Abstract
Background Disturbances in the intricate processes that control craniofacial morphogenesis can result in birth defects, most common of which are orofacial clefts (OFCs). Nonsyndromic cleft lip (nsCL), one of the phenotypic forms amongst OFCs, has a non-random laterality presentation with the left side being affected twice as often compared to the right side. This study investigates the etiology of nsCL and the factors contributing to its laterality using a pair of monozygotic twins with mirror-image cleft lip.
Methods We conducted whole-genome sequencing (WGS) analyses in a female twin pair with mirror image nsCL, their affected mother and unaffected father to identify etiopathogenic variants. Additionally, to identify possible cleft lip laterality modifiers, DNA-methylome analysis was conducted to test for differential methylation patterns between the mirror twins. Lastly, DNA methylation patterns were also analyzed on an independent cohort of female cases with unilateral cleft lip (left=22; right=17) for replication purposes.
Results We identified a protein-altering variant in FGF20 (p.Ile79Val) within the fibroblast growth factor interacting family domain segregating with the nsCL in this family. Concurrently, DNA-methylome analysis identified differential methylation regions (DMRs) upstream of Zinc-finger transcription factor ZFP57 (Δβ > 5%). Replication of these results on an independent cohort, confirmed these DMRs, emphasizing their biological significance (p<0.05). Enrichment analysis indicated that these DMRs are involved in DNA methylation during early embryo development (FDR adjusted p-value = 1.3241E-13). Further bioinformatics analyses showed one of these DMRs acting as a binding site for transcription factor AP2A (TFAP2A), a key player in craniofacial development. Interactome analysis also suggested a potential role for ZFP57 in left/right axis specification, thus emphasizing its significance in cleft laterality.
Conclusion This study provides novel insights into the etiology of nsCL and its laterality, suggesting an interplay between etiopathogenic variants and DNA methylation in cleft laterality. Our findings elucidate the intricate mechanisms underlying OFCs development. Understanding these factors may offer new tools for prevention and management of OFCs, alleviating the burden on affected individuals, their families and global health.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by NIH/NIDCR K01DE027995.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The University of Iowa IRB gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Funding: NIH/NIDCR K01DE027995
Data Availability
All data produced in the present study are available upon reasonable request to the authors.