axes. 

In a multivariate analysis, using a supervised approach (PLSDA) including all of the bacterial 

genera, we found that diverticulitis cases at diagnosis tended to separate from diverticulosis controls. 

(Figure 2).   When we randomly added 20% of the samples to the model, we found that we were able to 
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correctly classify samples 79% of the time (Q2=0.44 for Axis 1 and 0.43 for Axis 2 and R2 =0.10 for Axis 1 

and 0.52 for Axis 2). Bacteria with a VIP > 1 and associated with Axis 1 included Alistipes, 

Faecalibacterium, Coprococcus, and Pseudobutyrivibrio.  Akkermansia, Roseburia, Escherichia, 

Barnesiella, and Subdoligranulum were associated with Axis 2 (VIPs > 1). Genera shared by both Axis 1 

and 2 that had VIP >1 included Bacteroides, Ruminococcus, Prevotella, and Blautia. Of these, 

Bacteroides, Ruminococcus, and Prevotella were associated with the two dominant clusters in the global 

analysis (see above and Supplemental Figure 1), but as noted above, these genera were not associated 

with diverticulitis.   Akkermansia, Barnesiella, Coprococcus, and Subdolignulum also differed between 

diverticulitis cases at diagnosis and controls in the univariate analysis (Table 3). 

There was a tendency for microbial alpha diversity to be higher in diverticulitis cases at diagnosis 

vs diverticulosis controls (Shannon diversity index 7.4±0.6 vs 6.8±0.7, p=0.08).  The diversity in 

diverticulitis cases after treatment was not significantly different from controls (Shannon diversity index 

6.6±0.7 vs 6.8±0.7, P=0.4). 

Discussion 

 In this study, we found differences in the composition of the fecal microbiota in patients with 

acute diverticulitis at the time of diagnosis and those with asymptomatic diverticulosis.  Differences 

were seen in the relative abundances of the phyla Verrucomicrobia.  Significant differences were also 

seen in the genera Coriobacteria, Anaerotruncus, Barnesiella, Coprococcus, Subdoligranulum, 

Marvinbryantia, and Akkermansia.  The differences at the phyla and genera level lost significance when 

adjusted for multiple comparisons.  Nonetheless, a supervised clustering approach was able to 

distinguish diverticulitis cases from diverticulosis controls 80% of the time based on the relative 

abundance of the 7 genera.   
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 A few studies have examined the intestinal microbiota in patients with symptomatic 

asymptomatic diverticular disease (SUDD).(24, 26) SUDD is an incompletely understood condition 

generally defined as the presence of abdominal symptoms in patients with diverticulosis and 

gastrointestinal symptoms in the absence of evidence of diverticulitis. Barbara et al, compared the fecal 

and mucosal microbiota in 14 controls without diverticulosis, 16 patients with asymptomatic 

diverticulosis and 8 patients with SUDD.(24)  The stool of patients with asymptomatic diverticulosis and 

SUDD had a lower relative abundance of Clostridium cluster IV than controls without diverticulosis, and 

patients with SUDD had a lower abundance of Clostridium cluster IX, Fusobacterium and 

Lactobacillaceae compared to those with asymptomatic diverticulosis.  Biopsies taken in the area of 

diverticulosis in patients with SUDD had a lower abundance of Akkermansia than in the more proximal 

colon. In patients with SUDD and asymptomatic diverticulosis, there were lower amounts of 

Enterobacteriaceae at all sites. Tursi and colleagues analyzed the fecal microbiota and metabolome in 

women with SUDD (n=15), asymptomatic diverticulosis (n=13) and healthy controls (n=16). The amount 

of Akkermansia muciniphilia assessed via quantitative real-time polymerase chain reaction was lower in 

healthy controls when compared to those with asymptomatic diverticulosis and SUDD. Patients with 

SUDD had low levels of valerate, butyrate, and choline and high levels of N-acetyl derivatives.(26)  

