Abstract
Critically ill patients with acute respiratory distress syndrome (ARDS) and sepsis exhibit distinct inflammatory phenotypes with divergent clinical outcomes and apparent heterogeneity of treatment effects, but the underlying molecular mechanisms remain poorly understood. These phenotypes, derived from clinical data and protein biomarkers, were associated with metabolic differences in a prior pilot study. This study investigated the metabolomic and transcriptomic differences between Hyperinflammatory and Hypoinflammatory phenotypes through integrative multi-omics analysis of blood samples from ARDS patients in the ROSE trial. Multi-omics integration revealed three molecular signatures strongly associated with the Hyperinflammatory phenotype and with mortality: enhanced innate immune activation coupled with increased glycolysis, hepatic dysfunction and immune dysfunction paired with impaired fatty acid beta-oxidation, and interferon program suppression coupled with altered mitochondrial respiration. A fourth molecular signature, not associated with inflammatory phenotype, identified redox impairment and cell proliferation pathways associated with mortality. Integrated multi-omics analysis within each inflammatory phenotype revealed distinct pathways associated with mortality. All mortality-associated molecular signatures including those within phenotypes were validated in an independent cohort of critically ill patients with sepsis (EARLI). These findings reveal distinct molecular mechanisms underlying ARDS/sepsis phenotypes and suggest potential therapeutic targets for precise treatment strategies in critical illness.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
National Heart Lung and Blood Institute grant K23HL173669 (NA) National Heart Lung and Blood Institute grant R35HL140026 (CSC) National Institute of General Medical Sciences grant R35GM136312 (KAS)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The IRB of University of California San Francisco gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Transcriptomic data for the ROSE trial participants is in submission to BioDataCatalyst. Metabolomic data will be released to the NIH Metabolomics Workbench database upon acceptance of this manuscript to a peer reviewed journal. Clinical data and biospecimens from the ROSE trial are available through the NHLBI BioLINCC repository (https://biolincc.nhlbi.nih.gov/studies/) to qualified researchers upon request and completion of appropriate data use agreements.