Cost-effectiveness of the Strategies for Surveillance of Antimicrobial-resistant Gonorrhea in the US: a Modelling Study

Sofya Prakhova

Yale School of Public Health, New Haven, CT, USA

Email: sofya.prakhova@gmail.com

Abstract

Background: The Gonococcal Isolate Surveillance Project (GISP) is a sentinel surveillance system to monitor the spread of antimicrobial-resistant (AMR) gonorrhea. Under GISP surveillance strategy, urethral isolates are utilized for monitoring the spread and the obtained estimates are used for informing the gonorrhea treatment guidelines. In 2017, the enhanced Gonococcal Isolate Surveillance Project (eGISP) was established which also includes the non-urethral isolates. Using eGISP estimates for informing the gonorrhea treatment guidelines is an alternative surveillance strategy that can be used. We aim to investigate cost-effectiveness of both strategies.

Methods: We utilized our previously developed continuous-time agent-based model of gonorrhea transmission among the US men who have sex with men (MSM) population and calculated the total number of discounted quality-adjusted life years (QALYs) and total discounted costs over 35 years under GISP and eGISP surveillance strategy. We also evaluated cost-effectiveness of both surveillance strategies.

Results: Under GISP surveillance strategy, $10.7M (95% uncertainty interval: $1.4M, $27.3M) were saved and 119.9 (12.9, 354.4) QALYs were gained over 35 years compared to no surveillance in the simulated cohort of 10,000 US MSM. Performing eGISP surveillance strategy instead would result in additional $29,282 (-$566,895, $700,595) saved and 0.25 (-6.7, 7.6) QALYs gained.

Conclusion: The current GISP surveillance strategy significantly reduces the costs and increases the health benefits compared to no surveillance. However, switching from the current strategy to eGISP strategy is cost saving and should be considered in order to improve the population health and reduce the financial burden of gonorrhea.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Multi-drug resistant gonorrhea is a major public health concern both in the US and worldwide. *N. gonorrhoeae* has developed resistance to most classes of antibiotic used for its treatment (penicillins, sulphonamides, tetracyclines, quinolones and macrolide) and continues to develop resistance to the so-called last-line cephalosporins which are currently used as the first-line treatment for gonorrhea in many countries [1]. Untreated gonorrhea can have a number of health consequences such as infertility, disseminated gonococcal infection (DGI), ectopic pregnancy, increased ability to receive and transmit HIV etc. [2]. In addition to negative impact on health, some of these complications involve high financial costs for both individuals and health systems.

WHO has defined a number of measures that can fight antimicrobial-resistant (AMR) gonorrhea, including establishing effective drug regulations, strengthening surveillance systems for antimicrobial resistance, support of research to find low-cost tests to identify *N. gonorrhoeae* etc. Promising future options are point-of-care tests and gonococcal vaccine [3] [4]. However, until they are widespread, the goal is to allocate the existing resources optimally to the existing options.

In the US, the gonorrhea treatment guidelines are based on the estimates from the Gonococcal Isolate Surveillance Project (GISP) [5] established in 1986 to monitor the spread of antimicrobial-resistant gonorrhea. It estimates the percentage of diagnosed cases resistant to the antibiotics currently or previously used for the treatment of gonorrhea. According to the WHO guidelines [6], a switch to a different antibiotic should be made once that value reaches 5%. In 2017, the enhanced Gonococcal Isolate Surveillance Project (eGISP) [7] was established, which includes the non-urethral isolates in addition to the urethral ones used in GISP. Since then, a decision on the number of sites of each system to be funded each year is being made by the policymakers [8]. However, despite the potential of eGISP to improve the accuracy of surveillance, the number of eGISP sites has remained around three times lower than the number of GISP sites [9] [10] over the years and there is no tendency for increasing.

In our earlier work [11], we evaluated performance of both surveillance systems. It was determined that eGISP detects the moment of switch to a different first-line drug more accurately than the original system which results in lower number of resistant cases. Also, we have shown that including the extragenital isolates in the surveillance is more important for the accurate monitoring of the spread than increasing the number of submitted isolates. However, the costs involved remain unknown.