 Few studies have examined the intestinal microbiota in patients with diverticulitis. Gueimonde 

et al compared mucosal-associated Bifidobacterium using qualitative and quantitative PCR in 34 

patients: diverticulitis (n=9), IBD (n=4), and colon cancer (n=21) and found significantly higher total 

levels in diverticulitis than in the other diagnoses.(30) Daniels et al studied the microbiota in 31 patients 

presenting with acute diverticulitis and 25 controls presenting to colonoscopy for a variety of diagnoses 

including IBD and colon cancer.(29)  Microbial material was collected using rectal swabs. PCR 

amplification of the 16S-23S rDNA interspace region was performed for the phyla Firmicutes, 

Bacteroidetes, Actinobacteria, Fusobacteria, Verrucomicrobia, and Proteobacteria and species were 
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identified using in silico comparison of fragment lengths.  The diversity of Proteobacteria was higher in 

patients with diverticulitis than in controls, and patients clustered separately from controls based on 

Proteobacteria profiles.  Kvasnovsky examined 30 patients with SUDD and compared the 15 with a prior 

history of diverticulitis to those without prior diverticulitis. A history of diverticulitis was associated with 

higher relative abundance of Pseudobutyrivibrio, Bifidobacterium, Christensenellaceae family and 

Mollicutes RF9.(25) 

Our study extends the findings of these prior studies in several important ways.  First, we used 

next-generation, high-throughput DNA sequencing technology to enable deep, quantitative profiling of 

the fecal microbiota in diverticulitis and diverticulosis.  This methodology captures a comprehensive 

distribution of organisms that would be missed with fingerprinting approaches such as denaturing 

gradient gel electrophoresis (DGGE) as were used in 2 of the 3 prior studies of diverticulitis.  Indeed, the 

differences we found between cases and controls were predominantly in less abundant organisms.  

Second, we selected comparable controls with asymptomatic diverticulosis matched on age and sex in 

an attempt to elucidate a microbial profile that may indicate or predispose to disease progression from 

diverticulosis to diverticulitis.  In comparison, prior studies used unmatched controls with colon cancer, 

IBD and irritable bowel syndrome (IBS) (i.e. diseases associated with specific dysbioses), who were not 

known to have diverticulosis, or studied SUDD, a different entity from diverticulitis.  In addition, controls 

in the study of Daniels et al (29) had undergone a colon preparation immediately prior to sample 

collection.  Bowel preparation is known to significantly disrupt the intestinal microbiota.(57)  For 

example, in a study by Jalanka et al, immediately following polyethylene glycol preparation, the total 

microbial load was decreased 31-fold and nearly one fourth of patients lost the participant-specificity of 

their microbiota.(58) Therefore, it is likely that the differences reported by Daniels et al reflect at least in 

part the colon purge given to the controls but not the diverticulitis cases. Third, we analyzed the fecal 

microbiome as a representation of the entire intestinal bacterial community.  In contrast, in a prior 
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study of diverticulitis (30) the microbiome was sampled via rectal swabs.(29)  The mucosal-associated 

microbiota of the rectum are known to differ from the microbiota in the large and small intestine and 

represent a specific microbial niche.(59)  Lastly, we collected data on important potential confounders 

of the intestinal microbial composition including diet, BMI and smoking that were not accounted for in 

prior studies.  

There are several potential mechanisms by which the fecal microbiota may contribute to the 

development of diverticulitis.  A long-held theory suggests that stasis within diverticula leads to local 

bacterial overgrowth and inflammation. Our results suggest that a dysbiosis in the intestine in general, 

and not just within a specific diverticulum, might also predispose to or precipitate diverticulitis 

potentially through pro-inflammatory effects or impaired gut barrier function.(60, 61)  In a global 

analysis of the microbiome, we found no association between the clusters of highly abundant bacteria 

(Bacteroides, Ruminococcus, and Prevotella) and diverticulitis; however, we detected differences in 

more minor components of the microbiome suggesting that the development of diverticulitis may be 

influenced by alteration in these less-abundant groups. In particular, we found higher levels of 

