Abstract
Background Accurate medical coding is essential for clinical and administrative purposes but complicated, time-consuming, and biased. This study compares Retrieval-Augmented Generation (RAG)-enhanced LLMs to provider-assigned codes in producing ICD-10-CM codes from emergency department (ED) clinical records.
Methods Retrospective cohort study using 500 ED visits randomly selected from the Mount Sinai Health System between January and April 2024. The RAG system integrated past 1,038,066 ED visits data (2021-2023) into the LLMs’ predictions to improve coding accuracy. Nine commercial and open-source LLMs were evaluated. The primary outcome was a head-to-head comparison of the ICD-10-CM codes generated by the RAG-enhanced LLMs and those assigned by the original providers. A panel of four physicians and two LLMs blindly reviewed the codes, comparing the RAG-enhanced LLM and provider-assigned codes on accuracy and specificity.
Findings RAG-enhanced LLMs demonstrated superior performance to provider coders in both the accuracy and specificity of code assignments. In a targeted evaluation of 200 cases where discrepancies existed between GPT-4 and provider-assigned codes, human reviewers favored GPT-4 for accuracy in 447 instances, compared to 277 instances where providers’ codes were preferred (p<0.001). Similarly, GPT-4 was selected for its superior specificity in 509 cases, whereas human coders were preferred in only 181 cases (p<0.001). Smaller open-access models, such as Llama-3.1-70B, also demonstrated substantial scalability when enhanced with RAG, with 218 instances of accuracy preference compared to 90 for providers’ codes. Furthermore, across all models, the exact match rate between LLM-generated and provider-assigned codes significantly improved following RAG integration, with Qwen-2-7B increasing from 0.8% to 17.6% and Gemma-2-9b-it improving from 7.2% to 26.4%.
Interpretation RAG-enhanced LLMs improve medical coding accuracy in EDs, suggesting clinical workflow applications. These findings show that generative AI can improve clinical outcomes and reduce administrative burdens.
Funding This work was supported in part through the computational and data resources and staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences. Research reported in this publication was also supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD026880 and S10OD030463. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript.
Twitter Summary A study showed AI models with retrieval-augmented generation outperformed human doctors in ED diagnostic coding accuracy and specificity. Even smaller AI models perform favorably when using RAG. This suggests potential for reducing administrative burden in healthcare, improving coding efficiency, and enhancing clinical documentation.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported in part through the computational and data resources and staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences. Research reported in this publication was also supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD026880 and S10OD030463. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Mount Sinai Hospital. Institutional Review Board (IRB) approval was obtained, and informed consent was waived by the IRB committee.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors