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Abstract  

Genome-wide association studies (GWAS) have successfully identified 145 genomic regions that 

contribute to schizophrenia risk, but linkage disequilibrium (LD) makes it challenging to discern 

causal variants. Computational finemapping prioritized thousands of credible variants, ~98% of 

which lie within poorly characterized non-coding regions. To functionally validate their regulatory 

effects, we performed a massively parallel reporter assay (MPRA) on 5,173 finemapped 

schizophrenia GWAS variants in primary human neural progenitors (HNPs). We identified 439 

variants with allelic regulatory effects (MPRA-positive variants), with 71% of GWAS loci containing 

at least one MPRA-positive variant. Transcription factor binding had modest predictive power for 

predicting the allelic activity of MPRA-positive variants, while GWAS association, finemap 

posterior probability, enhancer overlap, and evolutionary conservation failed to predict MPRA-

positive variants. Furthermore, 64% of MPRA-positive variants did not exhibit eQTL signature, 

suggesting that MPRA could identify yet unexplored variants with regulatory potentials. MPRA-

positive variants differed from eQTLs, as they were more frequently located in distal neuronal 

enhancers. Therefore, we leveraged neuronal 3D chromatin architecture to identify 272 genes 

that physically interact with MPRA-positive variants. These genes annotated by chromatin 

interactome displayed higher mutational constraints and regulatory complexity than genes 

annotated by eQTLs, recapitulating a recent finding that eQTL- and GWAS-detected variants map 

to genes with different properties. Finally, we propose a model in which allelic activity of multiple 

variants within a GWAS locus can be aggregated to predict gene expression by taking chromatin 

contact frequency and accessibility into account. In conclusion, we demonstrate that MPRA can 

effectively identify functional regulatory variants and delineate previously unknown regulatory 

principles of schizophrenia.  
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Introduction 

Schizophrenia is a polygenic neuropsychiatric disorder that affects about 24 million people world-

wide (McCutcheon et al., 2020). Heritability estimates of schizophrenia are 60-80%, indicating a 

strong contribution of genetic variation to risk for the disorder (Sullivan et al., 2003). Common 

variation explains a significant portion of heritability (24% of SNP heritability), and the most recent 

genome-wide association study (GWAS) has identified 294 genome-wide significant (GWS) loci 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium et al., 2020). However, 

it is challenging to understand the functional consequence of these GWS loci, because 1) most 

reside in non-coding DNA with unknown functions and 2) each GWS locus contains dozens of 

variants that show significant association due to linkage disequilibrium (LD). 

Therefore, a critical step to bridging the gap between genetic loci and biological underpinning is 

to identify causal variants and delineate their functional impact. While computational finemapping 

approaches have been developed to predict putative causal variants (Schaid et al., 2018), these 

methods merely narrow down the search space of causal variants by modeling their decay with 

LD rather than functionally validating variants. Moreover, different finemapping algorithms can 

provide different sets of finemapped variants (Mah and Won, 2020). The general consensus in 

the field is that causal variants exert their function by altering gene expression. To accurately 

discern variants with gene regulatory effects, experimental validation is pivotal. 

Here, we employed a massively parallel reporter assay (MPRA) to experimentally verify the 

difference in allelic regulatory activity between protective and risk alleles of 5,173 schizophrenia-

associated finemapped variants (Pardiñas et al., 2018) in the context of neurogenesis. MPRA 

provides a scalable genetic approach to characterize gene regulatory effects of thousands of 

variants in a single experiment (McAfee et al., 2022; Mulvey et al., 2021; Tewhey et al., 2016). 

We identified 439 MPRA-positive variants that showed allelic regulatory activity in human neural 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.22279954doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=7699663&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=299448&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9645629&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5346105&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7148553&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4904160&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1640450,12694292,13581798&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://doi.org/10.1101/2022.09.15.22279954


 

 

progenitors (HNPs). Pre-existing strategies to prioritize causal variants (e.g. selecting SNPs with 

strongest GWAS association signals, SNPs with the highest finemap posterior probability, SNPs 

located in regulatory elements, and/or SNPs with higher evolutionary constraints) did not 

accurately identify MPRA-positive variants. Transcription factor (TF) binding motif analysis 

revealed that TFs involved in Wnt signaling pathways were enriched for MPRA-positive variants. 

To link MPRA-positive variants to genes, we tried different genomic approaches: expression 

quantitative trait loci (eQTLs) and chromatin interaction profiles (Hi-C). We found that eQTLs and 

Hi-C identify distinct sets of genes with different (epi)genomic properties. In particular, the Hi-C 

based approach identified genes with functional annotation, higher selective constraints, and 

regulatory complexities, suggesting that chromatin architecture is instrumental in assigning 

GWAS variants to their cognate genes. Consequently, we propose an accessibility by contact 

model that supplements chromatin contexts to MPRA-measured allelic activity and demonstrate 

that this model can effectively translate variant function to targetable gene expression.  

 
Results 

MPRA on schizophrenia risk variants 

Since schizophrenia genetic risk factors are enriched in regulatory elements of the developing 

cortex (Pratt and Won, 2022; Sey et al., 2020; Spiess and Won, 2020; de la Torre-Ubieta et al., 

2018), we conducted MPRA in HNPs that model human neural development (Stein et al., 2014) 

(Figure 1A). To perform MPRA in HNPs, we built an AAV-based MPRA vector (AAV-MPRA) that 

comprises a 150 base-pair (bp) target sequence with the variant in the center, a minimal promoter, 

GFP, and a 20 bp unique barcode (Figure 1A, Methods).  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.22279954doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=4683405,8405126,9531120,12868978&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4683405,8405126,9531120,12868978&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=58871&pre=&suf=&sa=0
https://doi.org/10.1101/2022.09.15.22279954


 

 

 

Figure 1. MPRA on schizophrenia risk variants identifies functional regulatory variants. A. 
We generated an MPRA library that contains 5,173 schizophrenia GWAS variants upstream to 

the promoter, reporter gene, and 20bp barcode. This library was packaged into adeno-associated 

virus (AAV), which was used to transduce human neural progenitors (HNPs). We compared 

barcode expression counts between risk and protective alleles to identify variants that show allelic 

regulatory activity (MPRA-positive variants). B. We display our MPRA results within a circular 

manhattan plot. Red dotted line indicates FDR=0.1. C. Volcano plot showing allelic regulatory 

activity of 5,173 finemapped credible variants. D. Out of 5,173 fine-mapped credible variants from 

143 genome-wide significant (GWS) loci, 439 variants exhibited allelic regulatory effects in HNPs 

covering 102 GWS loci (FDR<0.1). E. Out of 102 GWS loci with regulatory activity, only 12 GWAS 

index variants showed allelic regulatory activity. F. MPRA dramatically reduced the number of 
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causal variants per locus. G-I. GWAS association P-values (G), GWAS odds ratio (OR, H), and 

finemap posterior probabilities (I) do not differ between MPRA-positive (MPRA-pos) and MPRA-

negative (MPRA-neg) variants. P-values were calculated by the Wilcoxon rank sum test. 

 
Using this AAV-MPRA backbone, we generated an AAV-MPRA library for a computationally 

predicted credible set of schizophrenia risk variants (Pardiñas et al., 2018). We compiled 150 bp 

target sequences centered on 6,064 finemapped schizophrenia risk variants (Supplementary 

Figure 1A-B). Among them, 470 target sequences that harbor either risk variants larger than 10 

bp or recognition sites for restriction enzymes used in the cloning steps were removed 

(Supplementary Figure 1A, Methods). After filtering out low quality and/or undetected variants, 

5,173 variants (10,346 risk and protective alleles) were included in the final AAV-MPRA library 

that covers 143 out of 144 GWS loci (Supplementary Figure 1A). 

Because the size of variants (<10 bp) is smaller than the barcodes (20 bp), we reasoned that the 

effects of barcodes on GFP expression can be larger than allelic regulatory effects. To control for 

the potential effects of barcodes on GFP expression and to fully capture the small effect size of 

allelic regulatory activity, we mapped each allele to 185 barcodes on average (Supplementary 

Figure 2A).  

The resulting schizophrenia MPRA library was packaged into the AAV, which was administered 

to HNPs. Two weeks after administering the AAV-MPRA library to HNPs, RNA was extracted 

from the transduced cells and barcoded GFP expression was quantified by RNA sequencing 

(RNA-seq). RNA barcode counts were aggregated for a given allele to obtain summarized allelic 

expression. To control for transduction efficiency and barcode dispersion during cloning, DNA 

barcode counts from the AAV-MPRA library were used for normalization (Methods). The 

correlation coefficients across biological replicates ranged from 0.57 to 0.75 (Supplementary 

Figure 2B-C).  
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To identify finemapped variants with allelic regulatory activity, RNA barcode counts for protective 

and risk alleles in a total of 10 biological replicates were compared against the corresponding viral 

DNA barcode counts using the mpra Bioconductor package (Figure 1B, Methods). As a result, 

we identified 439 variants that show allelic regulatory activity at an FDR threshold of 0.1 (hereafter 

referred to as MPRA-positive variants, Figure 1C-D, Supplementary Table 1). We found that 

102 out of 143 GWS loci contained at least one MPRA-positive variant (Figure 1D). Out of 102 

GWS loci that harbor regulatory variants, index variants (variants with the strongest GWAS 

association statistics at given loci) of 12 loci showed regulatory activity (Figure 1E), suggesting 

that the most significant GWAS association cannot accurately predict functional variants.  