Akkermansia, Marvinbyrantia, Anaerotruncus, Subdolignulum, and Coriobacteria in patients with 

diverticulitis compared to those with diverticulosis.  Several of these genera have been associated with 

inflammatory conditions of the intestine. (62-68)  Succinate-producing genera such as Marvinbryantia 

have been shown to promote C. difficile infection after antibiotic treatment, (69) suggesting that 

alterations in the metabolic capacity of the microbiome could be important for the development of 

diverticulitis.  Lastly, Subdoligranulum has been associated with increased secretion of the 

proinflammatory cytokine IL-β in patients with post-infectious IBS.(67)  On the other hand, we found a 

decrease in two genera associated with short chain fatty acid production, Coprococcus and Barnesiella, 

in diverticulitis cases vs controls (although fiber intake was higher on average in cases than in controls). 

Short chain fatty acid production by the microbiome is generally associated with intestinal health.  

All rights reserved. No reuse allowed without permission. 
certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which was notthis version posted July 12, 2019. ; https://doi.org/10.1101/19001404doi: medRxiv preprint 

https://doi.org/10.1101/19001404


15 
 

Coprococcus has been found in reduced numbers in patients with IBS (70) and IBD,(68) whereas the 

expansion of Barnesiella upon dietary oligosaccharide feeding has been shown to protect against colitis 

in mice (71). 

Of interest, we found a higher proportion of cases were of Hispanic ethnicity than controls (40% vs 

0%). This may reflect the demographic at one of the participating hospitals, the willingness of certain 

ethnicities to participate, a higher prevalence of certain risk factors in this group, or an underlying 

difference in the risk of diverticulitis. Several, small studies report a high proportion of Hispanic males, 

especially those with obesity, among young patients with diverticulitis.(72, 73) Future studies should 

explore ethnic differences in the risk of diverticulitis.  

 Our study has several strengths. As noted above, we selected age and gender-matched controls 

with asymptomatic diverticulosis seen at colonoscopy, collected data on a variety of factors that might 

confound the relationship between the intestinal microbiota and diverticulitis, including diet and other 

lifestyle variables, and used next-generation sequencing techniques to enable deeper investigation of 

the fecal microbial community than prior studies that generally used fingerprinting approaches. In 

addition, we recruited prospective cases with CT-proven diverticulitis in an effort to capture the 

microbial communities that might predispose to the development of this condition.  

Diverticulitis is acute in onset, and in the U.S. it is treated promptly with antibiotics. These factors 

complicate the recruitment of study participants and the collection of baseline or pre-diverticulitis fecal 

samples.  We identified patients presenting to the hospital with acute diverticulitis via daily searches of 

radiology and emergency department logs as well as a radiology alert system.  However, most patients 

with diverticulitis are diagnosed in the outpatient setting making it difficult to identify and recruit cases 

prior to the receipt of antibiotics. Even in the inpatient setting, an additional 6 patients were initially 

recruited for the study, but became ineligible due to the use of antibiotics at the time of recruitment or 
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receipt of antibiotics or surgery between the collection of the first and second fecal sample.   We collected 

the first stool after presentation in an attempt to capture the baseline microbial communities prior to 

antibiotics.  However, all patients had received some antibiotics prior to stool collection (mean 1 day). This 

brief antibiotic exposure may have influenced the bacterial communities in addition to the localized 

inflammation associated with diverticulitis.  In addition, the lower abundance of bacterial groups such as 

Coriobacteria, Erysipeolotrichaceae and Akkermansia and increase in others such as Proteobacter and 

Verruncomicrobia may reflect a response to antibiotics.(74) Therefore, we also collected fecal samples at 

least two months following treatment.  However, microbial communities may not yet have returned to 

baseline.  We found that the alpha-diversity was lower in post-treatment cases than in diverticulitis cases 

at diagnosis although the diversity was more similar to controls post-treatment.  Overall, it is unclear 

whether the differences seen between cases and controls are the cause or result of diverticulitis or 

treatment.   