In this paper we evaluate cost-effectiveness of GISP and eGISP surveillance strategies. In order to do this, we utilize our previously developed agent-based model of gonorrhea transmission among the US men who have sex with men (MSM) and estimate the total number of discounted quality-adjusted life years (QALYs) gained and total discounted costs compared to no surveillance for both surveillance strategies over a 35-year period. The contribution of different types of gonococcal infection and of the sequelae into the overall disease burden under GISP and eGISP strategy was also investigated. Finally, we evaluated cost-effectiveness of both surveillance strategies.
Methods

Simulation model and surveillance strategies

The continuous-time agent-based model of gonorrhea transmission among the US MSM is described in details in [11]. The population of the model is 10,000. The model accounts for susceptible and resistant strains of gonorrhea. The infection can be either symptomatic or asymptomatic. It can be transmitted between rectum and pharynx, rectum and urethra, pharynx and urethra, pharynx and pharynx, and urethra and urethra. Symptomatic individuals seek the first-line treatment at healthcare facilities, while asymptomatic individuals either get detected during the screening or recover naturally. In case the infection is detected, infected individuals receive the first-line treatment. The treatment fails if individuals are infected with resistant strain of gonorrhea. In this case, symptomatic individuals are being re-treated with the second-line drug, while asymptomatic ones remain infectious. During the treatment, there is a chance that \textit{N. gonorrhoeae} develops resistance to the antibiotic used.

The model was calibrated using the Bayesian calibration approach to the local epidemiological data: prevalence of gonorrhea among the US MSM at three anatomical sites, prevalence of gonorrhea resistant to ceftriaxone among the US MSM at three anatomical sites and the annual rate of reported gonorrhea cases per 100,000 US MSM population. Ceftriaxone has become the first-line treatment in the US in 2007 [12]. The available estimates on prevalence of ceftriaxone-resistant gonorrhea at different anatomical sites obtained from [13] were collected between 2018 and 2019. In order to model the spread of resistance to this antibiotic, we initiated the model in 2007, assigned the initial prevalence of gonorrhea resistant to ceftriaxone to zero and ran the model for 12 years. At the end of calibration, one hundred trajectories were selected which provide the closest match to the calibration targets. The model was developed using a Java-based simulation modelling tool AnyLogic (version 8.8.1 University). Further in the text, gonorrhea resistant to ceftriaxone is referred simply as AMR gonorrhea.

A surveillance system for monitoring the spread of AMR gonorrhea (GISP or eGISP) was modelled as a sum of the percentage of diagnosed cases resistant to ceftriaxone and the estimation error since only a limited number of isolates is being tested for drug susceptibility each year. Once a surveillance system detects that the percentage of cases resistant to ceftriaxone reaches 5% (the switching time recommended by the WHO), a switch to a different drug is being made.

Under GISP surveillance strategy, urethral isolates from the first 25 men diagnosed with urethral gonorrhea in a number of surveillance sites are utilized for estimating the percentage of cases resistant to ceftriaxone as well as other antibiotics which are prescribed or were previously prescribed for gonorrhea. The obtained estimates are used for informing the gonorrhea treatment guidelines. Under eGISP surveillance strategy, urethral, rectal and pharyngeal isolates are being used for this purpose. This is an alternative surveillance strategy that can be applied.

Cost-effectiveness analysis

We adapted a healthcare sector perspective for our analysis and followed the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) [14]. We used QALYs as a measure of the disease burden on the population health as it allows to include morbidity and the impact of sequalae due to
gonorrhea, and to compare the efficiency of health interventions for different conditions using the same units.

It was assumed that people experience reduced quality of life due to urethritis during symptomatic urethral infection and while experiencing sequelae due to untreated asymptomatic gonorrhea. In case of symptomatic resistant infection, we assumed that individuals experience urethritis for longer as at first, they are being treated unsuccessfully with the first-line drug. We considered epididymitis and disseminated gonococcal infection (DGI) as possible sequelae and distinguished between inpatient and outpatient treatment of these sequelae. The probability of developing a sequela was assumed to be the same for all anatomical sites and independent of the infection duration as there is limited evidence on the relationships between them [15].

