
/

Covasim:  an  agent-based  model  of  COVID-19            
dynamics  and  interventions      
 
Cliff  C.  Kerr 1* ,  Robyn  M.  Stuart 2,3 ,  Dina  Mistry 1 ,  Romesh  G.  Abeysuriya 3 ,  Gregory  Hart 1 ,  Katherine                            
Rosenfeld 1 ,  Prashanth  Selvaraj 1 ,  Rafael  C.  Núñez 1 ,  Brittany  Hagedorn 1 ,  Lauren  George 1 ,  Amanda  Izzo 1 ,                        
Anna  Palmer 3 ,  Dominic  Delport 3 ,  Carrie  Bennette 1 ,  Bradley  Wagner 1 ,  Stewart  Chang 1 ,  Jamie  A.                        
Cohen 1 ,  Jasmina  Panovska-Griffiths 4  ,  Michał  Jastrzębski 5 ,  Assaf  P.  Oron 1 ,  Edward  Wenger 1 ,  Michael                        
Famulare 1 ,  and  Daniel  J.  Klein 1          
 
1  Institute  for  Disease  Modeling,  Bellevue,  WA,  USA                
2  Department  of  Mathematical  Sciences,  University  of  Copenhagen,  Copenhagen,  Denmark                    
3  Burnet  Institute,  Melbourne,  VIC,  Australia            
4  Department  of  Applied  Health  Research,  University  College  London,  London,  UK                      
5  GitHub,  Inc.,  San  Francisco,  CA,  USA              
 
*  Corresponding  author: ckerr@idmod.org        
 

Abstract  
The  COVID-19  pandemic  has  created  an  urgent  need  for  models  that  can  project  epidemic  trends,                              
explore  intervention  scenarios,  and  estimate  resource  needs.  Here  we  describe  the  methodology  of                          
Covasim  (COVID-19  Agent-based  Simulator),  an  open-source  model  developed  to  help  address  these                        
questions.  Covasim  includes  demographic  information  on  age  structure  and  population  size;  realistic                        
transmission  networks  in  different  social  layers,  including  households,  schools,  workplaces,  and                      
communities;  age-specific  disease  outcomes;  and  intrahost  viral  dynamics,  including  viral-load-based                    
transmissibility.  Covasim  also  supports  an  extensive  set  of  interventions,  including  non-pharmaceutical                      
interventions,  such  as  physical  distancing,  hygiene  measures,  and  protective  equipment;  and  testing                        
interventions,  such  as  symptomatic  and  asymptomatic  testing,  isolation,  contact  tracing,  and  quarantine.                        
These  interventions  can  incorporate  the  effects  of  delays,  loss-to-follow-up,  micro-targeting,  and  other                        
factors.  In  collaboration  with  local  health  agencies  and  policymakers,  Covasim  has  already  been  applied                            
to  examine  disease  dynamics  and  policy  options  in  Africa,  Europe,  Oceania,  and  North  America.                            
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1  Introduction    
Governments  are  faced  with  an  urgent  need  to  understand  the  rapidly  evolving  COVID-19  pandemic                            
landscape  and  translate  it  into  policy.  Since  the  onset  of  the  pandemic,  mathematical  modeling  has  been                                
at  the  heart  of  informing  this  decision-making.  Numerous  COVID-19  models  and  data  visualization                          
and  interpretation  tools  have  been  developed  over  the  last  several  months  in  an  attempt  to  meet  this                                  
demand,  with  varying  purposes,  structures,  and  levels  of  detail  and  complexity.  Data  dashboards  and                            
statistical  models,  such  as  the  model  from  the  Institute  for  Health  Metrics  and  Evaluation  (IHME                              
COVID-19  Team  &  Murray,  2020),  are  useful  for  understanding  the  current  state  of  the  epidemic.                              
However,  more  detailed  models  are  needed  to  evaluate  scenarios  based  on  complex  intervention                          
strategies.  These  strategies  are  increasingly  important  to  evaluate,  as  we  aim  to  balance  epidemiological                            
and  economic  factors  in  reopening  economies.            
 
Models  for  examining  COVID-19  transmission  and  control  measures  can  be  broadly  divided  into  two                            
main  types:  compartmental  models  and  agent-based  (or  microsimulation)  models,  with  the  former                        
generally  being  simpler  and  faster,  while  the  latter  are  generally  more  complex,  detailed,  and                            
computationally  expensive.  Numerous  compartmental  models  have  been  developed  or  repurposed:                    
Walker  et  al.  (2020)  used  an  age-structured  stochastic  SEIR  model  to  determine  the  global  impact  of                                
COVID-19  and  the  effect  of  various  social  distancing  interventions  to  control  transmission  and  reduce                            
health  system  burden;  Read  et  al.  (2020)  developed  an  SEIR  model  to  estimate  the  basic  reproductive                                
number  in  Wuhan;  and  Keeling  et  al.  (2020)  use  one  to  look  at  the  efficacy  of  contact  tracing  as  a                                        
containment  measure.  In  models  such  as  those  by  Giordano  et  al.  (2020)  and  Zhao  and  Chen  (2020),                                  
compartments  are  further  divided  to  provide  more  nuance  in  simulating  progression  through  different                          
disease  states,  and  have  been  deployed  to  study  the  effects  of  various  population-wide  interventions  such                              
as  social  distancing  and  testing  on  COVID-19  transmission.                 
 
For  microsimulation  models,  several  agent-based  influenza  pandemic  models  have  been  repurposed  to                        
simulate  the  spread  of  COVID-19  transmission  and  the  impact  of  social  distancing  measures  in  Australia                              
(Chang  et  al.,  2020),  Singapore  (Koo  et  al.,  2020),  the  United  States  (Chao  et  al.,  2020),  and  the  United                                      
Kingdom  (Ferguson  et  al.,  2020).  Additionally,  agent-based  models  have  been  developed  to  evaluate  the                            
impact  of  social  distancing  and  contact  tracing  (Aleta  et  al.,  2020;  Kretzschmar  et  al.,  2020;  Kucharski  et                                  
al.,  2020).  Features  of  these  models  include  accounting  for  the  number  of  household  and  non-household                              
contacts  (Chao  et  al.,  2020;  Kretzschmar  et  al.,  2020;  Kucharski  et  al.,  2020);  the  age  and  clustering  of                                    
contacts  within  households  (Aleta  et  al.,  2020;  Chao  et  al.,  2020;  Kucharski  et  al.,  2020);  and  the                                  
microstructure  in  schools  and  workplace  settings  informed  by  census  and  time-use  data  (Aleta  et  al.,                              
2020).  Branching  process  models  have  also  been  used  to  investigate  the  impact  of  non-pharmaceutical                            
intervention  strategies  (Hellewell  et  al.,  2020;  Peak  et  al.,  2017).                    
 
In  developing  Covasim,  our  aim  was  to  capture  the  benefits  of  agent-based  modeling  (in  particular,  the                                
ability  of  such  models  to  simulate  the  kinds  of  microscale  policies  being  used  to  respond  to  the                                  
COVID-19  pandemic),  whilst  also  using  the  best-available  computational  methods  in  order  to                        
minimize  the  complexity  and  computational  time  usually  associated  with  such  models.                       
 
The  primary  aim  of  this  paper  is  to  describe  the  Covasim  methodology.  Section  2  describes  Covasim's                                
disease  progression  model,  transmission  dynamics,  population  and  network  structure,  available                    
interventions,  as  well  as  additional  features,  performance  characteristics,  and  implementation  details.                      
Section  3  presents  several  brief  examples  illustrating  some  of  the  different  analyses  and  use  cases  that  are                                  
supported  by  Covasim,  while  Section  4  reviews  the  limitations  of  Covasim  and  discusses  future  work.                              
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2  Methods    

2.1  Overview    
Covasim  simulates  the  state  of  individual  people,  known  as  agents,  over  a  number  of  discrete  time  steps.                                  
Conceptually,  the  model  is  largely  focused  on  a  single  type  of  calculation:  the  probability  that  a  given                                  
agent  on  a  given  time  step  will  change  from  one  state  to  another,  such  as  from  susceptible  to  infected,                                      
or  from  critically  ill  to  dead.  Once  these  probabilities  have  been  calculated,  a  pseudorandom  number                              
generator  with  a  user-specified  seed  is  used  to  determine  whether  the  transition  actually  takes  place  for  a                                  
given  model  run.      
 