Our sample size was small, limiting our ability to differentiate cases from controls.  Many of our 

findings were of borderline significance or lost significance when adjusted for multiple testing.  In addition, 

our ability to account for and balance important confounders in cases vs controls was limited. For example, 

fiber intake was significantly higher in cases than controls.  It is possible that cases were instructed to 

increase fiber intake. However, only 2 (20%) of cases had a prior diagnosis of diverticulitis or diverticulosis.  

In comparison, all controls had a previous diagnosis of diverticulosis. Furthermore, fiber intake was very 

similar at the time of diagnosis and two months later in cases. Nonetheless, it is possible that knowledge of 

the relationship between fiber and diverticular disease impacted dietary recall.  We adjusted for fiber 

intake in our multivariable models and found no significant association between fiber and the overall 

microbial composition of dominant organisms. 
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To overcome some of the difficulties associated with the analysis of the fecal microbiome in acute 

diverticulitis, we are expanding our work to include a study of patients with a history of diverticulitis.  A 

prospective study of patients with diverticulosis would be the optimal means to study the role of the gut 

microbiome in the development of diverticulitis;  however, given that fewer than 5% of patients with 

diverticulosis develop diverticulitis over an average of 11 years of follow up,(32) such a study would need 

to be large and have long-term follow-up.  

 In conclusion, our findings indicate that the composition of the fecal microbiota in patients with 

diverticulitis differs from that of matched controls with asymptomatic diverticulosis.  Defining such 

differences in the fecal microbiota has important potential clinical implications since they could be 

modeled to enable outcome prediction and risk stratification, provide avenues for diagnosis, treatment, 

and prevention, and reveal insight into disease pathogenesis. 
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Table 1. Baseline characteristics of the study population  

 Diverticulitis Cases 
(n=10) 

Matched Controls 
with Diverticulosis 

(n=10) 
P value 

Age, y, mean (SD) 54.7 (10.2) 54.8 (10.3) 0.98 
Male, % 60 60  
Race, Caucasian, %  70 80 0.61 
Ethnicity, Hispanic, % 40 0 0.01 
Smoking, current, % 20 40 0.33 
Body Mass Index, kg/m2, mean (SD) 30.2 (6.9) 27.7 (5.3) 0.39 
Total energy, kcal/day, mean (SD) 1794 (604) 1520 (324) 0.11 
Dietary fiber, g/day, mean (SD) 22.4 (10.1) 15.8 (5.5) 0.02 
Protein, g/day, mean (SD) 69.0 (26.6) 63.8 (16.1) 0.24 
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Table 2.  Relative abundance of phyla in fecal samples from diverticulitis cases and diverticulosis controls 

 
 

Diverticulitis 
at diagnosis 

Diverticulitis 
after 

treatment 
Diverticulosis 

controls  

Diverticulitis 
at diagnosis 

vs 
Controla 

Diverticulitis 
after 

treatment vs 
controla 

Diverticulitis 
at diagnosis 

vs treatmentb 
 Mean(SD)c Mean(SD) c Mean(SD) c     

 (n=9)d (n=9) (n=10)  p-value p-value p-value 
Firmicutes 55.0(14.9) 50.0(11.4)  50.0(16.2)   n.s. n.s. n.s. 
Bacteroidetes 31.9(13.8) 45.7(13.4) 42. 9(17.3)  n.s. n.s. 0.025e 
Tenericutes 1.8(2.4) 0.9(1.6) 1.0(1.9)  n.s. n.s. n.s. 
Actinobacteria 3.3(3.5) 0.8(0.7) 1.3(1.7)  n.s. n.s. n.s. 
Verrucomicrobia 3.1(4.3) 0.2(0.7) 0.04(0.08)  0.07 n.s. n.s. 
Proteobacteria 4.3(7.6) 1.2(1.2) 4.6(6.2)  n.s. n.s. n.s. 
Fusobacteria 0.2(0.5) 1.2(2.8) 0.03(0.1)  n.s. n.s. n.s. 