MPRA not only refined the number of regulatory variants, but also narrowed down the number of 

variants per locus (Figure 1F). On average, 36.2 variants per locus were identified via 

computational finemapping approaches. MPRA further pruned them to 4.30 variants per locus. 

Moreover, 18 out of 102 loci could be pinpointed to a single regulatory variant, demonstrating the 

power of MPRA in refining GWS loci.   

We next evaluated whether association statistics from GWAS or computational finemapping may 

distinguish MPRA-positive variants from MPRA-negative variants (see Methods for their 

definition). We found that MPRA-positive variants did not differ from MPRA-negative variants in 

their GWAS association statistics such as P-values and effect sizes (Figures 1G-H). Similarly, 

finemap posterior probabilities did not differ between MPRA-positive and -negative variants 

(Figure 1I). These results show that predictive models purely based on statistical associations do 

not accurately predict regulatory effects of finemapped variants associated with schizophrenia. 

 
Epigenetic properties of MPRA-positive variants 

To further characterize MPRA-positive variants, we surveyed genomic annotations of MPRA 
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tested variants (Supplementary Figure 3A). As expected, the majority of MPRA tested variants 

were located in intergenic and intronic regions, and only a small portion of them were located in 

exons and promoters. We did not observe a clear distinction between MPRA-positive and -

negative variants in their genomic annotation.  

We next sought to characterize epigenetic properties of MPRA-positive and -negative variants. 

Schizophrenia heritability is enriched in brain and neuronal enhancers (Sey et al., 2020), 

supporting the prevailing hypothesis in GWAS that causal variants are more likely located in 

enhancer regions. Therefore, we compared the enhancer overlap between MPRA-positive and -

negative variants (Figure 2A-C). Notably, MPRA-positive and -negative variants overlapped with 

adult and fetal brain enhancers (Li et al., 2018) at a similar proportion (Figure 2A). Similarly, 

MPRA-positive and -negative variants did not significantly differ in their overlap with cell-type 

specific enhancers identified in the postnatal brain (Nott et al., 2019) (Figure 2B) and the prenatal 

brain (Ziffra et al., 2021) (Figure 2C). The only exception was early excitatory neuronal enhancers 

of the prenatal brain, in which MPRA-positive variants were more frequently located compared to 

MPRA-negative variants (Figure 2C). 
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Figure 2. Epigenetic characterization of MPRA-positive schizophrenia risk variants. A-C. 
The proportion of epigenetic overlap of MPRA-positive (MPRA-pos) and MPRA-negative (MPRA-

neg) variants, LD SNPs, and random SNPs to the adult and fetal brain enhancers (A), cell-type 

specific enhancers in the adult brain (B), and cell-type specific enhancers in the fetal brain (C). 

P-values were calculated by one-sided Fisher’s exact test. Comparisons have been made 
between MPRA-positive variants and other sets of variants. Only significant P-values are 

depicted. Neuro, neurons; Oligo, oligodendrocytes; Astro, astrocytes; Micro, microglia; RG, radial 

glia; IPC, intermediate progenitor cells; earlyEN, early excitatory neurons; ulEN, upper-layer 

excitatory neurons; dlEN, deep-later excitatory neurons; MGE, medial ganglionic eminence; CGE, 

caudal ganglionic eminence; IN, inhibitory neurons. D. Evolutionary conservation (phyloP scores) 

of MPRA-positive, MPRA-negative, LD, and random SNPs. E. TFs whose motifs are predicted to 

be altered by MPRA-positive variants. TF enrichment was calculated by comparing TF binding 

motifs between MPRA-positive variants and LD SNPs. Each dot is color-coded based on the 
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number of variants that are predicted to alter TF binding motifs and the size of the dot represents 

the odds ratio. Dotted circles represent TFs that meet the FDR threshold (FDR<0.1). F. 
Expression outcome of MPRA (measured by MPRA logFC) can be predicted by the combination 

of TF binding, activity, and expression (measured by corrected 𝛥SVM) for MPRA-positive 

variants, but not for MPRA-negative variants. r stands for Pearson’s correlation coefficient. G. 
Integration of MPRA and other functional genomic datasets unveils a causal variant (rs11062170), 

a trans regulator (RFX5), and a cell type (neuron) for the CACNA1C locus. The MPRA-positive 

SNP rs11062170 lies within H3K27ac peaks of neurons but not other cell types. The alternative 

allele (C) of rs11062170 breaks the binding motif of RFX5 and is correlated with lower expression 

of a reporter gene in MPRA.  

 
This is not contradictory to the previous finding that schizophrenia genetic risk factors are enriched 

in brain and neuronal enhancers, because MPRA-positive variants more frequently overlapped 

with brain (Figure 2A) and neuronal (Figures 2B-C) enhancers than the genomic background 

(random SNPs: SNPs that are matched for minor allele frequency [MAF] and LD). In contrast, 

MPRA-positive variants did not display elevated epigenetic overlap compared with the local 

background (LD SNPs: non-finemapped SNPs within schizophrenia GWS loci). MPRA-positive 

variants also showed cell-type specificity, with the highest level of overlap with neuronal 

enhancers within the postnatal brain (Figure 2B) and early excitatory neuronal enhancers within 

the prenatal brain (Figure 2C) among other cell types. We believe that the observed cell-type 

specificity is not purely driven by the cell line (i.e. HNPs) in which MPRA was conducted, because 

progenitors (e.g. radial glia and intermediate progenitor cells that HNPs resemble) would be 

expected to have higher epigenetic overlap than neurons. Together, these results show that 

MPRA-positive variants are enriched in neuronal regulatory architecture compared to the genomic 

background, but epigenetic properties alone cannot predict functional regulatory variants from 

non-regulatory variants.  

It has been previously reported that schizophrenia GWAS signals are under strong selective 

pressure (Pardiñas et al., 2018). We therefore explored the evolutionary conservation of variant-
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harboring regions (150 bp regions centered on each variant) for MPRA-positive, MPRA-negative, 

LD, and random SNPs (Figure 2D). We employed evolutionary conservation scores calculated 

by comparative genomic analyses across 240 species (Zoonomia Consortium, 2020). MPRA-

positive variants showed elevated evolutionary constraints compared to random SNPs albeit to a 

small degree (Wilcoxon rank sum test, P=0.018). On the contrary, evolutionary constraints did not 

differ between MPRA-positive and -negative variants (Wilcoxon rank sum test, P=0.46) or 

between MPRA-positive variants and LD SNPs (Wilcoxon rank sum test, P=0.86). Similar to this 

result, PhastCons scores, another metric for evolutionary conservation, did not differ between 

MPRA-positive variants and other sets of SNPs (Supplementary Figure 3B). 

Because we are using an episomal version of MPRA, the allelic regulatory activity is mainly driven 

by TFs. We used motifbreakR (Coetzee et al., 2015) to identify TFs whose binding motifs are 

predicted to be disrupted or created by each set of variants (Supplementary Table 2). We then 

identified TFs whose binding motifs are enriched in MPRA-positive variants compared to the local 

background (Figure 2E) or the global background (Supplementary Figure 3C). Top TFs 

enriched for MPRA-positive variants include the T-cell factor/lymphoid enhancer factor (TCF/LEF) 

family (e.g. TCF7, TCF7L1, and LEF1). TCF7 and LEF1 are major mediators of Wnt signaling 

(Cadigan and Waterman, 2012). We have previously found that genetic variants near Wnt 

signaling pathways were associated with various psychiatric disorders including schizophrenia 

and autism spectrum disorder (ASD) (Sey et al., 2020). Therefore, these results highlight the 

significance of Wnt signaling pathways in understanding the genetic etiology of psychiatric 

disorders. 

To further address the relationship between TF binding and allelic regulatory activity, we 

leveraged 94 high-confidence delta support vector machine (𝛥SVM) frameworks that predict 

variants with differential binding to TFs (Yan et al., 2021). Because TFs can act as activators or 

repressors, TF activity needs to be taken into account in translating TF binding to regulatory 
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activity. Moreover, highly expressed TFs can have a larger impact on SNP-mediated regulatory 

activity than lowly expressed TFs. Consequently, we calculated corrected 𝛥SVM for each variant 

by combining preferential allelic binding (𝛥SVM scores), expression levels, and activity (1 if a TF 

is an activator and –1 if a TF is a repressor) of TFs (see Methods for the equation). Corrected 

𝛥SVM scores were moderately correlated with allelic regulatory activity (measured by MPRA 

logFC) for MPRA-positive variants, but not for MPRA-negative variants (Figure 2F, 

Supplementary Figure 3D). This result suggests that TFs are key drivers of allelic regulatory 

activity measured by MPRA. Given that 𝛥SVM frameworks have been established for only 94 

TFs, we expect that the allelic regulatory activity could be better modeled when we have a more 

complete understanding of TF-SNP interaction. 