The  logical  flow  of  a  single  Covasim  run  is  as  follows.  First,  the  simulation  object  is  created,  then  the                                      
parameters  are  loaded  and  validated  for  internal  consistency,  and  any  specified  data  files  are  loaded                              
(described  in  Section  2.6.5).  Second,  a  population  is  created,  including  age,  sex,  and  comorbidities  for                              
each  agent,  drawing  from  location-specific  data  distributions  where  available.  Third,  agents  are                        
connected  into  contact  networks  based  on  their  age  and  other  statistical  properties  (Section  2.4).  Next,                              
the  integration  loop  begins.  On  each  timestep  (which  corresponds  to  a  single  day  by  default),  the  order                                  
of  operations  is:  dynamic  rescaling  (Section  2.6.3);  applying  health  system  constraints  (Section  2.6.1);                          
updating  the  state  of  each  agent,  including  disease  progression  (Section  2.2);  importation  events                          
(Section  2.6.2);  applying  interventions  (Section  2.5);  calculating  disease  transmission  events  across  each                        
infectious  agent's  contact  network  (Section  2.3);  and  the  collation  of  outputs  into  results  arrays  (Section                              
2.6.6).  The  following  sections  describe  each  step  in  more  detail.                    

2.2  Disease  progression      
In  Covasim,  each  individual  is  characterized  as  either  susceptible,  exposed  (i.e.,  infected  but  not  yet                              
infectious),  infectious,  recovered,  or  dead,  with  infectious  individuals  additionally  categorized  according                      
to  their  symptoms:  asymptomatic,  presymptomatic,  mild,  severe,  or  critical.  A  schematic  diagram  of  the                            
model  structure  is  shown  in  Figure  1.              
 
The  length  of  time  after  exposure  before  an  individual  becomes  infectious  is  assumed  to  follow  a                                
log-normal  distribution  with  a  mean  of  4.6  days,  which  is  within  the  range  of  values  reported  across  the                                    
literature  (Table  1).  The  length  of  time  between  the  start  of  viral  shedding  and  symptom  onset  is                                  
assumed  to  follow  a  log-normal  distribution  with  a  mean  of  1  day  (Table  1).  Exposed  individuals  may                                  
develop  symptoms  or  may  remain  asymptomatic.  Individuals  with  symptoms  are  disaggregated  into                        
either  mild,  severe,  or  critical  cases,  with  the  probability  of  developing  a  more  acute  case  increasing                                
with  age  (Table  2).  Covasim  can  also  model  the  effect  of  comorbidities,  which  act  by  modifying  an                                  
individual's  probability  of  developing  severe  symptoms  (and  hence  critical  symptoms  and  death).  By                          
default,  comorbidity  multipliers  are  set  to  1  since  they  are  already  factored  into  the  marginal                              
age-dependent  disease  progression  rates.        
 
Estimates  of  the  duration  of  COVID-19  symptoms  and  the  length  of  time  that  viral  shedding  occurs  are                                  
highly  variable,  but  durations  are  generally  reported  to  increase  according  to  acuity  (Bi  et  al.,  2020;                                
Yang  et  al.,  2020).  We  reflect  this  in  our  model  with  different  recovery  times  for  asymptomatic                                
individuals,  those  with  mild  symptoms,  and  those  with  severe  symptoms,  as  summarized  in  Table  1.  All                                
non-critical  cases  are  assumed  to  recover,  while  critical  cases  either  recover  or  die,  with  the  probability                                
of  death  increasing  with  age  (Table  2).               
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Figure  1 :  Covasim  model  structure,  including  infection  (exposure),  disease  progression,  and                      
final  outcomes.  Yellow  shading  indicates  that  an  individual  is  infectious  and  can  transmit  the                            
disease  to  other  susceptible  agents.  States  with  a  dashed  border  are  considered  symptomatic  with                            
respect  to  symptomatic  versus  asymptomatic  testing.            
 
 
 

Table  1: Default  duration  parameters,  in  days,  used  in  the  Covasim  model.                        
Parameter   Description   Distribution  (mean,  std)       Source  

s   Length  of  time  after  exposure  before  an              
individual  is  infectious  (i.e.,  has  begun            
viral  shedding)    

s  ~  lognormal(4.6,4.8)       From  Lauer  et  al.,  2020;  additional            
sources  Du  et  al.,  2020;  Nishiura  et              
al.,  2020;  Pung  et  al.,  2020.            

i   Length  of  time  after  viral  shedding  has              
begun  before  an  individual  has  symptoms            

i  ~  lognormal(1,1)       He  et  al.  (2020)  report  that            
infectiousness  started  from  2.3  days          
(95%  CI,  0.8–3.0  days)  before          
symptom  onset  and  peaked  at  0.7            
days  (95%  CI,  −0.2–2.0  days)  before            
symptom  onset.  Gatto  et  al.  (2020)            
estimate  a  pre-symptomatic  period        
of  1.3  days.      

r a   Recovery  time  for  asymptomatic  cases           r a ~  lognormal(8,  2)       Wölfel  et  al.,  2020        

r m   Recovery  time  for  mild  cases           r m  ~  lognormal(8,  2)         Wölfel  et  al.,  2020        

r s   Recovery  time  for  severe  cases           r s  ~  lognormal(14,  2.4)         Verity  et  al.,  2020        

r c   Recovery  time  for  critical  cases           r c  ~  lognormal(14,  2.4)         Verity  et  al.,  2020        
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Table  2: Age-linked  disease  susceptibility,  progression,  and  mortality  probabilities.  Key: p sus :  probability                        
of  developing  symptoms; p sym :  probability  of  developing  symptoms; p sev :  probability  of  developing  severe                          
symptoms  (i.e.,  sufficient  to  justify  hospitalization); p cri :  probability  of  developing  into  a  critical  case  (i.e.,                              
sufficient  to  require  ICU); p death :  probability  of  death.  Susceptibility  values  are  derived  from  Zhang  et  al.                                
(2020);  all  other  values  are  derived  from  Verity  et  al.  (2020)and  Ferguson  et  al.  (2020).  *Overall  values                                  
depend  on  the  age  structure  of  the  population  being  modeled.  For  a  population  like  the  US  or  UK,  the                                      
symptomatic  proportion  is  roughly  0.7,  while  for  populations  skewed  towards  younger  ages,  the                          
symptomatic  proportion  is  lower.         
  0-9   10-19   20-29   30-39   40-49   50-59   60-69   70-79   80+   Overall*  

p sus   0.34   0.67   1.00   1.00   1.00   1.00   1.00   1.24   1.47   1.00  

p sym   0.50   0.55   0.60   0.65   0.70   0.75   0.80   0.85   0.90   0.5–0.75  

p sev   0.0001   0.0001   0.01100   0.03400   0.04300   0.08200   0.11800   0.16600   0.18400   0.1–0.2  

p cri   0.00004   0.00011   0.00050   0.00123   0.00214   0.00800   0.02750   0.06000   0.10333   0.05–0.1  

p death   0.00002   0.00006   0.00030   0.00080   0.00150   0.00600   0.02200   0.05100   0.09300   0.01-0.02  

2.3  Transmission  and  within-host  viral  dynamics            
Whenever  a  susceptible  individual  comes  into  contact  with  an  infectious  individual  on  a  given  day,                              
transmission  of  the  virus  occurs  according  to  probability  𝛽.  For  a  well-mixed  population  where  each                              
individual  has  an  average  of  20  contacts  per  day,  a  value  of  𝛽  =  0.016  corresponds  to  a  doubling  time  of                                          
roughly  4–6  days  and  an R 0  of  approximately  2.2–2.7,  where  the  exact  values  depend  on  the  population                                  
size,  age  structure,  and  other  factors).  The  value  of  𝛽  =  0.016  is  used  as  the  default  in  Covasim;  however,                                        
this  value  is  typically  calibrated  by  the  user  to  best  match  local  epidemic  data.                            
 