 

 

  

n.s., not significant 

aMann-Whitney test 
bPaired, Wilcoxon signed-rank test  
cExpressed as percentage contribution of phyla to the total phyla in the subject 
dThere are only 9 diverticulitis cases in the paired analysis because one case had only one fecal sample. 
e  Not significant when correcting for multiple comparisons using the Benjamin-Hochberg approach 
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Table 3.  Relative abundance of genera in fecal samples from diverticulitis cases and diverticulosis controls 

 

Diverticulitis 
at diagnosis 

 

Diverticulitis 
after 

treatment 

Diverticulosis 
controls 

  

Diverticulitis 
at diagnosis 

vs 
controla 

Diverticulitis 
after 

treatment vs 
controla 

Diverticulitis 
at diagnosis 

vs 
treatmentb 

 
Mean(SD)c 

(n=9)d 
Mean(SD)c 

(n=9) 
Mean(SD)c 

(n=10)  p-value p-value p-value 

        
P_Actinobacteria/C_Actinobacteria/ 
O_Coriobacteriales/ 
F_Coriobacteriaceae/ 
G_Coriobacterium 0.10(0.2) 0.0 0.03(0.07)  0.050e n.s. 0.05e 
        
        
P_Firmicutes/C_Clostridia/ 
O_Clostridiales/F_Clostridiaceae/ 
G_Anaerotruncus 0.48(0.4) 0.37(0.5) 0.19(0.2)        0.046e n.s. n.s. 
        
P_Bacteroidetes/C_Bacteroidia/ 
O_Bacteroidales/ 
F_ Porphyromonadaceae/ 
G_Barnesiella 0.40(0.4) 1.34(2.5) 1.45(1.5)  0.035e n.s. n.s. 
        
P_Firmicutes/C_Clostridia/ 
O_Clostridiales/F_Lachnospiraceae/ 
G_ Coprococcus 1.46(1.4) 2.56(3.2) 2.33(0.9)  0.035e n.s. n.s. 
        
P_Firmicutes/ 
C_Clostridia/O_Clostridiales/ 
F_Ruminococcaceae/ 
G_Subdoligranulum 1.58(1.5) 0.67(0.7) 1.44(2.8)  0.034e n.s. n.s. 
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P_Firmicutes/C_Clostridia/ 
O_Clostridiales/F_Lachnospiraceae 
/G_Marvinbryantia 0.23(0.2) 0.11(0.1) 0.05(0.06)  0.006e n.s. n.s. 
        
 
Firmicutes/C_Erysipelotrichia/ 
O_Erysipeotrichales/ 
F_Erysipelotrichaceae/ 

 
 
 

0.67(1.4) 

 
 
 

0.04(0.1) 

 
 
 
0.28(0.6)  

 
 
 

n.s. 

 
 
 

n.s. 

 
 
 

0.03e 
        
        

P_Verrucomicrobia/C_Verrucomicrobia/ 
O_Verrucomicrobiales/ 
F_ Verrucomicrobiaceae/ 
G_Akkermansia 3.14(4.0) 0.19(0.5) 

 
 
 
 

0.05(0.1)  0.04e n.s. 0.02e 
        
n.s., not significant 
aMann-Whitney test 
bPaired, Wilcoxon signed-rank test  
cExpressed as percentage contribution of phyla to the total phyla in the subject 
d There are only 9 diverticulitis cases in the paired analysis because one case had only one fecal sample. 
eNot significant when corrected for multiple comparisons using the Benjamini-Hochberg approach  
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Fig 1. The distribution of bacterial phyla in diverticulitis cases at the time of diagnosis (black bars) and 
after treatment (dark gray bars) as wells as diverticulosis controls (white bars). There was a borderline 
significant difference in the abundance of Verrucomicrobia between diverticulitis cases at diagnosis and 
diverticulosis controls (3.1 vs. 0.04, respectively; p=0.07) 
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Fig 2. PLSDA of diverticulitis cases at diagnosis (white triangles) and diverticulosis controls (black 
triangles).  Discriminant analysis explained 97% of the variation in the data.  
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