In an example of tying together MPRA results and epigenetic profiles, we highlight a MPRA-

positive variant, rs11062170, in the CACNA1C locus (Figure 2G). This variant is located within a 

H3K27ac peak for neurons (Nott et al., 2019), but not other brain cell types, alluding to the 

variant’s neuronal specificity. This variant is located within the intron of CACNA1C, a gene that 

encodes a voltage-gated calcium channel. CACNA1C was previously identified to be associated 

with schizophrenia (Roussos et al., 2014). Allelic regulatory activity of rs11062170 measured by 

MPRA showed that the reference (protective) allele, G, induced significantly higher expression 

than the alternative (risk) allele, C. The alternative allele is predicted to break the binding motif of 

RFX5, alluding to the mechanism of action of lower expression for the alternative allele.  

 
Cell-type specificity of MPRA results 

The observed cell-type specificity of MPRA-positive variants (Figure 2B-C) encouraged us to 

compare our results with previously published MPRA data obtained from K562 lymphoblast and 

SY5Y neuroblastoma cell lines (Myint et al., 2020). K562 lymphoblasts are a non-neuronal cell 

line, and SY5Y neuroblastoma were previously reported to display transcriptomic profiles that 
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poorly resemble in vivo brain development as compared to HNPs as used here (Stein et al., 2014). 

We therefore hypothesized that MPRA-positive variants identified from HNPs will be distinct from 

MPRA-positive variants from other cell lines. Out of 5,173 variants tested in our MPRA, only 565 

variants were tested in K562 and SY5Y due to the difference in SNP selection strategies 

(Supplementary Figure 4A). We detected 49, 40, 104 variants to have allelic regulatory activity 

in HNPs, SY5Y, and K562, respectively (FDR<0.1 using 565 variants tested in both studies, 

Supplementary Figure 4A). A minimal overlap of MPRA-positive variants was detected when 

comparing HNPs with SY5Y (4 variants, Supplementary Figure 4B) and HNPs with K562 (11 

variants, Supplementary Figure 4C). While we cannot rule out other contributing factors (e.g. 

batch effects, different experimental strategies, different statistical analysis), this result suggests 

that variant effects on gene regulation may substantially differ by cell types.   

 
MPRA identifies a different set of variants from eQTLs 

eQTLs have become the primary genomic resource to functionally link GWAS to gene expression 

measures (GTEx Consortium, 2020). Since MPRA identifies allelic regulatory activity of variants 

as eQTLs do, we compared MPRA-positive variants with eQTLs detected in the adult prefrontal 

cortex (PFC) (Wang et al., 2018). Notably, only 36% of MPRA-positive variants showed eQTL 

signals (Figure 3A). Among 157 variants with both MPRA allelic regulatory activity and eQTL 

signals, 130 variants (83%) exhibited the identical direction of the effect (hereby referred to as 

IDE variants, Supplementary Table 3), indicating a high level of concordance between MPRA 

and eQTLs when both signals are detected. Because HNPs better model developing brains than 

adult brains, we also compared MPRA-positive variants with eQTLs from the developing brain 

(Walker et al., 2019). Comparison with developing brain eQTLs gave similar findings, albeit to a 

lesser degree of overlap, which could be due to the low detection power of developing brain 

eQTLs from lower sample size and other factors (Supplementary Figure 5). Because adult brain 
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eQTLs (238,194 eQTLs associated with 32,944 genes) are better powered than developing brain 

eQTLs (7,962 eQTLs associated with 6,526 genes), we used adult brain eQTLs for the rest of the 

analysis. 

 

Figure 3. Comparison of MPRA results with adult brain eQTLs. A. 9% of the variants tested 

in our MPRA were found to have allelic regulatory effect (MPRA-positive variants). 36% of MPRA-

positive variants overlapped with eQTLs. Within the 36% overlap with eQTLs, 83% of MPRA-

positive variants are identical in expression direction (IDE) to the overlapping eQTL variants. 

Within that 83%, 84% of IDE variant-gene pairs were detected from the colocalization analysis 

between eQTLs and schizophrenia GWAS (Coloc). B. 78 schizophrenia GWS loci colocalize with 

eQTLs, providing 288 schizophrenia-associated eGenes (Coloc). 42 out of these 78 loci contain 

at least one MPRA-positive variant and are mapped to 161 eGenes (MPRA-Coloc). 36 of MPRA-

Coloc loci contain variants that have the identical direction of effects between MPRA and eQTLs 

and are mapped to 132 eGenes (MPRA-Coloc-IDE). C. eQTLs for the CHRNA5 gene colocalize 

with a schizophrenia GWS locus on chromosome 15. Within this locus are two MPRA-positive 

variants. One of the MPRA-positive variants, rs8042059, shows the identical direction of effects 

between MPRA and eQTLs that the alternative allele C is associated with downregulation of 

CHRNA5. D. MPRA variants that do not overlap with eQTL (MPRAnon-eQTL) and MPRA variants 
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that do overlap with eQTL (MPRAeQTL) differ in distance to the transcription start site (TSS). E. 
MPRAeQTL variants more frequently overlap with neuronal enhancers compared to MPRAnon-eQTL 

variants. P-values were calculated by one-sided Fisher’s exact test.  

 
Because eQTLs are affected by LD, simple genomic coordinate-level overlap between GWAS 

and eQTLs could lead to spurious overlap. Colocalization analysis has been implemented to 

evaluate whether GWAS and eQTLs are explained by a shared set of variants. To test how many 

IDE variants are also identified from the colocalization analysis, we compared IDE variants with 

colocalization between schizophrenia GWAS and adult brain eQTLs (Liu et al., 2021) using the 

coloc package (Methods). Because colocalization does not always indicate a specific variant, we 

tested how often eGenes (genes detected as having an associated eQTL) linked to IDE variants 

were also observed from colocalization analysis. From this analysis, 84% of IDE variants were 

linked to the same genes as predicted by colocalization analysis (Figure 3A).  

Intersection of MPRA and eQTLs also pruned the gene list (Figure 3B). We initially detected 288 

eGenes to be associated with schizophrenia by colocalization analysis, covering 78 loci (Liu et 

al., 2021). An orthogonal analysis of coordinate-level overlap between eQTLs and MPRA 

identified 269 eGenes, covering 80 loci. We found that 161 eGenes were shared between 

colocalization and MPRA-eQTL overlap analysis. After pruning them further with the identical 

direction of effects between MPRA and eQTLs, 132 eGenes were detected, covering 36 loci.  

In an example of MPRA-eQTL IDE overlap, we highlight a schizophrenia GWS locus on 

chromosome 15 (Figure 3C). Two variants at this locus – rs11418931 and rs8042059 – had 

significant MPRA allelic activity. Rs11418931 was missing in the eQTL analysis, while rs8042059 

was detected as an eQTL for a nearby gene, CHRNA5. When comparing the directionality of the 

allelic expression of rs8042059, the reference (risk) A allele increased expression in comparison 

to the alternate (protective) C allele both in MPRA and eQTL for CHRNA5.  
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Mostafavi et al. have recently postulated that eQTL studies and GWAS identify a different set of 

variants (Mostafavi et al., 2022). In their analysis, variants detected in eQTL studies and GWAS 

differ by their distance to transcription start sites (TSS) and regulatory architecture. To investigate 

whether MPRA could identify a distinct set of disease-associated variants that are not explained 

by variants detected as eQTL, we characterized genomic and epigenomic properties of MPRA-

positive variants with and without eQTL signature (hereafter referred to as MPRAeQTL variants and 

MPRAnon-eQTL variants, respectively, see Methods for how they were defined). 

When comparing the distance of MPRAeQTL and  MPRAnon-eQTL variants to the TSS, we found that 

MPRAnon-eQTL are more distal to the TSS than MPRAeQTL variants, hinting that these variants could 

be involved in distal regulatory relationship (Figure 3D). Because distal regulatory elements often 

encode enhancers, we next surveyed whether there is a difference between MPRAeQTL and  

MPRAnon-eQTL variants in their enhancer overlap. We found that a higher proportion of MPRAnon-

eQTL variants (~12%)  overlapped with neuronal enhancers compared to MPRAeQTL variants (~6%) 

(Nott et al., 2019). Such difference in enhancer overlap was not shown in other tested cell types 

(Figure 3E). Taken together, these results suggest that disease-associated variants may differ 

from variants detected as eQTL, and MPRA could fill this gap by testing GWAS variant effects on 

gene regulation in a manner independent of issues related to eQTL study power.  