If  realistic  network  structure  (i.e.,  households,  schools,  workplaces,  and  community  contacts)  is                        
included,  the  value  of  𝛽  depends  on  the  contact  type.  Default  transmission  probabilities  are  roughly  0.1                                
per  contact  per  day  for  households,  0.02  for  workplaces,  0.01  for  schools,  and  0.002  for  the  community.                                  
These  values  correspond  to  relative  weightings  of  50:10:5:1,  with  a  weighted  mean  close  to  the  default  𝛽                                  
value  of  0.016  for  a  well-mixed  population  (i.e.,  if  different  network  layers  are  not  used).  When                                
combined  with  the  default  number  of  contacts  in  each  layer,  age-based  susceptibility,  and  other  factors,                              
for  a  typical  (unmitigated)  transmission  scenario,  the  proportions  of  transmission  events  that  occur  in                            
each  contact  layer  are  approximately  40%  via  households,  35%  via  workplaces,  10%  via  schools,  and                              
15%  via  the  community.  The  value  of  𝛽  can  also  be  modified  by  interventions,  such  as  physical                                  
distancing,  as  described  below.        
 
In  addition  to  allowing  individuals  to  vary  across  disease  severity  and  time  spent  in  each  disease  state,                                  
we  allow  individual  infectiousness  to  vary  between  people  and  over  time.  We  use  individual  viral  load                                
to  model  these  differences  in  infectivity.  Several  groups  have  found  that  viral  load  is  highest  around  the                                  
time  of  symptom  onset,  or  possibly  even  before  that,  and  then  falls  monotonically  (D.  He  et  al.,  2020;                                    
Lescure  et  al.,  2020;  To  et  al.,  2020;  Zou  et  al.,  2020).  As  a  first  approximation  to  this  viral  time  course,                                          
we  model  two  stages  of  viral  load:  an  early  high  stage  followed  by  a  longer  low  stage.  By  default,  we  set                                          
the  viral  load  of  the  high  stage  to  be  twice  as  high  as  the  low  stage  and  to  last  for  30%  of  the  infectious                                                
duration  or  4  days,  whichever  is  shorter.  The  default  viral  load  for  each  agent  is  drawn  from  a                                    
log-normal  distribution  with  mean  0.84  and  standard  deviation  0.30  (Endo  et  al.,  2020).  The  daily  viral                                
load  is  used  to  adjust  the  per-contact  transmission  probability  (𝛽)  for  an  agent  on  a  given  day  (Figure  2).                                      
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Evidence  is  mixed  as  to  whether  transmissibility  is  lower  if  the  infectious  individual  does  not  have                                
symptoms  (D.  He  et  al.,  2020).  We  take  a  default  assumption  that  it  is  not,  but  include  a  parameter  that                                        
can  be  modified  as  needed  depending  on  the  modeling  application  or  context.                         
 

 
Figure  2 :  Example  of  within-host  viral  load  dynamics  in  Covasim.  Each  row  shows  a  different                              
agent  in  the  model.  Color  indicates  viral  load,  which  typically  peaks  the  day  before  or  the  day  of                                    
symptom  onset,  before  declining  slowly.          

2.4  Contact  network  models        
Covasim  is  capable  of  generating  and  using  three  alternative  types  of  contact  networks:  random                            
networks,  SynthPops  networks,  and  hybrid  networks.  Each  of  these  may  be  useful  in  different  settings,                              
and  in  addition  users  have  the  option  of  defining  their  own  networks.  A  comparison  of  the  main                                  
features  and  use  cases  of  each  of  Covasim’s  default  network  model  options  is  shown  in  Table  3,  and                                    
details  on  each  are  provided  in  the  following  sections.  In  addition,  to  facilitate  easy  adaptation  to                                
different  contexts,  Covasim  comes  pre-loaded  with  data  on  country  age  distributions  and  household                          
sizes  as  reported  by  the  UN  Population  Division,  2019.                   

2.4.1  Random  networks      
Covasim  generates  random  networks  by  assuming  that  each  person  in  the  modeled  population  can                            
come  into  contact  with  anyone  else  in  the  population.  Each  person  is  assigned  a  number  of  daily                                  
contacts,  which  is  drawn  from  a  Poisson  distribution  whose  mean  value  can  be  specified  by  the  user                                  
depending  on  the  modeling  context  (with  a  default  value  of  20).  The  user  can  also  decide  whether  these                                    
contacts  should  remain  the  same  throughout  the  simulation,  or  whether  they  should  be  sampled                            
randomly  from  the  population  each  day.             
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Figure  3 :  Schematic  diagram  of  contact  networks  with  multiple  layers  in  Covasim.                        

2.4.2  SynthPops  networks      
Covasim  is  integrated  with  SynthPops,  an  open-source  data-driven  model  capable  of  generating                        
realistic  synthetic  contact  networks  for  populations;  further  information,  including  documentation  and                      
source  code,  is  available  from synthpops.org .  Briefly,  the  method  draws  upon  previously  published                          
models  and  empirical  studies  to  infer  high-resolution  age-specific  contact  patterns  in  key  settings  (e.g.,                            
households,  schools,  workplaces,  and  the  general  community)  relevant  to  the  transmission  of  infectious                          
diseases  (Fumanelli  et  al.,  2012;  Mistry  et  al.,  2020;  Smieszek  et  al.,  2014).  Census  and  municipal  data  are                                    
used  by  SynthPops  to  inform  demographic  characteristics  (e.g.,  age,  household  size,  school  enrollment,                          
employment  rates).  Age-specific  contact  matrices  (such  as  those  in  Prem  et  al.,  2017)  are  then  used  to                                  
generate  individuals  and  their  expected  contacts  in  a  multilayer  network  framework.  By  default,                          
SynthPops  generates  household,  school,  and  work  contact  networks;  community  connections  are                      
generated  using  the  random  approach  described  above.  An  example  synthetic  network  as  generated  by                            
SynthPops  is  shown  in  Figure  4.            

2.4.2.1  Households    
SynthPops  uses  data  on  the  distribution  of  ages,  household  sizes,  and  the  age  of  reference  individuals                                
conditional  on  household  size  for  a  given  population,  to  generate  individuals  within  households.  The                            
algorithm  first  generates  household  sizes  from  the  household  size  distribution,  and  then  assigns  a                            
reference  individual  (for  example,  the  head  of  the  household)  with  their  sampled  age  conditional  on  the                                
household  size.  To  construct  the  other  household  members,  age  mixing  contact  matrices  are  used  to                              
infer  the  likely  ages  according  to  the  age  of  the  reference  person  and  the  population  age  distribution                                  
adjusted  for  non-reference  ages.        

2.4.2.2  Schools    
A  similar  approach  is  used  to  construct  schools.  Census  and  municipal  school  data,  or  survey  data  such  as                                    
from  Demographic  and  Health  Surveys  (Huisman  &  Smits,  2009),  can  be  used  to  inform  enrollment                              
rates  by  age,  school  sizes,  and  student-teacher  ratios.  The  SynthPops  algorithm  first  chooses  a  reference                              
student  for  the  school  conditional  on  enrollment  rates  to  infer  the  school  type,  and  then  uses  the  age                                    
mixing  contact  matrix  in  the  school  setting  to  infer  the  likely  ages  of  the  other  students  in  the  school.                                      
Students  are  drawn  from  an  ordered  list  of  households,  such  that  they  reproduce  an  approximation  of                                
the  neighborhood  dynamics  of  children  attending  area  schools  together.  Teachers  are  drawn  from  the                            
adult  population  comprising  the  labor  force  and  assigned  to  schools  as  needed,  reflecting  average                            
student-teacher  ratio  data.       
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Figure  4 :  Synthetic  population  networks  for  households  (top),  schools  (middle),  and  workplaces                        
(bottom).  Age-specific  contact  matrices  are  shown  on  the  left,  while  actual  connectivity  patterns                          
for  a  127-person  subsample  of  a  population  of  10,000  individuals  are  shown  on  the  right.  All                                
individuals  are  present  in  the  household  network,  including  some  with  no  household                        
connections.  A  subset  of  these  individuals,  including  teachers,  are  present  in  the  school  network                            
(circles);  another  subset  is  present  in  workplace  networks  (squares);  some  individuals  are  in                          
neither  school  nor  work  networks  (triangles).            
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Table  3 :  Comparison  of  population  options  in  Covasim.                

