ABSTRACT
Background Genetic factors play an important role in prostate cancer (PCa) development with polygenic risk scores (PRS) predicting disease risk across genetic ancestries. However, there are few convincing modifiable factors for PCa and little is known about their potential interaction with genetic risk. We analyzed incident PCa cases (n=6,155) and controls (n=98,257) of European and African ancestry from the UK Biobank (UKB) cohort to evaluate the role of neighborhood socioeconomic status (nSES)–and how it may interact with PRS–on PCa risk.
Methods We evaluated a multi-ancestry PCa PRS containing 269 genetic variants to understand the association of germline genetics with PCa in UKB. Using the English Indices of Deprivation, a set of validated metrics that quantify lack of resources within geographical areas, we performed logistic regression to investigate the main effects and interactions between nSES deprivation, PCa PRS, and PCa.
Results The PCa PRS was strongly associated with PCa (OR=2.04; 95%CI=2.00-2.09; P<0.001). Additionally, nSES deprivation indices were inversely associated with PCa: employment (OR=0.91; 95%CI=0.86-0.96; P<0.001), education (OR=0.94; 95%CI=0.83-0.98; P<0.001), health (OR=0.91; 95%CI=0.86-0.96; P<0.001), and income (OR=0.91; 95%CI=0.86-0.96; P<0.001). The PRS effects showed little heterogeneity across nSES deprivation indices, except for the Townsend Index (P=0.03).
Conclusions We reaffirmed genetics as a risk factor for PCa and identified nSES deprivation domains that influence PCa detection and are potentially correlated with environmental exposures that are a risk factor for PCa. These findings also suggest that nSES and genetic risk factors for PCa act independently.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the National Human Genome Research Institute of the National Institutes of Health under award No. 5T32HG000044 (to J.J.).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
UK Biobank received ethics approval from the Research Ethics Committee (REC reference: 11/NW/0382). The research was conducted with approved access to UK Biobank data under application number 14105 (PI: Witte).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
The research was conducted with approved access to UK Biobank data under application number 14105 (PI: Witte). UK Biobank data are publicly available by request from https://www.ukbiobank.ac.uk. Informed consent was obtained from all study participants. UK Biobank received ethics approval from the Research Ethics Committee (REC reference: 11/NW/0382). PRS269 (PRS ID: PGS000662) and PRS451 (PRS ID: PGS003765) are publicly available on the PGS catalog from https://www.pgscatalog.org/.