 
Identification of schizophrenia candidate risk genes via long-range chromatin interactions 

Since MPRA-positive variants exhibited different epigenomic properties from eQTLs (Figure 3D-

E), we sought another method for assigning target genes for MPRA-positive variants. The 

previous finding that genes affected by GWAS variants show enhanced regulatory complexity 

(Mostafavi et al., 2022) prompted us to leverage long-range chromatin interaction datasets from 

the human brain. As MPRA-positive variants were preferentially located in enhancers of immature 

and mature neurons (Figure 2B-C, Figure 3E), we used chromatin loops in neural progenitors 
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(germinal zone, GZ), immature postmitotic neurons (cortical plate, CP), pediatric neurons, and 

adult neurons (Figure 4A) (Hu et al., 2021; Nott et al., 2019; Won et al., 2016). Neuronal 

chromatin interaction datasets assigned 209 MPRA-positive variants to 272 protein-coding genes 

(hereby referred to as MPRAHi-C genes, Supplementary Table 4). The resulting SNP-gene 

relationship was multivalent. On average, each SNP was mapped to 2.7 genes (Figure 4B), while 

each gene was mapped to 2.1 MPRA-positive SNPs (Figure 4C). Only 24 genes overlapped 

between the MPRAHi-C genes and the MPRAeQTL-IDE genes (Figure 4D), showing that the two 

datasets assign the MPRA-positive variants to distinct sets of genes. 

MPRAHi-C genes were enriched for gene ontologies (GO) related to spliceosomes and synaptic 

functions (Figure 4E, Supplementary Figure 6A). Enrichment of MPRAHi-C genes in 

spliceosomes corroborates pervasive isoform-level dysregulation in schizophrenia brains (Gandal 

et al., 2018). Furthermore, synaptic involvement of MPRAHi-C genes recapitulates a widely 

accepted notion that neurons are the central cell type for schizophrenia (Sey et al., 2020; Skene 

et al., 2018). Accordingly, MPRAHi-C genes showed elevated expression in neurons than non-

neuronal cells both in the fetal (Supplementary Figure 6D) and adult cortex (Supplementary 

Figure 6E).  

One of the genes that physically interacts with MPRA-positive variants was CACNA1C (Figure 

4H). Chromatin interaction offers a complete mechanism of action for the CACNA1C locus (also 

depicted in Figure 2G): The MPRA-positive SNP rs11062170, located within a neuronal enhancer 

(Figure 2G), interacts with the promoter of CACNA1C in adult neurons (Figure 4H). The 

alternative (risk) allele C of rs11062170 disrupts RFX5 binding, which weakens the neuronal 

enhancer activity (Figure 2G). The weakened neuronal enhancer propagates to the decreased 

expression of CACNA1C via a neuronal chromatin loop.  
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Figure 4. Genes assigned to MPRA-positive variants using long-range interactome differ 
from eQTL-assigned genes. A. Chromatin loops from neurons of four different developmental 

time points were used to map MPRA-positive variants to genes. GZ, germinal zone; CP, cortical 

plate; PN, pediatric neuron; AN, adult neuron. B. Distribution of the number of genes mapped per 

SNP. Red line, mean. C. Distribution of the number of variants mapped per gene. Red line, mean. 

D. Overlap between MPRAeQTL-IDE genes and MPRAHi-C genes. E. Gene ontology (GO) analysis 

of MPRAHi-C genes indicates involvement of spliceosome and synaptic functions in schizophrenia 

etiology. Redundant GO terms were omitted (see Supplementary Figure 6A for full GO terms). 
F. Loss-of-function observed/expected upper bound fraction (LOEUF) score distribution shows 

that  MPRAHi-C genes are less tolerant to mutations compared to MPRAeQTL-IDE genes. G. The 

number of promoter-anchored loops show higher regulatory complexity for MPRAHi-C genes  

compared to MPRAeQTL-IDE genes. Loops from adult neurons were used. P-values calculated by 
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Wilcoxon rank sum test. H. An example locus for CACNA1C shows that the MPRA-positive SNP 

rs11062170 physically interacts with CACNA1C promoter in adult neurons.  

 
Another example is KCNG2 locus (Supplementary Figure 7). In this locus, MPRA-positive SNP 

rs11664298 interacts with the promoter of KCNG2 through a chromatin loop from neural 

progenitors. The alternative allele A of rs11664298 is associated with significant downregulation 

of the reporter gene compared with the reference allele G. Furthermore, the alternative allele is 

also a risk allele for schizophrenia, suggesting downregulation of KCNG2 in schizophrenia. In line 

with this, KCNG2 was downregulated in postmortem brains of schizophrenia-affected individuals 

(Gandal et al., 2018). The alternative allele A of rs11664298 breaks a ZNF121 binding motif, 

providing a potential trans-regulatory mechanism of action for this locus. Collectively, we found 

that 38% of MPRA-positive variants (167/439) interact with promoters through chromatin loops 

and also alter TF binding motifs (Supplementary Table 5), suggesting long-range interaction as 

a mechanism for how variants alter gene expression. 

Mostafavi et al. have shown that genes linked to variants detected in eQTL studies and GWAS 

differ by their functional annotation, mutational constraint, and regulatory complexity (Mostafavi 

et al., 2022). In their study, all eGenes, regardless of disease association, were compared against 

genes proximal to GWAS variants, so it is unclear whether genes linked to GWAS variants also 

differ when different mapping strategies were used. Given the epigenetic difference between 

MPRAeQTL variants and MPRAnon-eQTL variants, we hypothesized that genes assigned to MPRA-

positive variants via chromatin interactions (272 MPRAHi-C genes, Figure 4D) differ from those 

assigned by eQTLs (132 MPRAeQTL-IDE genes, Figure 3A, 4D).  

Unlike MPRAHi-C genes that showed functional annotations related to synaptic biology (Figure 

4E, Supplementary Figure 6A), MPRAeQTL-IDE genes were enriched for more generic cellular 

function (Supplementary Figure 6B). Furthermore, MPRAHi-C genes exhibited higher mutational 
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constraints than MPRAeQTL-IDE genes (Figure 4F), which is in line with the previous report that 

schizophrenia-associated common variation is enriched for mutation intolerant genes (Pardiñas 

et al., 2018). Finally, MPRAHi-C genes were engaged in more distal interaction than MPRAeQTL-IDE 

genes (Figure 4G, Supplementary Figure 6C), indicative of higher regulatory complexity. Taken 

together, these results suggest that gene assignment for GWAS variants may require an 

additional annotation strategy utilizing physical interactome, given the significant differences in 

properties of genes assigned by two different strategies (eQTL vs Hi-C). 

 
Regulatory principles of multi-variant loci 

Out of 102 GWAS loci with functional regulatory variants, only 18 loci were mapped to a single 

functional regulatory variant while 84 loci had more than one MPRA-positive variant. We explored 

regulatory relationships of multi-variant loci by mapping them to target genes with neuronal 

chromatin interactions (Figure 4A). Fifty-eight out of 84 multi-variant loci were mapped to genes, 

and 49 of them were mapped to more than one gene, indicating potential cases of pleiotropy. 

Adding to another layer of complexity, multiple variants often converged on a single gene. For 

example, 22 multi-variant loci converged on a single gene. Together, these results suggest that 

multi-variant loci are often engaged in a complex regulatory relationship that involves pleiotropy 

and convergence.  

Multi-variant loci pose a challenge in translating variant effects to gene expression. Together, 256 

out of 272 MPRAHi-C genes were selected as putative targets of multi-variant loci. Using these 

genes, we sought to identify how variant effects can be aggregated to predict changes in gene 

expression. Because cell-type specific transcriptomic signatures of schizophrenia postmortem 

brains are not available yet, we used gene expression profiles from schizophrenic brain 

homogenates as a benchmark (Gandal et al., 2018). Out of 256 putative targets of multi-variant 

loci, 192 genes showed detectable levels of expression in postmortem brains and were used for 
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comparison between MPRA and schizophrenia postmortem expression. To compare MPRA 

results with schizophrenia postmortem brain expression profiles, we recalibrated MPRA logFC 

values (alternative/reference allele) to reflect disease risk (risk allele/protective allele). 

Consequently, variants with positive logFC(risk/protective) values will increase gene expression, 

while those with negative logFC(risk/protective) values will decrease gene expression in 

schizophrenia.  

Figure 5. Mapping multi-variant loci to genes. A. Illustration of how the accessibility by contact 

model predicts gene expression outcome for multi-variant loci. B. The accessibility by contact 

model (𝛴allelic activity×chromatin accessibility×chromatin contact) outperforms additive (𝛴allelic 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.22279954doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.15.22279954


 

 

activity) and contact (𝛴allelic activity×chromatin contact) models in predicting gene expression 

changes in schizophrenia postmortem brains. P-values calculated by permutation. C-D. GRIA1 

(C) and GRIN2A (D) loci are multi-variant loci in which 14 and 10 variants are predicted to act 

together on GRIA1 and GRIN2A regulation, respectively. Chromatin contact frequency (Hi-C 

counts) and accessibility are used to weight MPRA-measured allelic activity 

(logFC(risk/protective)).  

 
To predict gene expression in multi-variant loci, we first explored a simple additive model in which 

allelic activity of variants (logFC(risk/protective) values) is added to predict gene expression 

(Figure 5A-B). Out of 192 genes compared between MPRA results and postmortem expression 

profiles, 107 genes (55.7%, permutation P=0.03) showed the consistent direction of effects. 