Population  type     Data  requirements     Best  suited  for       Not  well  suited  for        

Random  networks     None   Models  of  transmission  in        
settings  such  as  prisons  or          
cruise  ships    

Complex  population    
network  models    

Hybrid  networks     Data  on  the  age  distribution          
and  household  sizes  for  each          
country  are  pre-loaded      
 
No  additional  data  is        
required,  but  users  can        
optionally  specify  the  daily        
number  of  school,      
workplace,  and  community      
contacts  

Population  network  models      
in  data-rich  settings;      
adaptable  and  suited  to  most          
modeling  contexts    

Populations  with  high      
heterogeneity  in  contact      
patterns  or  size  distributions         
 
 

SynthPop  networks     Household,  school,    
workplace,  and  community      
age  mixing  patterns      
 
School  size  distributions,      
enrollment  rates  by  age,        
student-teacher  ratios    
 
Workplace  size    
distributions,  employment    
rates  by  age      
 
Number  of  households,  size        
distribution,  and  age/sex      
distribution  

Complex  population    
network  models  in  data-rich        
settings  

Settings  where  the  data        
requirements  cannot  be  met,        
or  where  other  social        
settings  are  critical  contexts        
for  disease  transmission       

 

2.4.2.3  Workplaces    
The  labor  force  is  drawn  using  employment  rates  by  age,  and  non-teachers  are  assigned  to  workplaces                                
using  data  on  establishment  sizes.  Workers  are  assigned  to  workplaces  using  a  similar  method  with  an                                
initial  reference  worker  sampled  from  the  labor  force  and  their  co-workers  inferred  from  age  mixing                              
patterns  within  the  workforce.  All  workers  (teachers  included)  are  drawn  at  random  from  the                            
population,  to  reflect  the  general  mixing  of  adults  from  different  neighbourhoods  at  work.                           
 
For  contacts  in  the  general  community,  we  draw n  random  contacts  for  each  individual  on  a  daily  basis                                    
from  other  individuals  in  the  population,  where n  is  drawn  from  a  Poisson  distribution  with  rate                                
parameter  λ  equal  to  the  expected  number  of  contacts  in  the  general  community  (with  λ  =  20  as  a                                      
default,  as  above).  Connections  in  this  layer  reflect  the  nature  of  contacts  in  shared  public  spaces  like                                  
parks  and  recreational  spaces,  shopping  centres,  community  centres,  and  public  transportation.  All  links                          
between  individuals  are  considered  undirected  to  reflect  the  ability  of  either  individual  in  the  pair  to                                
infect  each  other.      
 
The  generated  multilayer  network  of  household,  school,  work,  and  general  community  network  layers                          
presents  a  population  with  realistic  microstructure.  This  framework  can  also  be  extended  to  consider                            
more  detailed  interactions  in  key  additional  settings,  such  as  hospitals,  encampments,  shelters  for  those                            
experiencing  homelessness,  and  assisted  living  facilities.            
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2.4.3  Hybrid  networks      
Covasim  contains  a  third  option  for  generating  contact  networks,  which  captures  some  of  the  realism  of                                
the  SynthPops  approach  but  does  not  require  as  much  input  data,  and  is  more  readily  adaptable  to  other                                    
settings.  As  such,  it  is  a  "hybrid"  approach  between  a  fully  random  network  and  a  fully  data-derived                                  
network.  As  with  SynthPops,  each  person  in  the  population  has  contacts  in  their  household,  school  (for                                
children),  workplace  (for  adults),  and  community.  A  population  of  individuals  is  generated  according  to                            
a  location-specific  age  distribution,  and  each  individual  is  randomly  assigned  to  a  household  using                            
location-specific  data  on  household  sizes.           
 
Unlike  SynthPops,  the  hybrid  algorithm  does  not  account  for  the  distribution  of  ages  within  a                              
household.  Children  are  assigned  to  schools  and  adults  to  workplaces,  each  with  a  user-specified  number                              
of  fixed  daily  contacts  (by  default,  Poisson-distributed  with  means  of  20  for  schools  and  8  for                                
workplaces).  Individuals  additionally  have  contacts  with  others  in  the  community  (by  default,  Poisson                          
distributed  with  a  mean  of  20).  All  children  and  young  adults  aged  between  6  and  22  are  assigned  to                                      
schools  and  universities,  and  all  adults  between  22  and  65  are  assigned  to  workplaces.  This  distinguishes                                
it  from  SynthPops  where  enrollment  or  employment  varies  depending  on  the  given  data.  A  comparison                              
of  the  different  population  structure  options  available  in  Covasim  is  listed  in  Table  3.                            

2.5  Interventions    
A  core  function  of  Covasim  is  modeling  the  effect  of  interventions  on  disease  transmission  or  health                                
outcomes,  to  understand  the  impact  that  different  policy  options  may  have  in  a  specific  setting.  In                                
general,  interventions  are  modeled  as  changes  to  parameter  values.  Covasim  has  built-in                        
implementations  of  the  common  interventions  described  below,  as  well  as  the  ability  for  users  to  create                                
their  own  interventions.      

2.5.1  Physical  distancing  and  hygiene          
The  most  basic  intervention  in  Covasim  is  to  reduce  𝛽  (transmissibility)  starting  on  a  given  day.  This                                  
can  be  used  to  reflect  both  (a)  reductions  in  transmissibility  per  contact,  such  as  through  mask  wearing,                                  
personal  protective  equipment,  hand-washing,  and  maintaining  physical  distance;  and  (b)  reductions  in                        
the  number  of  contacts  at  home,  school,  work,  or  in  the  community.  However,  Covasim  also  includes                                
an  "edge-clipping"  intervention  (considering  a  contact  between  two  agents  as  a  weighted  "edge"                          
between  two  "nodes"),  where  𝛽  remains  unchanged  but  the  number  of  contacts  that  person  has  is                                
reduced.  Complete  school  and  workplace  closures,  for  example,  can  be  modeled  either  by  setting  𝛽  to  0,                                  
or  by  removing  all  edges  in  those  contact  layers;  partial  closures  can  be  modeled  by  smaller  reductions                                  
in  either  𝛽  or  the  number  of  contacts.                
 
In  general,  both  types  of  interventions  have  similar  impact  –  for  example,  halving  the  number  of                                
contacts  and  keeping  𝛽  constant  will  produce  very  similar  epidemic  trajectories  as  halving  𝛽  and                              
keeping  the  number  of  contacts  constant.  However,  the  distinction  becomes  important  when                        
considering  the  interaction  between  physical  distancing  and  other  interventions.  For  example,  in  a                          
contact  tracing  scenario,  the  number  of  contacts  who  require  tracing,  number  of  tests  performed,  and                              
number  of  people  placed  in  quarantine  are  all  strongly  affected  by  whether  physical  distancing  is                              
implemented  as  a  reduction  in  𝛽  of  a  specific  edge,  or  removing  that  edge  entirely.                              

2.5.2  Testing  and  diagnosis        
Testing  can  be  modelled  in  two  different  ways  within  Covasim,  depending  on  the  format  of  testing                                
data  and  purpose  of  the  analysis.  The  first  method  allows  the  user  to  specify  the  probabilities  that  people                                    
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with  different  risk  factors  and  levels  of  symptoms  will  receive  a  test  on  each  day.  Separate  daily  testing                                    
probabilities  can  be  entered  for  those  with/without  symptoms,  and  those  in/out  of  quarantine.  The                            
model  will  then  estimate  the  number  of  tests  performed  on  each  day.  The  second  method  allows  the                                  
user  to  enter  the  number  of  tests  performed  on  each  day  directly,  including  multipliers  on  the                                
probability  of  a  person  receiving  a  test  if  they  have  symptoms,  are  in  quarantine,  or  are  over  a  certain                                      
age.  This  method  will  then  allocate  the  tests  among  the  population.                       
 