The state specific utilities, probabilities and durations as well as the associated uncertainty intervals were obtained from the earlier comprehensive study of gonorrhea burden [16] and are presented in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean value</th>
<th>Uncertainty interval</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urethritis</td>
<td>0.85</td>
<td>0.76 to 0.92</td>
<td>[16]</td>
</tr>
<tr>
<td>Epididymitis (inpatient treatment)</td>
<td>0.30</td>
<td>0.012 to 0.59</td>
<td></td>
</tr>
<tr>
<td>Epididymitis (outpatient treatment)</td>
<td>0.46</td>
<td>0.20 to 0.72</td>
<td></td>
</tr>
<tr>
<td>DGI (inpatient treatment)</td>
<td>0.68</td>
<td>0.53 to 0.84</td>
<td></td>
</tr>
<tr>
<td>DGI (outpatient treatment)</td>
<td>0.60</td>
<td>0.41 to 0.79</td>
<td></td>
</tr>
<tr>
<td>Probabilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of epididymitis in case of untreated gonococcal infection</td>
<td>0.042</td>
<td>0.0012 to 0.14</td>
<td>[16]</td>
</tr>
<tr>
<td>Probability of DGI in case of untreated gonococcal infection</td>
<td>0.01</td>
<td>0.0075 to 0.013</td>
<td></td>
</tr>
<tr>
<td>Probability of inpatient treatment given epididymitis</td>
<td>0.0054</td>
<td>0.0028 to 0.0092</td>
<td></td>
</tr>
<tr>
<td>Probability of inpatient treatment given DGI</td>
<td>0.29</td>
<td>0.17 to 0.43</td>
<td></td>
</tr>
<tr>
<td>Durations (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urethritis</td>
<td>0.019</td>
<td>0.01 to 0.028</td>
<td></td>
</tr>
<tr>
<td>Epididymitis (inpatient treatment)</td>
<td>0.0082</td>
<td>0.0043 to 0.012</td>
<td></td>
</tr>
<tr>
<td>Epididymitis (outpatient treatment)</td>
<td>0.019</td>
<td>0.0010 to 0.028</td>
<td></td>
</tr>
<tr>
<td>DGI (inpatient treatment)</td>
<td>0.030</td>
<td>0.016 to 0.044</td>
<td></td>
</tr>
<tr>
<td>DGI (outpatient treatment)</td>
<td>0.022</td>
<td>0.011 to 0.032</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Utilities, probabilities and durations used for calculation of the total number of QALYs. Abbreviation: DGI, disseminated gonococcal infection.

The total costs were calculated as the sum of the costs due to diagnosis and treatment of gonorrhea and the costs of treatment of the sequelae. We distinguished between diagnosis and treatment of symptomatic versus asymptomatic gonococcal infection as well as between susceptible versus AMR gonococcal infection. All the costs as well as the probability of adverse reaction to gonorrhea antibiotic treatment are listed in Table 2. The costs were adjusted to 2017 USD using the medical care component of the consumer price index [17]. The details of calculation of the costs can be found in the supplement.
Table 2. Costs (in 2017 USD) and probabilities used for calculation of the total costs. Abbreviation: DGI, disseminated gonococcal infection.

The simulations were performed for 35 years starting from the year when eGISP was established (2017). This simulation window was chosen in order to allow enough time for the resistance of *N. gonorrhoeae* to ceftriaxone to develop. The total QALYs and costs were discounted to 2017 at 3% annually [19]. Finally, we evaluated cost-effectiveness of GISP and eGISP surveillance strategies.

Sensitivity analysis

We conducted one-way sensitivity analyses to investigate the impact of uncertainty in utilities and durations on our conclusions for cost-effectiveness of eGISP strategy. The low and high parameter values from the uncertainty intervals were used.