Because variants with higher contact frequency may have larger impacts on gene expression, we 

next weighted allelic activity by chromatin contact frequency (hereby referred to as a contact 

model, Figure 5A). The number of genes with the consistent direction of effects grew from 107 

to 109 (56.8%, permutation P=0.0081) by the use of the contact model (Figure 5B). We next 

reasoned that variants within chromatin accessible regions may have a larger impact on gene 

regulation. Because our episomal design measures allelic activity without taking chromatinization 

into account, we weighted allelic activity by chromatin accessibility and contact frequency (hereby 

referred to as an accessibility by contact model, Figure 5A). With this model, 116 genes (60.4%, 

permutation P=3x10-4) showed the consistent direction of effects with postmortem expression 

(Figure 5B). Applying the same model to MPRA-negative variants yielded 105 genes (54.7%, 

permutation P=0.14) to be in the consistent direction (Figure 5B).  

GRIA1 locus is one of the multi-variant loci in which 14 MPRA-positive SNPs with varying allelic 

activity may act in concert to regulate GRIA1 (Figure 5C). Both additive and accessibility by 

contact models predicted that GRIA1 is upregulated (𝛴logFC=0.25, 

𝛴logFC×contact×accessibility=0.19), which is consistent with slight upregulation of GRIA1 in 

schizophrenia postmortem brains (logFC=0.024). On the other hand, GRIN2A locus is an 
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example in which additive and accessibility by contact models give opposite predictions (Figure 

5D). In this locus, 6 MPRA-positive variants showed detectable levels of chromatin interactions 

with the GRIN2A promoter and included in the model. An additive model suggested that the gene 

is upregulated (𝛴logFC=1.27), while an accessibility by contact model predicted that the gene is 

downregulated (𝛴logFC×contact×accessibility=–2.64). GRIN2A was modestly downregulated in 

schizophrenia postmortem brains (logFC=–0.036). Further supporting its downregulation in 

schizophrenia, GRIN2A was shown to have an excess of rare protein-truncating and pathogenic 

missense variants in schizophrenia (Singh et al., 2022).  

In conclusion, combining MPRA allelic activity with chromatin accessibility and contact frequency 

offers a framework to predict gene expression from MPRA-validated variant effects. 

 
Discussion 

MPRA has demonstrated its ability to vastly narrow down GWAS variants to a list of functionally 

validated variants with differential allelic activity. We found 439 schizophrenia-associated variants 

with allelic regulatory effects within 102 GWS loci. Notably, MPRA-positive variants could not be 

distinguished from MPRA-negative variants by GWAS effect sizes, finemapping posterior 

probability, evolutionary conservation, or epigenomic annotation such as enhancers. This result 

highlights the importance of experimental validation in addressing variant function.  

The finding that MPRA-positive variants were not necessarily located in enhancers could be due 

to a number of factors. First, our definition of an enhancer could be incomplete due to the small 

sample size or shallow read depth. In line with this idea, enhancers defined by scATAC-seq 

showed a smaller number of overlaps with MPRA-positive variants than enhancers from the bulk 

brain homogenate. Therefore, MPRA-positive variants may be located in weak enhancers that 

are yet to be identified. Second, we used an episomal version of MPRA that lacks epigenetic 
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context (e.g. chromatinization). While enhancer activity is heavily dependent on chromatin 

accessibility, the episomal context of our MPRA enables characterization of variant function 

without an additional layer of chromatinization. One interpretation is that MPRA exposes allelic 

activity of variants that do not have relevant in vivo function. On the other hand, MPRA can be 

more sensitive in identifying variants with regulatory activity that may be masked by closed 

chromatin in the baseline condition. These variants may only be functional under specific 

regulatory contexts (e.g. upon neuronal activity or cellular stress). While context-specific 

regulatory variants are difficult to detect via molecular assays in baseline conditions, their 

implications in disease association are emerging (Alasoo et al., 2018; Umans et al., 2021). Given 

that the MPRA-measured allelic regulatory effect of a variant depends more so on its binding to 

TFs than its local chromatin context, we reason that MPRA’s episomal nature may allow us to 

identify variant priming effects without the need of the stimuli to make the variant accessible. 

We looked into TF binding on MPRA-positive variants to understand the mechanism of action of 

allelic regulatory activity. We found that many differentially expressing alleles either created or 

broke TF binding motifs and SNP-mediated alterations of TF binding showed moderate predictive 

values, alluding to the mechanism of action of variant regulatory effects. TFs associated with Wnt 

signaling were especially interesting as it encodes a major pathway of brain development. 

Growing evidence suggests the involvement of Wnt signaling in various psychiatric and 

neurodevelopmental disorders. For example, common variation associated with schizophrenia, 

depression, and ASD showed enrichment for Wnt signaling pathways (Sey et al., 2020). Altered 

Wnt signaling was observed in HNPs derived from schizophrenic individuals (Topol et al., 2015).  

The pervasive standard in linking variants to gene expression is to leverage eQTL resources. 

However, a recent paper from Mostafavi et al. suggested that variants detected in eQTL studies 

may capture a different set of variants than GWAS due to natural selection (Mostafavi et al., 

2022). In agreement with this, we found that 64% of MPRA-positive variants did not overlap with 
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variants identified in adult brain eQTL studies. Of the 36% that did overlap, most of them agreed 

in direction of effects and colocalized with GWAS. It is possible that the little overlap with eQTLs 

could be due to the differing cell type and developmental stage between eQTLs (heterogeneous 

adult brain homogenate) and MPRA (HNPs that model neural development), or due to limited 

sample size of current eQTL studies. Well powered cell-type specific eQTLs (especially neuron-

specific eQTLs) may be critical to filling this gap. In contrast, eQTLs from developing brains did 

not massively differ in their overlap with MPRA-positive variants compared to eQTLs from adult 

brains.  

Despite the potential source of difference, we found that MPRAnon-eQTL variants showed different 

epigenetic properties than MPRAeQTL variants. In particular, MPRAnon-eQTL variants were more 

likely located in distal neuronal enhancers compared with MPRAeQTL variants. This prompted us 

to employ neuronal distal regulatory relationships (e.g. Hi-C interactions) to link MPRA-positive 

variants to their cognate genes. MPRAHi-C genes exhibited richer functional annotation and 

stronger selective constraints than MPRAeQTL-IDE genes. Moreover, MPRAHi-C genes were 

engaged in more distal regulatory interactions, which aligns with the reported enhancer 

redundancy of disease-associated mutation intolerant genes (Wang and Goldstein, 2020). 

Collectively, our results suggest that unbiased characterization of GWAS variants via MPRA could 

identify functional regulatory variants under selective pressure that eQTLs may not be able to 

detect.  

As chromatin architecture provides a complementary approach to map GWAS variants not 

cataloged by eQTLs, we sought to explore how chromatin architecture can be integrated with 

allelic activity to predict gene expression from variant regulatory effects within multi-variant loci. 

We found that the accessibility by contact model outperformed a simple additive model in 

predicting the direction of gene expression change. This model adds to the recently proposed 

activity-by-contact model that predicts the relationship between regulatory elements and genes 
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(Fulco et al., 2019). Current prediction accuracy of the accessibility by contact model was ~60% 

when compared against the gene expression profile from schizophrenia brain homogenates. 

Because neuronal chromatin accessibility (Fullard et al., 2018) and contact maps (Hu et al., 2021) 

were used to translate the functional impact of MPRA-positive variants that are enriched in 

neuronal enhancers, we expect that the prediction accuracy could be further improved by the 

comparison with neuronal-specific transcriptomic signatures in schizophrenia. In conclusion, the 

combination of MPRA-measured allelic activity with chromatin architecture can complement the 

episomal design of MPRA that does not account for the endogenous genomic context and provide 

a systematic framework to interpret variant effects on gene regulation. 

 
Methods 

Variant selection 

FINEMAP (Benner et al., 2016) was applied to 144 schizophrenia GWS loci (excluding the MHC 

locus) from Pardinas et al. (Pardiñas et al., 2018). A set of finemapped variants that can explain 

a given GWS loci with 95% probability for containing causal configuration was selected as 

previously described (Schork et al., 2019). In total, we identified 6,064 finemapped variants for 

144 schizophrenia GWS loci. A 150bp sequence flanking each variant was then selected to be 

inserted to the MPRA library. For indels, we used the same sized fragment (150bp) centered to 

the variant. We found that 150bp flanking sequences of 470 variants out of 6,064 finemapped 

variants contained sequences for restriction enzymes (MluI, SpeI, KpnI, XbaI) used for molecular 

cloning. These variants were excluded, resulting in 5,594 variants that were tested via our MPRA 

framework.  

Creating variant oligo library 

The 202 bp library oligos that contain schizophrenia risk variants were synthesized by Agilent and 
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amplified using NEBNext 2X Q5 Hifi HS Mastermix (NEB, cat#M0453S; primers: MPRA-

chipprimer-R and MPRA-chipprimer-F). Primer information is available in Supplementary Table 

6.  

We then used a pair of primers, one with the 20bp random barcode and SpeI restriction site 

(MPRA-BC_Primer_R) and the other with the MluI restriction site (MPRA-BC_Primer_F) to add 

random barcodes and restriction sites to the library oligos via PCR (NEBNext 2X Q5 Hifi HS 

Mastermix). The resulting library was digested with SpeI-HF (NEB, cat#R3133S) and MluI-HF 

(NEB, cat#R3198S) for 1 hour at 37°C, followed by rSAP treatment (NEB, cat#M0371S) for 1 

hour at 37°C and heat inactivation for 5 minutes at 65°C. After digestion, the library was cleaned 

up using Zymo clean and concentrator kit (Zymo, cat#D4033).  

