Abstract
Brain age gap, the difference between estimated brain age and chronological age via magnetic resonance imaging, has emerged as a pivotal biomarker in the detection of brain abnormalities. While deep learning is accurate in estimating brain age, the absence of uncertainty estimation may pose risks in clinical use. Moreover, current 3D brain age models are intricate, and using 2D slices hinders comprehensive dimensional data integration. Here, we introduced Spectral-normalized Neural Gaussian Process (SNGP) accompanied by 2.5D slice approach for seamless uncertainty integration in a single network with low computational expenses, and extra dimensional data integration without added model complexity. Subsequently, we compared different deep learning methods for estimating brain age uncertainty via the Pearson correlation coefficient, a metric that helps circumvent systematic underestimation of uncertainty during training. SNGP shows excellent uncertainty estimation and generalization on a dataset of 11 public datasets (N=6327), with competitive predictive performance (MAE=2.95). Besides, SNGP demonstrates superior generalization performance (MAE=3.47) on an independent validation set (N=301). Additionally, we conducted five controlled experiments to validate our method. Firstly, uncertainty adjustment in brain age estimation improved the detection of accelerated brain aging in adolescents with ADHD, with a 38% increase in effect size after adjustment. Secondly, the SNGP model exhibited OOD detection capabilities, showing significant differences in uncertainty across Asian and non-Asian datasets. Thirdly, the performance of DenseNet as a backbone for SNGP was slightly better than ResNeXt, attributed to DenseNet’s feature reuse capability, with robust generalization on an independent validation set. Fourthly, site effect harmonization led to a decline in model performance, consistent with previous studies. Finally, the 2.5D slice approach significantly outperformed 2D methods, improving model performance without increasing network complexity. In conclusion, we present a cost-effective method for estimating brain age with uncertainty, utilizing 2.5D slicing for enhanced performance, showcasing promise for clinical applications.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Zeqiang Linli is supported by the Guangzhou Municipal Science and Technology Bureau (2024A04J2776), Guangdong University of Foreign Studies (2022RC077 and 23TS39), and MOE-LCSM.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Publicly available datasets were analyzed in this study.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.