Once  a  person  is  tested,  the  model  contains  a  delay  parameter  that  indicates  how  long  people  need  to                                    
wait  for  their  results,  as  well  as  a  loss-to-follow-up  parameter  that  indicates  the  probability  that  people                                
will  not  receive  their  results.  Additional  parameters  control  the  sensitivity  and  specificity  of  the  tests.                              

2.5.3  Contact  tracing      
Contact  tracing  corresponds  to  notifying  individuals  that  they  have  had  contact  with  a  confirmed  case,                              
so  that  they  can  be  quarantined,  tested,  or  otherwise  change  their  behavior.  Contact  tracing  in  Covasim                                
is  parameterized  by  the  probability  that  a  contact  can  be  traced,  and  by  the  time  taken  to  identify  and                                      
notify  contacts.  Both  parameters  can  vary  by  type  of  contact,  and  can  be  controlled  by  the  user.  For                                    
example,  it  may  be  reasonable  to  assume  that  people  can  trace  members  of  their  household  immediately                                
and  with  100%  probability,  while  tracing  work  colleagues  may  take  several  days  and  may  be                              
incomplete.  

2.5.4  Isolation  of  positives  and  contact  quarantine              
Isolation  (referring  to  behavior  changes  after  a  person  is  diagnosed  with  COVID-19)  and  quarantine                            
(referring  to  behavior  changes  after  a  person  is  identified  as  a  known  contact  of  someone  with                                
confirmed  or  suspected  COVID-19)  are  the  primary  means  by  which  testing  interventions  reduce                          
transmission.  In  Covasim,  people  diagnosed  with  COVID-19  can  be  isolated.  Their  contacts  who  have                            
been  traced  can  be  placed  in  quarantine  with  a  specified  level  of  compliance;  people  in  quarantine  may                                  
also  have  an  increased  probability  of  being  tested.  People  in  isolation  or  quarantine  typically  have  a                                
lower  probability  of  infecting  others  (if  infectious)  or  of  acquiring  COVID-19  (if  quarantined  and                            
susceptible),  with  the  default  reduction  being  80%.  The  efficacy  of  isolation  or  quarantine  varies  by                              
environment;  isolation  or  quarantine  at  home  may  mean  that  there  is  actually  a  higher  probability  of                                
passing  on  infection  to,  or  acquiring  infection  from,  other  household  members,  while  the  probabilities                            
of  transmission  or  acquisition  from  school,  work,  or  community  contacts  may  be  reduced.                          

2.5.5  Pharmaceutical  and  user-defined  interventions          
Pharmaceutical  interventions,  including  antiviral  treatments  and  vaccines,  are  not  explicitly                    
implemented  in  Covasim  due  to  the  large  considerable  uncertainties  regarding  their  eventual                        
characteristics  and  availability.  However,  they  can  be  defined  by  adapting  existing  Covasim                        
interventions.  For  example,  each  agent  in  the  model  has  a  relative  susceptibility  parameter,  which  is  a                                
multiplicative  factor  on  their  risk  of  infection  per  exposure  event.  A  vaccine  of  a  given  efficacy  (which                                  
could  include  waning  efficacy  or  increased  efficacy  from  multiple  doses)  could  be  implemented  by                            
reducing  an  agent's  relative  susceptibility  after  receiving  the  vaccine.  Similarly,  antiviral  treatments                        
could  be  modeled  by  modifying  an  individual's  probabilities  of  progression  to  severe  disease,  critical                            
disease,  and  death,  and  by  modifying  their  relative  transmissibility.                  
 
Each  intervention  has  full  access  to  the  simulation  object  at  each  timestep,  which  means  that                              
user-defined  interventions  can  dynamically  modulate  any  aspect  of  the  simulation.  This  can  be  used  to                              
create  interventions  more  specific  than  those  included  by  default  in  Covasim;  for  example,  age-specific                            
physical  distancing  or  quarantine.  However,  interventions  can  also  be  used  for  other  purposes:  for                            
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example,  it  is  possible  to  define  an  "intervention"  that,  at  each  timestep,  records  additional  details  about                                
the  internal  state  of  the  model  that  are  not  included  as  standard  outputs.                          

2.6  Additional  features      

2.6.1  Health  system  capacity        
Individuals  in  the  model  who  have  severe  and  critical  symptoms  are  assumed  to  require  regular  and  ICU                                  
hospital  beds,  respectively,  including  ventilation  in  the  latter  case.  The  number  of  available  ICU  beds  is                                
an  input  parameter;  if  the  current  number  of  critical  cases  is  greater  than  the  number  of  available  beds,                                    
then  the  health  system  capacity  is  exceeded,  and  critically  ill  individuals  who  are  unable  to  access                                
treatment  have  an  increased  mortality  rate  (by  default,  by  a  factor  of  2,  corresponding  to  virtually  all                                  
critical  cases  dying).      

2.6.2  Importations    
The  spatial  movement  of  agents  is  not  explicitly  modeled  in  Covasim,  and  the  population  size  for  a                                  
given  simulation  is  fixed.  Thus,  importations  are  implemented  as  spontaneous  infections  among  the                          
susceptible  population.  This  corresponds  to  agents  who  become  infected  elsewhere  and  then  return  to                            
the  population.    

2.6.3  Dynamic  scaling      
One  of  the  major  challenges  with  agent-based  models  is  simulating  a  sufficient  number  of  agents  to                                
capture  an  epidemic  at  early,  middle,  and  late  stages,  without  requiring  cumbersome  levels  of  memory                              
or  processor  usage.  Whereas  compartmental  SEIR  models  require  the  same  amount  of  computation                          
time  regardless  of  the  population  size  being  modeled,  the  performance  of  agent-based  models  typically                            
scales  linearly  or  supralinearly  with  population  size  (see  Section  2.7.1).  As  a  consequence,  many                            
agent-based  models,  including  Covasim,  include  an  optional  "scaling  factor",  where  a  single  agent  in                            
the  model  is  assumed  to  represent  multiple  people  in  the  real  world.  A  scaling  factor  of  10,  for  example,                                      
corresponds  to  the  assumption  that  the  epidemic  dynamics  in  a  city  of  2  million  people  can  be                                  
considered  as  the  sum  of  the  epidemic  dynamics  of  10  identical  subregions  of  200,000  people  each.                                
 
However,  the  limitation  of  this  approach  is  that  it  introduces  a  discretization  of  results:  model  outputs                                
can  only  be  produced  in  increments  of  the  scaling  factor,  so  relatively  rare  events,  such  as  deaths,  may                                    
not  have  sufficient  granularity  to  reflect  the  epidemic  behavior  at  a  small  scale.  In  addition,  using  too                                  
few  agents  in  the  model  introduces  stochastic  variability  patterns  that  do  not  reflect  real-world  processes                              
in  the  entire  population.        
 