Engineering of AAV-MPRA backbone 

We obtained the AAV backbone plasmid (pAAV-hSyn-EGFP) from the UNC vector core 

(https://www.addgene.org/50465/). We digested pAAV-hSyn-EGFP using MluI-HF and EcoR1-

HF (NEB, cat#R3101S), and ligated in an oligo that contains the sequences for MluI, SpeI, and 

EcoRI restriction sites using T7 DNA ligase (NEB, cat#M0318S). The ligated plasmid was 

transformed into Endura electrocompetent cells (Lucigen, cat#60242-1) via electroporation and 

grown in ampicillin LB overnight at 30°C. The cells were mini prepped with Qiagen Mini prep kit 

(Qiagen, cat#27106) resulting in the AAV backbone that harbors the multicloning site of MluI-

SpeI-EcoR1 (hereby referred to as AAV-MluI-SpeI-EcoR1). 

Inserting variant oligo library into AAV-MPRA backbone 

The AAV-MluI-SpeI-EcoR1 plasmid and the variant library were digested with SpeI-HF, MluI-HF, 

and rSAP for 3 hours at 37°C, and heat inactivated for 20 minutes at 80°C. The digested plasmid 

(~4kb) was run through a 1% agarose gel and gel extracted using Zymo Gel DNA Recovery kit 
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(Zymo, cat#D4007). The digested library was cleaned up using Dynabeads MyOne Streptavidin 

C1 beads (Thermo Fisher, cat#65601). The digested library and plasmid were ligated together 

using T7 DNA ligase at room temperature for 30 minutes using a 1:3 ratio (plasmid:library). The 

ligated product was cleaned up using Zymo PCR clean and concentrator-5 (Zymo, cat#11-303C), 

and transfected into Endura electrocompetent cells via electroporation, and plated on 10 cm 

circular LB agar plates with ampicillin. The plates were grown overnight at 30°C. The colonies 

were scraped and grown in 2 L of LB with ampicillin for 7 hours at 37°C. The resulting plasmid 

was maxi prepped using Qiagen Maxi prep kit (Qiagen, cat#12163) resulting in the AAV library 

that contains variant-barcode combinations (hereby referred to as an AAV-variant-barcode 

library).  

Barcode mapping 

The variant and barcode region of the AAV-variant-barcode library was PCR amplified using 

NEBNext 2X Q5 Hifi HS Mastermix with primers that contain Illumina P5 and P7 adapters 

(Bcmap_P5_AAV_R and Bcmap_P7_AAV_F). The PCR product was cleaned up using Zymo 

PCR clean and concentrator-5. The resulting library was sequenced using custom sequencing 

primers (BCmap_R1Seq_AAV_R and BCmap_R2Seq_AAV_F) via Novaseq 6000 SP (2x250bp) 

by the UNC High-Throughput Sequencing Facility (HTSF). Barcodes were assigned to each 

variant using the custom code available in the github repository (https://github.com/kiminsigne-

ucla/bc_map).  

Adding in minimal promoter and GFP 

We obtained pLS-minP, a plasmid that contains a minimal promoter (minP) and GFP (minP-GFP), 

from Dr. Nadav Ahituv’s group (https://www.addgene.org/81225/). The minP-GFP fragment was 

amplified from the plasmid via PCR using NEBNext 2X Q5 Hifi HS Mastermix and cleaned up 

using Zymo PCR clean and concentrator-5 (primers: minP-GFP-F and minP-GFP-R). The minP-
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GFP fragment and AAV-variant-barcode library were both digested with KpnI-HF (NEB, 

cat#R3142S) and rSAP for 3 hours at 37°C, which was followed by heat inactivation for 10 minutes 

at 65°C. Both of these products were then gel extracted from a 0.8% agarose gel using Zymo Gel 

DNA Recovery kit. The gel extracted products were then digested with XbaI (NEB, cat#R0145S) 

and rSAP for 3 hours at 37°C, and then for 10 minutes at 65°C for heat inactivation. The digested 

products were cleaned up using Zymo PCR clean and concentrator-5. 

The digested minP-GFP and AAV-variant-barcode library plasmid were ligated together using T7 

DNA ligase. The ligation mix was incubated at room temperature for 30 minutes, then cleaned up 

using Zymo PCR clean and concentrator-5. The ligation mix was transformed into Endura 

electrocompetent cells, which were then plated on 10 cm circular LB agar plates with ampicillin, 

resulting in the AAV-variant-minP-GFP-barcode library. The AAV-variant-minP-GFP-barcode 

library was grown in 2 L of LB with ampicillin, and maxi prepped using Qiagen Maxi prep kit. 

The UNC vector core packaged the AAV-variant-minP-GFP-barcode library into AAV serotype 2 

(AAV2). The resulting virus had the titer of 7x1012 viral particles/uL. 

Administration of AAV-MPRA to HNPs 

Acquisition, generation, and culture of human neural progenitors (HNP) have been previously  

described (Aygün et al., 2021). Donor number 54 was used for all experiments. Briefly, 6-well 

plates were coated with PBS with Poly-L-Ornithine (10 μg/ml; Sigma-Aldrich, cat#P3655-100MG) 

and PBS with fibronectin (5 μg/ml; Sigma-Aldrich, cat#F1141-5MG). HNPs were plated at 400K 

cells/well. The cells were plated in Neurobasal A media (Thermo Fisher, cat#10888022) 

supplemented with primocin (100 μg/ml; Invitrogen, cat#ant-pm-2), BIT 9500 (10%; STEMCELL, 

cat#09500), glutamax 100X (1%; Fisher Scientific, cat#5112367), Heparin (1 μg/ml; Sigma-

Aldrich, cat#H3393-100KU), and growth factors: EGF (20 μg/ml; PeproTech, cat#AF-100-15), 

FGF (20 μg/ml; PeproTech, cat#AF-100-15), PDGF (20 ng/ml; PeproTech, cat#100-00AB), and 
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LIF (2 ng/ml; PeproTech, cat# 300-05). The next day, each well was transduced with the AAV-

MPRA library at 7,000 multiplicity of infection (MOI). One well per plate was a no-virus control to 

monitor general cell health. After the AAV-MPRA library was added to the cells, the plates were 

spun in a centrifuge for 5 minutes at 37°C at 1000 rcf. Cells were half-fed with 2X growth factors 

every other day for two weeks after transduction. To enhance detectability of transduced cells, 

we pooled 3 wells for one replicate, resulting in 1.2 million cells per replicate. 

Processing RNA and DNA for sequencing 

RNA was extracted from each well using Qiagen RNeasy kit (Qiagen, cat#74004), using 10 uL of 

𝛽-Mercaptoethanol (Sigma-Aldrich, cat#60-24-2) per 1 mL of Qiagen RLT buffer. The columns 

were treated with DNase (Qiagen, cat#79256). cDNA was generated from the extracted RNA by 

SuperScript IV Reverse Transcriptase (Invitrogen, cat#18090050) using a primer that targets 

downstream of the barcodes (Lib_Hand_RT_AAV). 

To acquire an initial input of DNA put into the cells, DNA was extracted from the AAV2 virus which 

contained the AAV-MPRA library using a NucleoSpin virus kit (Macherey-Nagel, cat#740983.50).  

Amplification of RNA-seq libraries 

DNA extracted from the AAV-MPRA library and cDNA from each transduced well were amplified 

via PCR using NEBNext 2X Q5 Hifi HS Mastermix (primers for DNA: Lib_Hand_RT_AAV and 

Lib_Seq_GFP_AAV_R; primers for cDNA: Lib_Hand_AAV and Lib_Seq_GFP_AAV_R). The 

samples were cleaned up using Zymo clean and concentrator-5. This was followed by the second 

amplification step to add on sequencing adaptors and unique Illumina indices (primers: 

P5_Seq_GFP_AAV_F and P7_Ind_#_Han). Again, NEBNext 2X Q5 Hifi HS Mastermix was used 

for amplification. The resulting libraries were cleaned up using 0.75X ampure beads (Beckman 

Coulter, cat#A63881) and sequenced by UNC HTSF via Novaseq 6000 SP (1x35bp), with custom 
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primers that capture the barcode sequence and sequencing index (read 1 primer: 

Exp_R1_seq_P_AAV, index primer: Exp_Ind_seq_P_AAV). 

Quality check and barcode aggregation 

Using the barcode-variant relationship decoded from the barcode mapping step, RNA and DNA 

barcodes from RNA- and DNA-sequencing were mapped back to their corresponding variants. 

