Abstract
In pharmacoepidemiologic studies of COVID-19, there were concerns about bias from residual confounding. We applied high-dimensional propensity scores (HDPS) to a case study investigating the role of inhaled corticosteroids (ICS) in COVID-19 to adjust for unmeasured confounding.
We selected patients with chronic obstructive pulmonary disease on 01 March 2020 from Clinical Practice Research Datalink (CPRD) Aurum, comparing ICS/LABA/(+-LAMA) and LABA/LAMA users. ICS effects on the outcomes COVID-19 hospitalisation and death were assessed through weighted and unweighted Cox proportional hazards models. HDPS were estimated from primary care clinical records, prescriptions and hospitalisations. SNOMED-CT codes and dictionary of medicines and devices codes from CPRD Aurum were mapped to International Classification of Disease 10th revision codes and British National Formulary paragraphs respectively. We estimated propensity scores (PS) combining prespecified and HDPS covariates, selecting the top 100, 250, 500, 750 and 1000 covariates ranked by confounding potential.
When excluding triple therapy users, the conventional PS-weighted estimates showed weak evidence of increased risk of COVID-19 hospitalisation among ICS users (HR 1.19 (95% CI 0.92-1.54)). Results varied slightly based on the number of covariates included in HDPS (HR using 100 HDPS covariates 1.01 (95% CI 0.76-1.33), HR using 250 HDPS covariates 1.24 (95% CI 0.83-1.87)).
For COVID-19 death, conventional PS-weighted models showed weak evidence of harm of ICS when excluding triple therapy users (HR 1.24 (95% CI 0.87-1.75)). HDPS-weighting moved estimates toward the null, suggesting no effect of ICS (HR using 250 HDPS covariates excluding triple therapy 1.08 (95% CI 0.73- 1.59)).
HDPS may have provided better confounding control for COVID-19 deaths and may be able to partially compensate for suboptimal comparison groups. HDPS results can be sensitive to the number of covariates included, highlighting the importance of sensitivity analyses.
Key points
Residual confounding, including residual confounding by indication, is a major concern in pharmacoepidemiologic studies of COVID-19 outcomes.
We apply high-dimensional propensity scores (HDPS) to adjust for residual confounding in a case study of inhaled corticosteroids (ICS) on COVID-19 hospitalisation and death in CPRD Aurum.
Conventional PS-weighted analyses suggested harmful effects of ICS on COVID-19 hospitalisation and, to a lesser extent, deaths.
HDPS weighted analyses of COVID-19 hospitalisations were sensitive to the number of covariates included, with results moving towards the null for smaller number of covariates and away from the null when including more covariates, while for deaths, estimates moved towards the null consistently.
HDPS demonstrated promise in addressing confounding even when comparison groups are suboptimal, but its performance depends on the careful selection and ranking of covariates.
Plain Language Summary A key challenge when researching the effects of medications using electronic health records is accounting for the fact that people who receive different medications often differ in important ways. Such differences, called confounding, is typically accounted for using statistical methods which require researchers to pre-specify all important confounders. A newer method, called high-dimensional propensity scores (HDPS), uses a data-driven approach to select what confounders to account for instead. These methods have not yet been applied to studies of inhaled corticosteroids and COVID-19 outcomes, an area where studies have found conflicting findings. We used electronic health records from the UK to compare the risk of COVID-19 hospitalisation and death among patients with chronic obstructive pulmonary disease taking two different treatments (ICS/LABA and LABA/LAMA) using both conventional and HDPS methods. Our findings showed that HDPS can reduce important differences between patients (confounding), but that the results can be sensitive to the number of covariates included. This demonstrates the value of HDPS and the need for researchers to run their analysis using several different assumptions.
Competing Interest Statement
MPB is funded by a GSK PhD studentship to investigate the application of quantitative bias analysis in observational studies of COVID-19. IJD has unrestricted grants from and shares in GSK. AS is employed by LSHTM on a fellowship funded by GSK. CTR and JQ report no conflicts of interest.
Clinical Protocols
https://catalogues.ema.europa.eu/node/3194/administrative-details
Funding Statement
MB is funded by a GSK PhD studentship to undertake this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study was approved by the London School of Hygiene and Tropical Medicine Research Ethics Committee (Reference: 27896) and the Independent Scientific Advisory Committee of the UK Medicines and Healthcare Products Regulatory Agency (approval number: 22_001876).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
No additional data available. Data management and analysis code and all code lists are available on our GitHub repositories. (https://github.com/bokern/ics_hdps and https://github.com/bokern/ics_covid)