To  circumvent  this,  Covasim  includes  an  option  for  dynamic  scaling.  Initially,  when  the  epidemic  is                              
small,  there  is  no  scaling  performed:  one  agent  corresponds  to  one  person.  Once  a  certain  threshold  is                                  
reached,  however  (by  default,  5%  of  the  population),  the  non-susceptible  agents  in  the  model  are                              
downsampled  and  a  corresponding  scaling  factor  is  introduced  (by  default,  a  factor  of  2  is  used).  For                                  
example,  in  a  simulation  of  100,000  agents  representing  a  true  population  of  1  million,  dynamic  scaling                                
would  be  triggered  when  cumulative  infections  surpass  5,000,  leaving  95,000  susceptible  agents;                        
dynamic  rescaling  would  resample  the  non-susceptible  population  to  2,500  (representing  5,000  people)                        
and  increase  the  number  of  susceptible  agents  to  97,500  (representing  195,000  people),  with  every  agent                              
now  counting  as  two.  If  the  epidemic  expands  further,  this  process  will  repeat  iteratively  until  the  scale                                  
factor  reaches  its  upper  limit  (which  in  this  example  is  10,  and  which  would  be  reached  after  50,000                                    
cumulative  infections).  Through  this  process,  arbitrarily  large  populations  can  be  modeled,  even  starting                          
from  a  single  infection,  maintaining  a  constant  level  of  precision  and  computation  time  throughout.                            
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2.6.4  Model  outputs      
By  default,  Covasim  outputs  three  main  types  of  result:  "stocks"  (e.g.,  the  number  of  people  with                                
currently  active  infections  on  a  given  day),  "flows"  (e.g.,  the  number  of  new  infections  on  a  given  day),                                    
and  "cumulative  flows"  (e.g.,  the  cumulative  number  of  infections  up  to  a  given  day).  For  states  that                                  
cannot  be  transitioned  out  of  (e.g.  death  or  recovery),  the  stock  is  equal  to  the  cumulative  flow.  Flows                                    
that  are  calculated  in  the  model  include:  the  number  of  new  infections  and  the  number  of  people  who                                    
become  infectious  on  that  timestep;  the  number  of  tests  performed,  new  positive  diagnoses,  and  number                              
of  people  placed  in  quarantine;  the  number  of  people  who  develop  mild,  severe,  and  critical  symptoms;                                
and  the  number  of  people  who  recover  or  die.  The  date  of  each  transition  (e.g.,  from  critically  ill  to                                      
dead)  is  also  recorded.  By  default,  these  results  are  summed  over  the  entire  population  on  each  day;                                  
results  for  subpopulations  can  be  obtained  by  defining  custom  "interventions",  as  described  in  Section                            
2.5.5.  
 
In  addition  to  these  core  outputs,  Covasim  includes  several  outputs  for  additional  analysis.  For  example,                              
several  methods  are  implemented  to  compute  both  doubling  time  and  the  effective  reproductive                          
number R eff .  By  default,  the  epidemic  doubling  time  is  computed  using  the  "rule  of  70"  (Bakir,  2016),                                  
specifically:  

 
 
where T  is  the  doubling  time, w  is  the  window  length  over  which  to  compute  the  doubling  time  (3                                      
days  by  default),  and n i (t) is  the  cumulative  number  of  infections  at  time t .                            
 
Numerous  definitions  of  the  effective  reproductive  number  exist.  In  standard  SIR  modeling,  the  most                            
common  definition  ("method  1")  is  (Barratt  &  Kirwan,  2010):                  
 

 
 
where R 0  is  the  basic  reproductive  number, S  is  the  number  of  susceptibles,  and N  is  the  total                                    
population  size.  However,  with  respect  to  COVID-19,  many  authors  instead  define R eff  to  include  the                              
effects  of  interventions,  due  to  the  implications  that R eff  =  1  has  for  epidemic  control.  A  second  common                                    
definition  of R eff  ("method  2")  is  to  first  determine  the  total  number  of  people  who  became  infectious  on                                    
day t ,  then  count  the  total  number  of  people  these  people  went  on  to  infect,  and  then  divide  the  latter                                        
by  the  former.  "Method  3"  is  the  same  as  method  2,  except  it  counts  the  number  of  people  who  stopped                                        
being  infectious  on  day t  (i.e.,  recovered  or  died),  and  then  count  the  number  of  people  those  people                                    
infected.  While  methods  2  and  3  are  implemented  in  Covasim,  they  have  the  disadvantage  that  they                                
introduce  significant  temporal  blurring,  due  to  the  potentially  long  infectious  period  (and,  for  method                            
3,  the  long  recovery  period).  To  avoid  this  limitation,  the  default  method  Covasim  uses  for  computing                                
R eff  is  to  divide  the  number  of  new  infections  on  day t  by  the  number  of  actively  infectious  people  on                                        
day t ,  multiplied  by  the  average  duration  of  infectiousness.                  

2.6.5  Data  inputs      
In  addition  to  the  demographic  and  contact  network  data  available  via  SynthPops,  Covasim  includes                            
interfaces  to  automatically  load  COVID-19  epidemiology  data,  such  as  time  series  data  on  deaths  and                              
diagnosed  cases,  from  several  publicly  available  databases.  These  databases  include  the  Corona  Data                          
Scraper  ( coronadatascraper.com ),  the  European  Centre  for  Disease  Prevention  and  Control                    
( ecdc.europa.eu ),  and  the  COVID  Tracking  Project  ( covidtracking.com ).  At  the  time  of  writing,  these                          
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data  are  available  for  over  4,000  unique  locations,  including  most  countries  in  the  world  (administrative                              
level  0),  all  US  states  and  many  administrative  level  1  (i.e.,  subnational)  regions  in  Europe,  and  some                                  
administrative  level  2  regions  in  Europe  and  the  US  (i.e.,  US  counties).                        

2.6.6  Calibration    
The  process  of  calibration  involves  finding  parameter  values  that  minimize  the  difference  between                          
observed  data  (which  typically  includes  daily  confirmed  cases,  hospitalizations,  deaths,  and  number  of                          
tests  conducted)  and  the  model  predictions.  In  practice,  minimizing  the  difference  between  the  model                            
and  data  equates  to  maximizing  a  log-likelihood  function.  Since  most  data  being  calibrated  to  are  time                                
series  count  data,  this  function  is  defined  as:                
 

 
 
where  is  a  time  series  of  observations  (such  cumulative  confirmed  cases  or  number  of  deaths);  is  the   s                               t      
time  index;  is  the  weight  associated  with ; and  are  the  counts  from  the  data  and  model,     ws             s   cd

s,t   cms,t                  
respectively,  for  this  time  series  at  this  time  index;  and f  is  the  Poisson  test  statistic  as  defined  in  Mathews                                        
(2010).  By  default,  if  data  are  loaded  into  a  simulation,  Covasim  calculates  the  log-likelihood  using  this                                
method.  
 
Calibrating  any  model  to  the  COVID-19  epidemic  is  an  inherently  difficult  task:  not  only  is  there                                
significant  uncertainty  around  the  reported  data,  but  there  are  also  many  possible  combinations  of                            
parameter  values  that  could  give  rise  to  these  data.  Thus,  in  a  typical  calibration  workflow,  most                                
parameters  are  fixed  at  the  best  available  values  from  the  literature,  and  only  essential  parameters  (for                                
example,  𝛽)  are  allowed  to  vary.            
 
Currently,  calibration  must  be  performed  externally  to  Covasim.  However,  since  a  single  model  run                            
returns  a  scalar  log-likelihood  value,  these  runs  can  be  easily  integrated  into  standardized  calibration                            
frameworks.  An  example  implementation  using  Weights  &  Biases  ( wandb.com )  is  included  in  the                          
codebase,  but  any  standard  optimization  library  –  such  as  the  optimization  module  of  SciPy  –  can  be                                  
easily  adapted,  as  can  more  advanced  methods  such  as  the  adaptive  stochastic  descend  method  of  the                                
Sciris  library  (Kerr  et  al.,  2018),  or  Bayesian  approaches  such  as  history  matching  (Andrianakis  et  al.,                                
2015).  

2.7  Software  architecture      
Covasim  was  developed  for  Python  3.7  using  the  SciPy  ( scipy.org )  ecosystem  (Virtanen  et  al.,  2020).  It                                
uses  NumPy  ( numpy.org ),  Pandas  ( pandas.pydata.org ),  and  Numba  ( numba.pydata.org )  for  fast                    
numerical  computing;  Matplotlib  ( matplotlib.org )  and  Plotly  ( plotly.com )  for  plotting;  and  Sciris                      
( sciris.org )  for  data  structures,  parallelization,  and  other  utilities.                 
 
The  source  code  for  Covasim  is  available  via  both  the  Python  Package  Index  (via pip  install  covasim )                                
and  GitHub  ( github.com/institutefordiseasemodeling/covasim ).  Covasim  is  fully  open-source,  released                
under  the  Creative  Commons  Attribution-ShareAlike  4.0  International  Public  License.  More                    
information  is  available  at covasim.org ,  with  full  documentation  at docs.covasim.org .                     
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Figure  5 :  Illustration  of  the  standard  object-oriented  approach  for  implementing  agent-based                      
models  (top),  where  each  agent  is  a  separate  object,  compared  with  the  approach  used  in                              
Covasim  (bottom),  where  agents  are  represented  as  slices  through  a  set  of  state  arrays.  Dots  (...)                                
represent  omitted  entries;  in  practice,  each  agent  has  39  states,  and  there  are  typically  tens  or                                
hundreds  of  thousands  of  agents.          