We counted the number of barcodes mapped to each variant and found that each variant was 

mapped to ~200 barcodes on average. Next, we aggregated the RNA and DNA barcode counts 

for each variant. Because different combinations of barcodes could be introduced to different 

biological replicates, using the same DNA counts measured from the AAV-MPRA library for all 

biological replicates could lead to incorrect normalization. To mitigate this, if a given RNA barcode 

was missing in one biological replicate, that barcode was not counted in aggregating DNA counts 

for that replicate. This way, even when the DNA from the AAV-MPRA library was used, each 

biological replicate could have different DNA barcode counts guided by RNA barcodes. For 

example, if barcodes 1, 2, and 3 were mapped to the variant1, and barcode 2 was missing from 

the RNA barcode count, we would simply sum up the counts for barcodes 1 and 3 for both DNA 

and RNA. In contrast, if none of the barcodes were measured, that corresponding variant will 

have NA count. After merging both DNA and RNA counts by those criteria, we discarded any 

variants that had more than eight NAs across ten replicates. 

Identification of MPRA-positive variants 

Using the aggregated DNA and RNA counts, we used mpra Bioconductor package to calculate 

differential allelic regulatory activity (Myint et al., 2019). We used mpralm() function which uses 

the linear model to measure differential regulatory activity between two alleles with following 

parameters:  
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mpra_lm_object <- mpralm(object = mpra_set, design = design_matrix, aggregate = "none", 

normalize = T, block = samples, model_type = "corr_groups") 

Here, mpra_set refers to the mpra object created by MPRAset() function consisting DNA and RNA 

counts and design_matrix refers to the matrix that specifies the reference and alternative allele 

status of the corresponding DNA/RNA counts. For our code we used 1) aggregate = “none” since 

we aggregated our barcodes before running mpralm and 2) normalize = T as DNA and RNA 

counts were not pre-normalized. Lastly, we named our replicates with the samples variable and 

used model_type = “corr_groups'' for paired mixed-model fit. 

The resulting mpra_lm_object provides summary statistics (e.g. logFC, average expression, t-

statistics, P-value, adjusted P-values, and B-statistics) of each variant (Supplementary Table 1). 

We defined MPRA-positive variants as variants that show statistical RNA count difference 

between reference and alternative allele at FDR < 0.1, while defining MPRA-negative variants as 

variants with no significant allelic regulatory activity at nominal P > 0.1. 

Measuring reproducibility 

We applied mpralm normalization method to 10 biological replicates to scale all replicates to have 

a common size of 10 million reads. We then used corrplot R package’s corrplot.mixed(upper = 

"number", lower = "square", col.lim = c(.5,0.8)) function to compare the RNA/DNA count ratio 

between biological replicates (Supplementary Figure 2).  

Circular Manhattan Plots 

Circular Manhattan plots (Figure 1B, Supplementary Figure 1) for finemapped and MPRA 

variants were created by using CMplot R package (Yin et al., 2021). For finemapped GWAS 

variants, CMplot(..., type = “p”, plot.type = “c”, threshold = 5e-8) was used. For our MPRA variants, 

we used threshold = 0.1 and all other parameters were identical.  
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LD SNPs and random SNPs 

To define the local background, LD SNPs were selected. LD (or a schizophrenia GWS locus) was 

defined as a region that encompasses SNPs with r2>0.6 to the index SNP. All SNPs within 144 

schizophrenia GWS loci with nominal association (P<0.001) were selected. Finemapped variants 

were then extracted from these variants, leaving non-finemapped SNPs with nominal association 

within LD.  

To define the global background, random SNPs with matched minor allele frequency (MAF) and 

LD were selected. For each finemapped SNP, we randomly selected 10 SNPs within the same 

chromosome that have matching (±10%) MAF and the number of SNPs in LD (defined as r2 > 

0.1). If less than 10 SNPs were identified for a given SNP, we selected all SNPs matched with 

MAF and LD. MAF and the number of LD buddies for genome-wide SNPs were obtained from 

garfield Bioconductor package (Iotchkova et al., 2016).   

Genomic annotation  

Using the annotatr Bioconductor package, MPRA-positive and MPRA-negative variants were 

mapped to its corresponding genomic annotations. After labeling MPRA-positive and MPRA-

negative variants to its corresponding genomic annotations, we noticed that some of the variants 

are overlapping with multiple annotations which leads to overrepresentation of certain variants. 

To mediate this issue, we prioritized certain annotations (i.e., exons/UTRs (can be duplicated) > 

promoters > 1kb to 5kb from promoter > introns > intergenic) so that  each SNP is mapped to a 

single genomic annotation.  

Epigenetic annotation  

We used 1) H3K27ac peaks from the fetal and adult dorsolateral prefrontal cortex (DLPFC) as 

fetal and adult brain enhancers, respectively (Li et al., 2018), 2) H3K27ac peaks from sorted brain 
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cells as cell-type specific adult brain enhancers (Nott et al., 2019), and 3) single-cell ATAC-seq 

peaks from the fetal brain as cell-type specific fetal brain enhancers (Ziffra et al., 2021) to compare 

the epigenetic differences of MPRA-positive, MPRA-negative, LD, and random SNPs. We 

overlapped MPRA-positive, MPRA-negative, LD, and random SNPs with each enhancer set using 

findOverlaps() function in GenomicRanges Bioconductor package. Then their overlap proportion 

was calculated by dividing the number of overlapped variants by the original number of variants 

(e.g., 4 out of 10 variants within the variant set A overlapped with enhancer set B gives 40% 

overlap). To compare the overlap between two SNP categories, Fisher’s exact test with the 

contingency table below was used.  

The number of MPRA-positive variants 
overlapping with epigenetic region A 

The number of MPRA-positive variants not 
overlapping with epigenetic region A 

The number of MPRA-negative/LD/random 
overlapping with epigenetic region A 

The number of MPRA-negative/LD/random 
overlapping with epigenetic region A 

 

Evolutionary conservation  

From the Zoonomia consortium, we obtained human phyloP scores predicted from the 

comparative genomic analysis of 240 mammalian species (Zoonomia Consortium, 2020). Since 

phyloP scores were available in hg38, we converted them to hg19 using liftOver (Navarro 

Gonzalez et al., 2021).  As we used 150 bp sequences centered (76th position) on each variant 

for our MPRA experiment, we calculated average phyloP scores for 150 bp sequences flanking 

the variants of interest. Average phyloP scores were calculated for MPRA-positive, MPRA-

negative, LD, and random SNPs and compared against each other using Wilcoxon rank sum test. 

To ensure that this finding is not dependent on the size of the window used, we also used different 

window sizes (e.g. 100bp, 200bp, and 300bp centered on each variant), but the choice of window 

sizes did not change the results.  
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Similar to phyloP scores, average phastCons scores of the same sequences were obtained using 

the Bioconductor package phastCons100way.UCSC.hg19 (Siepel et al., 2005).  

TF motif analysis 

To observe TF motif altering properties of MPRA-positive variants, we used motifbreakR  

Bioconductor package (Coetzee et al., 2015). Following the motifbreakR vignette, we subsetted 

the TF motif database by Hsapiens and excluded stamlabs since they are not annotated. This 

database included TF motif data from cisbp_1.02, HOCOMOCOv10, HOCOMOCOv11, hDPI, 

JASPAR_2014, JASPAR_CORE, jaspar2016, jaspar2018, jolma2013, SwissRegulon, and 

UniPROBE. Then we ran motifbreakR(..., filterp = TRUE, method = “ic”, threshold = 1e-4) and 

filtered the result by effect = “strong” to observe strong TF motif alterations only.  

TF enrichment analysis  

To calculate the TF enrichment for MPRA-positive variants, we also ran motifbreakR on LD and 

random SNPs. Then we compared the number of TF motif alterations between MPRA-positive 

and LD/random SNPs and calculated statistical significance by Fisher’s exact test with the 

contingency table of 

The number of MPRA-positive variants 
altering TF motif 1 

The number of MPRA-positive variants not 
altering TF motif 1 

The number of LD/random SNPs altering TF 
motif 1 

The number of LD/random SNPs not altering 
TF motif 1 

 

Calculation of corrected 𝛥SVM scores 

To predict the impact of TFs on SNP-mediated regulatory activity, we calculated corrected delta 

support vector machine (𝛥SVM) scores with the following formula for each variant.  
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𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝛥𝑆𝑉𝑀 = ∑ ∆
𝑁

𝑇𝐹 𝑖=1

𝑆𝑉𝑀 × 𝑙𝑜𝑔(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑇𝐹𝑖) × [ 1|𝑇𝐹𝑖 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟
−1|𝑇𝐹𝑖 = 𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟] 

𝛥SVM scores for each TF-SNP pair were obtained from Yan et al. (Yan et al., 2021); expression 

levels of TFs in HNPs have been obtained from Aygün et al. (Aygün et al., 2021); information 

about whether TFs are activators or repressors has been obtained from Savitskaya (Savitskaya, 

2010). For TFs that are predicted to act as both activators and repressors, we assumed that they 

mainly act as an activator.  

