Large language models outperform traditional natural language processing methods in extracting patient-reported outcomes in IBD
View ORCID ProfilePerseus V. Patel, Conner Davis, Amariel Ralbovsky, Daniel Tinoco, Christopher Y.K. Williams, Shadera Slatter, Behzad Naderalvojoud, Michael J. Rosen, Tina Hernandez-Boussard, View ORCID ProfileVivek Rudrapatna
doi: https://doi.org/10.1101/2024.09.05.24313139
Perseus V. Patel
1Department of Pediatrics, University of California San Francisco, San Francisco, CA
2Division of Pediatric Gastroenterology, Stanford University School of Medicine, Palo Alto, CA
MDConner Davis
3Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA
BSAmariel Ralbovsky
1Department of Pediatrics, University of California San Francisco, San Francisco, CA
MD MSDaniel Tinoco
3Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA
MSChristopher Y.K. Williams
3Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA
MB BChirShadera Slatter
3Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA
MSGHBehzad Naderalvojoud
4Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Palo Alto, CA
PhDMichael J. Rosen
2Division of Pediatric Gastroenterology, Stanford University School of Medicine, Palo Alto, CA
MD, MSCITina Hernandez-Boussard
4Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Palo Alto, CA
PhDVivek Rudrapatna
3Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA
5Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA
MD, PhDArticle usage
Posted September 06, 2024.
Large language models outperform traditional natural language processing methods in extracting patient-reported outcomes in IBD
Perseus V. Patel, Conner Davis, Amariel Ralbovsky, Daniel Tinoco, Christopher Y.K. Williams, Shadera Slatter, Behzad Naderalvojoud, Michael J. Rosen, Tina Hernandez-Boussard, Vivek Rudrapatna
medRxiv 2024.09.05.24313139; doi: https://doi.org/10.1101/2024.09.05.24313139
Large language models outperform traditional natural language processing methods in extracting patient-reported outcomes in IBD
Perseus V. Patel, Conner Davis, Amariel Ralbovsky, Daniel Tinoco, Christopher Y.K. Williams, Shadera Slatter, Behzad Naderalvojoud, Michael J. Rosen, Tina Hernandez-Boussard, Vivek Rudrapatna
medRxiv 2024.09.05.24313139; doi: https://doi.org/10.1101/2024.09.05.24313139
Subject Area
Subject Areas
- Addiction Medicine (404)
- Allergy and Immunology (713)
- Anesthesia (208)
- Cardiovascular Medicine (2977)
- Dermatology (254)
- Emergency Medicine (446)
- Epidemiology (12836)
- Forensic Medicine (12)
- Gastroenterology (835)
- Genetic and Genomic Medicine (4636)
- Geriatric Medicine (426)
- Health Economics (733)
- Health Informatics (2951)
- Health Policy (1075)
- Hematology (394)
- HIV/AIDS (936)
- Medical Education (430)
- Medical Ethics (116)
- Nephrology (478)
- Neurology (4429)
- Nursing (238)
- Nutrition (653)
- Oncology (2301)
- Ophthalmology (654)
- Orthopedics (260)
- Otolaryngology (327)
- Pain Medicine (284)
- Palliative Medicine (85)
- Pathology (503)
- Pediatrics (1201)
- Primary Care Research (504)
- Public and Global Health (7024)
- Radiology and Imaging (1556)
- Respiratory Medicine (924)
- Rheumatology (447)
- Sports Medicine (386)
- Surgery (493)
- Toxicology (60)
- Transplantation (213)
- Urology (185)