2.7.1  Performance    
All  core  numerical  algorithms  in  the  Covasim  integration  loop  –  specifically,  calculating  intra-host  viral                            
load,  per-person  susceptibility  and  transmissibility,  and  which  contacts  of  an  infected  person  become                          
infected  themselves  –  are  implemented  as  highly  optimized  32-bit  array  operations  in  Numba.  For                            
further  efficiency,  agents  are  not  represented  as  individual  objects,  but  rather  as  indices  of                            
one-dimensional  state  arrays  (Figure  5).  This  approach  avoids  the  need  to  use  an  explicit  for-loop  over                                
each  agent  on  every  integration  timestep.  Similarly,  contacts  between  all  agents  in  the  model  are  stored                                
as  a  single  array  of  "edges"  per  contact  layer.                  
 
As  shown  in  Figure  6,  these  software  optimizations  allow  Covasim  to  achieve  performance  comparable                            
to  C++,  despite  being  implemented  purely  in  Python.  Performance  scales  linearly  with  population  size                            
over  multiple  orders  of  magnitude:  memory  scales  at  a  rate  of  roughly  1  KB  per  agent,  while  compute                                    
time  (benchmarked  on  an  Intel  i9-8950HK  laptop  processor)  scales  at  a  rate  of  roughly  2  million                                
simulated  person-days  per  second  of  CPU  time.  Thus,  it  is  feasible  to  run  realistic  scenarios,  such  as  tens                                    
of  thousands  of  infections  among  a  susceptible  population  of  hundreds  of  thousands  of  people  for  a                                
duration  of  several  months,  in  under  a  minute  on  a  personal  laptop.                        

2.7.1  Deployment    
For  ease  of  use,  a  simple  webapp  for  Covasim  has  been  developed,  based  on  Vue.js  (for  the  frontend),                                    
ScirisWeb  (for  communicating  between  the  frontend  and  the  backend),  Flask  (for  running  the                          
backend),  and  Gunicorn/NGINX  (for  running  the  server);  this  webapp  is  available  at app.covasim.org .                          
A  screenshot  of  the  user  interface  is  shown  in  Figure  7.  A  pre-built  version  of  Covasim,  including  the                                    
webapp,  is  also  available  on  Docker  Hub  ( hub.docker.com )                
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Figure  6 :  Covasim  performance  in  terms  of  processor  usage  (top)  and  memory  usage  (bottom),                            
showing  linear  scaling  over  almost  three  orders  of  magnitude  of  population  size.                        

 

 
Figure  7 :  Covasim  webapp  user  interface;  screenshot  taken  from app.covasim.org .                    

2.7.2  Software  tests      
Covasim  includes  an  extensive  suite  of  both  integration  tests  and  unit  tests;  code  coverage  for  version                                
1.0  is  94%  (including  compiled  Numba  functions),  with  much  of  the  remaining  6%  consisting  of                              
exceptions  that  are  not  raised  by  standard  usage.  In  addition,  outputs  from  the  default  simulations  for                                
each  version  are  compared  against  cached  values  in  the  repository;  since  random  seeds  are  stored,  results                                
are  exactly  reproducible  despite  the  stochasticity  in  the  model.  When  new  data  become  available  and                              
parameter  values  are  updated,  previous  parameters  are  stored,  ensuring  that  any  changes  affecting  the                            
model  outputs  are  intentional,  and  that  previous  versions  can  be  easily  retrieved  and  compared  against.                              
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3  Example  usage      
Applications  of  Covasim  to  specific  settings  and  explorations  of  real-world  scenarios  are  beyond  the                            
scope  of  this  paper.  Instead,  this  section  provides  illustrative  examples  of  the  types  of  analyses  and                                
outputs  that  Covasim  can  produce.          

3.1.  Single  runs  and  standard  features            
Several  of  Covasim's  standard  features  are  illustrated  by  Figure  8.  It  represents  a  "calibrated"  simulation                              
(in  terms  of  using  a  customized  value  of  𝛽)  of  200,000  people,  from  February  10th  until  June  29th,                                    
starting  with  75  seed  infections.  After  an  initial  45  days  of  uncontrolled  epidemic  spread,  the  following                                
interventions  are  applied:  :  March  26th,  close  schools  and  reduce  work  and  community  contacts  to  70%                                
of  their  original  values;  April  10th,  reduce  work  and  community  to  30%  of  their  original  values;  May                                  
5th,  reopen  work  and  community  to  80%  of  their  original  values;  May  20th,  begin  testing  10%  of                                  
people  with  COVID-like  illness  each  day,  and  trace  the  contacts  of  people  who  test  positive.                               
 

 
Figure  8 :  Illustrative  example  of  a  single  run  of  a  Covasim  simulation.  Interventions  (described                            
in  the  text)  are  shown  as  dashed  vertical  lines.                  
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  1    import    covasim    as    cv  
  2   
  3    #   Define   the   simulation   parameters  
  4    pars   =   dict(  
  5        pop_size       =    200e3 ,           #   Define   a   population   size   of   200,000   people  
  6        pop_infected   =    75 ,              #   Start   with   75   infected   individuals  
  7        beta           =    0.012 ,           #   Calibrate   overall   transmission   to   this   setting  
  8        pop_type       =    'hybrid' ,        #   Use   realistic   household,   school,   and   work   contacts  
  9        start_day      =    '2020-02-10' ,    #   First   day   of   the   simulation  
10        end_day        =    '2020-06-29' ,    #   Last   day   of   the   simulation  
11    )  
12   
13    #   Define   the   interventions  
14    trace_probs   =   dict(h= 0.9 ,   s= 0.7 ,   w= 0.7 ,   c= 0.3 )    #   Probability   that   a   contact   in   each   layer   will   be   traced  
15    trace_time   =   dict(h= 0 ,   s= 1 ,   w= 1 ,   c= 3 )             #   Time   required   to   trace   contacts   in   each   layer  
16    interventions   =   [  
17        cv.clip_edges(start_day= '2020-03-26' ,   end_day= None ,           change={ 's' : 0.0 }),                #   Close   schools  
18        cv.clip_edges(start_day= '2020-03-26' ,   end_day= '2020-04-10' ,   change={ 'w' : 0.7 ,    'c' : 0.7 }),       #   Reduce   work   and   community  
19        cv.clip_edges(start_day= '2020-04-10' ,   end_day= '2020-05-05' ,   change={ 'w' : 0.3 ,    'c' : 0.3 }),       #   Reduce   both   further  
20        cv.clip_edges(start_day= '2020-05-05' ,   end_day= None ,           change={ 'w' : 0.8 ,    'c' : 0.8 }),       #   Partially   reopen  
21        cv.test_prob(start_day= '2020-05-20' ,   symp_prob= 0.10 ,   symp_quar_prob= 0.8 ,   test_delay= 2 ),       #   Testing  
22        cv.contact_tracing(start_day= '2020-04-20' ,   trace_probs=trace_probs,   trace_time=trace_time)    #   Contact   tracing  
23    ]  
24   
25    #   Create   and   run   the   simulation  
26    sim   =   cv.Sim(pars=pars,   interventions=interventions)  
27    sim.run()  
28    sim.plot()  

Figure  9 :  Full  listing  of  the  code  used  to  produce  Figure  8,  including  defining  the  parameters  of                                  
the  simulation  (lines  4-11);  defining  the  interventions  (lines  14-23);  and  creating,  running,  and                          
plotting  the  simulation  (lines  26-28).          

 
By  default,  Covasim  shows  time  series  for  key  cumulative  counts,  daily  counts,  and  health  outcomes                              
(including  deaths).  All  plotting  outputs  are  configurable,  and  results  can  also  be  saved  in  Excel,  JSON,                                
or  NumPy  formats  for  further  processing.  While  a  full  Covasim  application  would  likely  include                            
additional  complexity  regarding  calibration  and  plotting,  other  aspects  of  the  example  shown  in  Figure                            
8  are  comparable  to  a  real-world  exploratory  policy  analysis.  Despite  this,  the  Python  script  used  to                                
generate  Figure  8  is  only  28  lines;  this  code  is  listed  in  Figure  9.                            

3.2.  Multiple  runs  and  calibration          
In  addition  to  running  single  simulations,  Covasim  also  allows  the  user  to  run  multiple  simulations,                              
which  can  be  averaged  over  to  determine  forecast  intervals.  By  default,  the  forecast  intervals  used                              
correspond  to  the  10th  and  90th  percentiles  of  the  simulated  trajectories.  Although  these  forecast                            
intervals  bear  some  similarities  to  confidence  or  credible  intervals,  since  they  are  typically  produced                            
through  a  combination  of  stochastic  variability  and  parameter  uncertainty,  they  do  not  have  a  rigorous                              
statistical  interpretation.     
 
An  example  calibration  to  publicly  available  data  from  Lagos  State,  Nigeria,  is  shown  in  Figure  10.                                
Assuming  accurate  reporting  of  deaths,  we  estimate  that  there  were  approximately  74,000  [80%  forecast                            
interval:  35,000,  120,000]  people  infected  with  COVID-19  in  Lagos  State  by  May  4th.  In  this  example,                                
calibration  was  performed  using  four  parameters:  (1)  the  overall  transmissibility  (which  in  the  best-fit                            
simulation  was  0.0125,  roughly  15%  lower  than  the  default  value);  (2)  the  number  of  infections  already                                
present  in  the  population  on  March  1st  (best-fit  value,  200;  note  that  the  first  official  COVID-19                                
diagnosis  in  Lagos  was  only  three  days  prior  to  that,  on  February  27th);  (3)  the  per-day  probability  of  a                                      
person  with  active  COVID-19  symptoms  being  tested  (best  fit  value,  0.4%);  and  (4)  the  change  in                                
transmission  rates  following  the  March  30th  lockdown  (best  fit  value,  50%).                      
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Figure  10 :  Model  calibration  to  Lagos  State  over  the  first  65  days  of  the  epidemic,  assuming                                
accurate  reporting  of  deaths.  The  dotted  line  indicates  the  beginning  of  the  Lagos  State                            
lockdown.  

3.3.  Extended  analyses      
The  preceding  examples  illustrate  some  aspects  of  Covasim's  core  functionality  that  are  used  in  most                              
applications.  However,  more  in-depth  analyses  are  possible,  leveraging  the  large  number  of  default                          
outputs,  and  the  fact  that  the  full  state  of  the  model  is  accessible  to  the  user  at  every  timestep  via  custom                                          
intervention  functions.    
 
For  example,  detailed  information  about  the  transmission  tree  is  stored  for  each  simulation.  This                            
information  can  be  used  to  determine  the  detailed  microstructure  of  the  infection  patterns  in  a  given                                
simulation.  Complete  transmission  trees  for  a  small  network  under  three  different  intervention  scenarios                          
are  shown  in  Figure  11,  visualized  via  the  ETE  Toolkit  (Huerta-Cepas  et  al.,  2016).  For  realistically                                
sized  networks,  it  is  not  feasible  to  visualize  entire  transmission  trees.  However,  their  statistical                            
properties  can  be  analyzed  to  determine  transmission  routes  and  potential  intervention  targets.  For                          
example,  such  information  can  be  used  to  determine  the  net  contribution  of  schools  (or  even  teachers  at                                  
schools)  to  the  overall  epidemic  trajectory.            
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Figure  11 :  Example  transmission  trees  for  a  hypothetical  population  of  300  individuals  with  a                            
single  seed  infection  on  day  1,  with  (A)  no  interventions,  (B)  testing  only,  and  (C)  testing  plus                                  
contact  tracing.  Time  is  represented  on  the  horizontal  axis,  with  each  tree  representing  a  period                              
of  approximately  90  days.  The  vertical  size  of  each  tree  is  proportional  to  the  total  number  of                                  
infections.  

4  Discussion    
The  COVID-19  pandemic  has  presented  an  unprecedented  challenge  to  the  disease  modeling                        
community  in  terms  of  requiring  rapid,  accurate  predictions,  often  based  on  extremely  limited  data,                            
with  consequences  of  global  scale.  Covasim  was  developed  to  help  policymakers  make  decisions  based                            
on  the  best  available  data,  while  taking  into  account  the  large  uncertainties  that  remain  in  terms  of                                  
COVID-19  transmission  dynamics,  disease  progression,  and  other  aspects  of  its  biology,  such  as  the                            
proportion  of  asymptomatic  and  presymptomatic  transmission.             
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Covasim  has  already  been  used  to  explore  a  number  of  different  national  and  subnational  COVID-19                              
epidemic  projection  and  intervention  questions,  including:  the  impacts  of  school  reopenings  in  the                          
United  Kingdom,  fever  screening  in  Nigeria,  and  partial  workplace  and  community  reopening  in                          
Australia;  epidemic  projections  for  Eswatini,  Oregon,  Colorado,  and  Washington;  and  transmission                      
patterns  aboard  navy  ships  and  cruise  ships.  Forthcoming  publications  will  describe  these  in  detail.                            

4.1  Limitations    
Covasim  is  subject  to  the  usual  limitations  of  mathematical  models,  most  notably  constraints  around  the                              
degree  of  realism  that  can  be  captured.  For  example,  human  contact  patterns  are  intractably  complex,                              
and  the  algorithms  that  Covasim  uses  to  approximate  these  are  necessarily  quite  simplified.                           
 
Like  all  models,  the  quality  of  the  outputs  depends  on  the  quality  of  the  inputs,  and  many  of  the                                      
parameters  on  which  Covasim  relies  are  still  subject  to  large  uncertainties.  Most  critically,  the                            
proportion  of  asymptomatics  and  their  relative  transmission  intensity,  and  the  proportion  of                        
presymptomatic  transmission,  strongly  affect  the  number  of  tests  required  in  order  to  achieve  workable                            
COVID-19  suppression  via  testing-based  interventions.          
 
Dynamical  models  are  commonly  validated  by  comparing  their  projections  against  data  on  what                          
actually  happened.  However,  there  are  several  challenges  in  using  this  approach  for  COVID-19,                          
including  (a)  data  quality  issues  (such  as  low  case  detection  rates  and  under-reporting  of  deaths),  (b)  the                                  
difficulty  of  predicting  future  social  and  political  responses  that  would  significantly  impact  model                          
projections  (such  as  the  timing  of  school  and  workplace  reopening),  and  (c)  the  fact  that  model-based                                
projections  themselves  have  the  potential  to  influence  policy  decisions,  e.g.,  optimistic  model                        
projections  may  lead  to  relaxed  policies,  which  in  turn  will  lead  to  worse  outcomes  than  predicted;                                
pessimistic  model  projections  may  lead  to  stricter  policies,  which  in  turn  will  lead  to  better  outcomes                                
than  predicted.    

4.2  Future  directions      
Our  understanding  of  the  COVID-19  pandemic  is  still  evolving  rapidly.  As  additional  data  become                            
available,  parameter  values  will  be  continually  updated.  Increased  data  availability  will  also  allow  the                            
incorporation  of  more  detailed  populations  and  networks,  including  aged  care  facilities,  healthcare                        
workers,  different  types  of  industry,  spatial  mixing  patterns,  and  the  socioeconomic  and  racial  disparities                            
present  in  both  transmission  patterns  and  health  outcomes.  A  second  key  area  of  development  is                              
increased  detail  in  modeling  health  system  capacity,  health  system  interventions,  and  treatment                        
outcomes.  Future  work  will  also  involve  expansion  to  other  locations  for  which  sufficient  data  are                              
available,  with  emphasis  on  exploring  scenarios  for  achieving  COVID-19  suppression  via  testing,                        
contact  tracing,  and  quarantine.        
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