The resulting corrected 𝛥SVM scores were compared against MPRA logFC values at a variant 

level. Pearson’s correlation coefficients between corrected 𝛥SVM scores and MPRA logFC were 

calculated for MPRA-positive and MPRA-negative variants. We then randomly sampled corrected 

𝛥SVM scores and MPRA logFC values for MPRA-negative variants for 1,000 times to calculate 

the permuted distribution of Pearson’s correlation coefficient. The observed Pearson’s correlation 

coefficient for MPRA-positive variants was compared against the permuted distribution to 

calculate the permuted P-value. 

eQTL overlap 

eQTL datasets from the adult DLPFC (n=1,387) and fetal cortices (n=201) were obtained from 

Wang et al. (Wang et al., 2018) and Walker et al. (Walker et al., 2019), respectively. We 

overlapped our MPRA-positive variants with brain eQTL resources by matching variant 

information (i.e., chromosome, position, rsid). One discrepancy that we found was that our data 

contained SNPs in chromosome X, whereas both eQTLs lacked SNPs in sex chromosomes.  

Colocalization analysis between adult DLPFC eQTLs and schizophrenia GWAS was obtained 

from Liu et al. (Liu et al., 2021). Same analytic pipeline was used to perform colocalization analysis 

between developing brain eQTLs and schizophrenia GWAS. Briefly, we intersected developing 

brain eQTLs with schizophrenia GWS loci using findOverlap() function in GenomicRanges 
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Bioconductor package. We then performed colocalization analysis between schizophrenia GWAS 

and eQTLs using the default setting of coloc R package (Giambartolomei et al., 2014). We 

selected loci and eGenes with colocalization posterior probability greater than 0.6 (H4 PP>0.6) to 

compare against MPRA-positive variants. 

For the variant level overlap analysis, the proportion of eQTL overlap was calculated by dividing 

the number of MPRA-positive variants that overlapped with eQTLs (i.e., matching rsid, chr, and 

pos) by the total number of MPRA-positive variants. Then, the proportion of IDE overlap was 

calculated by dividing the number of MPRA-positive-eQTL overlapped variants that has any IDE 

variant-gene pairs (i.e., MPRA log2FC > 0 & eQTL beta > 0 and vice versa) by the number of 

MPRA-positive-eQTL overlapped variants. Lastly, we overlapped our IDE variants’ genomic 

coordinates to the colocalized GWS loci using findOverlap() function and calculated the overlap 

by dividing the number of IDE variants that overlapped to the colocalized locus by the number of 

IDE variants. For each overlap, the number of genes and loci was counted as well. 

TSS distance analysis 

Using the Gencode v19 promoter definition (Frankish et al., 2021), we employed bedtools v 2.29 

(Quinlan and Hall, 2010) closest function to calculate the distance to the nearest promoters for 

MPRAnon-eQTL and MPRAeQTL variants. Then Wilcoxon rank sum test was used to calculate the 

statistical significance between two distributions. 

Assigning genes to MPRA-positive variants using Hi-C data 

To assign genes to MPRA-positive variants using long-range interactome, first we filtered the Hi-

C loops from the four datasets (GZ, CP, PN, AN) that interact with Gencode v19 promoters 

(hereafter referred to as promoter-anchored loops). Then we overlapped 439 MPRA-positive SNP 

coordinates with the other end of the promoter-anchored loops (the non-promoter anchor) to 
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identify variants that interact with promoters through loops. SNP-gene pairs obtained this way 

were filtered for protein-coding genes with HUGO Gene Nomenclature Committee (HGNC) 

symbols, resulting in a total 272 genes (MPRAHi-C genes). To visualize the loci of MPRAHi-C genes 

(variants, genes, Hi-C loops), plotgardener Bioconductor package was used (Kramer et al., 2022). 

When loops were plotted, we only visualized the midpoint of each loop’s end for simplicity. 

Gene ontology 

For gene ontology (GO) analysis, we used gprofiler2 R package (Kolberg et al., 2020). GO terms 

with term size between 5 and 1000 were filtered, resulting in 26 terms (FDR<0.1). To reduce 

redundant GO terms, REVIGO web interface was used (http://revigo.irb.hr/). 

LOEUF score 

A LOEUF score for each gene was obtained from Karczewski et al. (Karczewski et al., 2020). 

LOEUF scores for MPRAeQTL-IDE genes were compared against MPRAHi-C genes. Statistical 

significance of the difference in LOEUF scores between two gene sets was calculated by the 

Wilcoxon rank sum test.  

Regulatory complexity 

To analyze regulatory complexity, we counted the number of loops anchored at promoters of 

MPRAeQTL-IDE, MPRAeQTL-IDE protein-coding, and MPRAHi-C genes. Because eQTLs from the adult 

DLPFC were used to identify MPRAeQTL-IDE and MPRAeQTL-IDE protein-coding genes, we used loops 

from the adult neuronal Hi-C dataset (Hu et al., 2021). Loops that overlap with the promoter of 

each gene were selected and counted. Kolmogorov–Smirnov test was used to compare the 

difference in the number of promoter-anchored loops between MPRAeQTL-IDE and MPRAHi-C genes. 

Cell type-specific gene expression in fetal and adult prefrontal cortex 
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In order to visualize cell type-specific gene expression, we used the single-cell gene expression 

matrix from the fetal (Nowakowski et al., 2017) and adult PFC (Wang et al., 2018). Gene 

expression matrix was filtered for MPRAHi-C genes. Then scaled, average expression across all 

genes was calculated for each cell type as previously described (Sey et al., 2020). 

Adding the chromatin context to allelic activity within multi-variant loci  

Multi-variant loci were defined as GWS loci that have more than one MPRA-positive SNP 

detected. We identified 256 MPRAHi-C genes that were mapped to the multi-variant loci. To 

understand how these genes were expressed in schizophrenia, we used transcriptomic signature 

from postmortem adult brains with schizophrenia (hereby referred to as RNA-seq data) (Gandal 

et al., 2018). MPRAHi-C genes whose expression was not detected in RNA-seq data (due to their 

low expression level) were discarded, leaving 192 genes to compare between MPRA and RNA-

seq. Because MPRA logFC values were initially calculated to compare the ratio between 

alternative and reference alleles, we converted them to compare the ratio between risk and 

protective alleles. The resulting logFC(risk/protective) values encode disease risk: whether the 

variant will up- or down-regulate the target gene in schizophrenia. We then aggregated variant-

level logFC(risk/protective) values to cognate genes using the following three strategies.  

1) Additive model: For each MPRAHi-C gene, we aggregated logFC(risk/protective) values of all 

MPRA-positive variants within the GWS locus that were assigned to the gene via Hi-C loops. 

Using all variants within the GWS locus (regardless of showing chromatin interactions with the 

gene) gave a similar result.  

𝛥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = ∑
𝑁

𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖=1

𝑙𝑜𝑔(𝑟𝑖𝑠𝑘/𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒)𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖 

2) Contact model: For each MPRAHi-C gene, we used all MPRA-positive variants within the locus, 

because each variant is weighted by contact frequency. We weighted logFC(risk/protective) 
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values with log(normalized contact frequency) between the variant and gene promoter using 

contact maps of adult neurons (Hu et al., 2021). For a gene with multiple promoters, we used the 

maximum normalized contact frequency.   

𝛥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = ∑
𝑁

𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖=1

𝑙𝑜𝑔(𝑟𝑖𝑠𝑘/𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒)𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖 × 𝑙𝑜𝑔(𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 

3) Accessibility by contact model: For each MPRAHi-C gene, we used all MPRA-positive variants 

within the locus, because each variant is weighted by contact frequency and chromatin 

accessibility. We weighted logFC(risk/protective) with log(normalized contact frequency) between 

the variant and gene promoter and average chromatin accessibility of the 150bp element flanking 

the variant. Contact maps of adult neurons (Hu et al., 2021) and chromatin accessibility from the 

Brain Open Chromatin Atlas (Fullard et al., 2018) were used to extract contact frequency and 

chromatin accessibility, respectively. For a gene with multiple promoters, we used the average 

value of log(normalized contact frequency) x chromatin accessibility.   

𝛥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = ∑
𝑁

𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖=1

𝑙𝑜𝑔(𝑟𝑖𝑠𝑘/𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒)𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖 × 𝑙𝑜𝑔(𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) × 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

We then compared 𝛥predicted gene expression with RNA-seq logFC values. We did not stratify 

genes with significant differential expression for this comparison because the effect sizes of 

common variants are small, which may not necessarily yield significant differential expression in 

idiopathic schizophrenia. Accordingly, we measured the percentage of genes that show the same 

direction of effects (e.g. up- or down-regulation) between 𝛥predicted gene expression and RNA-

seq logFC. 

Because the third model (accessibility by contact model) outperformed other models, we used 

the same model to calculate 𝛥predicted gene expression from MPRA-negative variants as a 

control. In addition, we randomly sampled logFC(risk/protective) values for MPRA-positive and -
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negative variants for 10,000 times to calculate permuted 𝛥predicted gene expression. The 

percentage of genes that show the same direction of effects between permuted predicted gene 

expression and RNA-seq logFC was compared against what was predicted from MPRA-positive 

variants to calculate the permutation P-value. 

Data Availability 

Sequencing data are available via the Gene Expression Omnibus under the accession number 

GSE211045.  

Code Availability 

Custom codes that were used to generate our SCZ MPRA results are available on our GitHub 

page (https://github.com/thewonlab/schizophrenia-MPRA). 
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