Results

Cost-effectiveness of the surveillance strategies

The results of cost-effectiveness analysis are shown in Table 3. In the simulated cohort of 10,000 US MSM, performing the current GISP surveillance strategy saves $10.7M (95% uncertainty interval: $1.4M, $27.3M) and gains 119.9 (12.9, 354.4) QALYs over 35 years compared with no surveillance. Performing eGISP strategy instead would save further $29,282 (-$566,895, $700,595) and gain 0.25 (-6.7, 7.6) QALYs.
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total costs ($)</th>
<th>Total QALYs</th>
<th>Incremental costs ($)</th>
<th>Incremental QALYs gained</th>
<th>Cost saving or dominated</th>
</tr>
</thead>
<tbody>
<tr>
<td>No surveillance</td>
<td>16M (4.4M, 37.3M)</td>
<td>164.4 (32, 449.7)</td>
<td></td>
<td></td>
<td>Dominated</td>
</tr>
<tr>
<td>GISP surveillance strategy</td>
<td>5.34M (2.66M, 10.1M)</td>
<td>44.5 (11.6, 108.5)</td>
<td>-10.7M (-27.3M, -1.4M)</td>
<td>119.9 (12.9, 354.4)</td>
<td>Cost saving</td>
</tr>
<tr>
<td>eGISP surveillance strategy</td>
<td>5.31M (2.67M, 10M)</td>
<td>44.2 (10.7, 112)</td>
<td>-29,282 (-700,595, 566,895)</td>
<td>0.25 (-6.7, 7.6)</td>
<td>Cost saving</td>
</tr>
</tbody>
</table>

Table 3. Cost-effectiveness of the surveillance strategies. The total costs and total QALYs were calculated in the cohort of 10,000 US MSM over 35 years. The GISP surveillance strategy was compared with no surveillance and eGISP surveillance strategy was compared with GISP surveillance strategy.

The current GISP surveillance strategy is cost saving compared to no surveillance as the costs are lower and the health gains are higher. However, it is dominated by eGISP surveillance strategy for the same reason.

Decomposition of the total discounted QALYs and costs under both surveillance strategies

Decomposition of the total discounted QALYs and total discounted costs over 35 years is shown in Figures 1-2. Under GISP strategy, the composition of the total QALYs was 49% (10.9%, 90.6%) due to symptomatic susceptible gonorrhea, 1.3% (0%, 3.2%) due to symptomatic AMR gonorrhea, 38.6% (1.7%, 80%) due to epididymitis and 11.1% (2.7%, 23.4%) due to DGI. The contributors to the total costs were diagnosis and treatment of symptomatic susceptible gonorrhea (28.1% (7.4%, 48.5%)), diagnoses and treatment of asymptomatic gonorrhea (23% (7.5%, 40.2%)), diagnosis and treatment of symptomatic AMR gonorrhea (0.66% (0%, 1.7%)), treatment of epididymitis (25.7% (1.4%, 57.2%)) and treatment of DGI (20.9% (6.9%, 49.9%).

The contribution of symptomatic AMR gonorrhea into the disease burden under eGISP strategy was slightly lower than under GISP strategy (0.88% (0%, 2.55%) of the total QALYs and 0.46% (0%, 1.2%) of the total costs). Overall, the percentage of different types of gonococcal infection and the sequelae of the total QALYs and costs under eGISP strategy was very similar to the results obtained under GISP strategy. Asymptomatic gonorrhea contributes directly in terms of costs but does not contribute directly in terms of QALYs. The contribution of epididymitis into the disease burden is high overall. DGI impacts more in terms of the costs than in terms of QALYs, accounting for over 20% of the total costs under both surveillance strategies. This complication is rare, but, unlikely epididymitis, has a nearly 30% probability of inpatient treatment resulting in high costs.
Figure 1. Decomposition of the total discounted QALYs due to different types of gonococcal infection and its sequelae over 35 years under GISP and eGISP surveillance strategy. Means are identified as histograms, and 95% uncertainty intervals are identified as error bars. Abbreviations: SSG, symptomatic susceptible gonorrhea; S AMR G, symptomatic antimicrobial-resistant gonorrhea; EP, ependymitis; DGI, disseminated gonococcal infection.

Figure 2. Decomposition of the total discounted costs due to diagnosis and treatment of different types of gonococcal infection and its sequelae over 35 years under GISP and eGISP surveillance strategy. Means are identified as histograms, and 95% uncertainty intervals are identified as error bars. Abbreviations: SSG, symptomatic susceptible gonorrhea; AG, asymptomatic gonorrhea; S AMR G, symptomatic antimicrobial-resistant gonorrhea; EP, ependymitis; DGI, disseminated gonococcal infection.

Sensitivity analysis

The results of the one-way sensitivity analyses are presented in Tables A-B in the supplement. The eGISP surveillance strategy was cost saving compared to GISP strategy in 95% of cases. In one analysis the number of incremental QALYs gained was negative, but it was small-scale (-0.025 (-4.3, 3.3) QALYs).
Discussion

We estimated the total number of discounted QALYs and total discounted costs in the cohort of 10,000 US MSM under both surveillance strategies over a 35-year period. Our results indicate that performing AMR surveillance under the current GISP strategy reduces the costs and increases the health benefits substantially compared to no surveillance. However, performing eGISP surveillance strategy instead would be cost saving. Although it should be noted that the expected health gains are modest. Nevertheless, the goal of establishment of eGISP was to study whether there is a difference in antibiotic susceptibility pattern between men and women and to test the assumption that rectum and pharynx can serve as a niche for the growth of antibacterial resistance [9]. Its goal never was to inform the gonorrhea treatment guidelines as GISP has been traditionally used for this purpose. Our findings provide a new perspective.

Overall, there was no significant difference in the contribution of different types of gonococcal infection and the sequelae into the disease burden under both surveillance strategies. However, as expected, the contribution of symptomatic AMR gonorrhea was slightly higher under GISP strategy than under eGISP strategy. Symptomatic susceptible gonorrhea is the main source of the total QALYs and costs contributing for around 50% and 30% of them, respectively. The results that we obtained for contribution of the sequelae into the gonorrhea burden are significantly higher than the ones reported in the earlier study [16]. This is probably because in [16] it was assumed that only untreated urethral infections can lead to development of the sequelae. In our modelling study, the sequelae can occur as the result of untreated gonorrhea at any affected site (urethra, rectum and pharynx) which results in more realistic estimates. The significant contribution of the sequelae into the disease burden once again highlights the importance of routine screening for sexually transmitted infections.

This analysis should be viewed in the context of some limitations. We did not account for the increased ability to acquire and transmit the HIV infection in case of gonococcal infection. Also, a full adherence to the gonorrhea treatment guidelines was assumed in terms of the prescribed drug and the moment of switch to a different first-line antibiotic. In reality, according to the recent study [20], around 20% of the male patients have not received the recommended first-line antibiotic therapy. Also, there have been rare instances of a first-line drug being replaced before reaching the recommended 5% threshold [21].

This study highlights the importance of effective surveillance of AMR gonorrhea. Our findings are aligned with the outcomes of our earlier work [11] where we determined that eGISP surveillance system has a better ability to capture the spread of AMR gonorrhea than GISP which results in lower number of resistant cases. In this study we demonstrate that switching from the current surveillance strategy to eGISP strategy for informing the gonorrhea treatment guidelines is also cost saving. This option should be considered in order to improve the population health and reduce the financial burden of gonorrhea in the US.

Competing interest statement

The author has no competing interests to declare.

Funding statement

No funding was received for this study.
Data availability statement

All relevant data are within the manuscript.
References

7. Pham, C., et al., Gonococcal isolate surveillance project (GISP) and enhanced GISP (eGISP). 2020.
10. Sancta St. Cyr, K.K., Myriam Bélanger, Matthew Schmerer, Gonococcal Isolate Surveillance Project (GISP) and enhanced GISP (eGISP) 2023.