Trends in syphilis prevalence by race and ethnicity among people who are pregnant in the United States 2014–2022.

Yizhi Liang¹, Nicolas A Menzies¹, Minttu M Rönn¹

¹Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA

Corresponding author: Minttu M Rönn
Email mronn@hsph.harvard.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
We estimated an increasing syphilis prevalence among people who are pregnant, reaching 462 per 100,000 live births in 2022, and notable racial and ethnic disparities in prevalence.

Running head: Syphilis prevalence in people who are pregnant 2014–2022

Abstract (max 150 words, unstructured)

This study aimed to estimate syphilis prevalence among people who are pregnant with live births by race and ethnicity 2014–2022. We analyzed data on syphilis infection from birth certificates using a Bayesian model, adjusting for test sensitivity, specificity, and screening coverage. We estimated syphilis prevalence among people who are pregnant with live births increased from 88.7 (95% UI: 77.3–104.7) per 100,000 live births in 2014 to 462.2 (95% UI: 430.9–502.4) per 100,000 live births in 2022. With rising prevalence, relative racial and ethnic disparities narrowed over time. Syphilis prevalence is likely higher among women with stillbirths, indicating a need for improved screening and interventions.

Keywords: Syphilis; Pregnancy; Racial and ethnic Disparities
Introduction

Syphilis is a sexually transmitted infection (STI) caused by the bacteria *Treponema pallidum* (1). After reaching a low of 2.1 diagnoses per 100,000 population in 2001, the diagnosis rate for syphilis in the United States has been on the rise(2). In 2022, the syphilis diagnosis rate in the general population was 1.8 times that of 2018. Syphilis can be transmitted vertically during pregnancy, resulting in congenital syphilis, which can lead to stillbirth, neonatal death, and other adverse birth outcomes (3). The rate of congenital syphilis has also been increasing, and in 2022, it was 2.9 times that of 2018(4).

Estimates for the prevalence of syphilis in people who are pregnant are limited. Both congenital syphilis diagnoses and syphilis diagnoses in the general population suggest stark racial and ethnic disparities in the burden of disease. In 2022, the primary and secondary syphilis diagnosis rate in general population women of all ages was 10.1 times among non-Hispanic American Indian or Alaska Native women compared to non-Hispanic White women (5), while the ratio for congenital syphilis diagnoses cases was 11.9 (4).

Birth certificate registration records provide information on many health outcomes in people who are pregnant and infants with live birth, including syphilis infection identified during pregnancy (6). Leveraging a consistent data source on nearly all live births in the US offers a long time span of trends with demographic information available. This syphilis infection data lacks information on who was tested for syphilis and the type of tests used. Adjusting for testing coverage and the sensitivity and specificity of syphilis tests allows us to estimate the underlying prevalence in this population.

We aimed to estimate syphilis prevalence among people who are pregnant and who delivered live births in the United States from 2014 to 2022. Using the information on maternal race and ethnicity, we evaluated the trends in racial and ethnic disparities over time. Syphilis poses risks to both pregnant individual and their fetus, yet congenital syphilis is preventable by testing and treatment during pregnancy (7, 8). Quantifying the burden of infection can aid syphilis prevention efforts and improve health in these populations. Prevalence time trends can also improve understanding of the magnitude
and speed of syphilis re-emergence in different populations.

Methods

Birth certificate data

We utilized data from birth certificates of the United States, as maintained within the National Vital Statistics System by the National Center for Health Statistics (NCHS, https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm). These records include demographic and health-related microdata for all live births occurring within a calendar year, as mandated by the birth registration requirements across the 50 states, New York City, and the District of Columbia (9, 10). Non-single delivery status is not identifiable in the birth certificates (9), and we assumed that each record represents an individual birth. Revised 2003 U.S. Standard Certificate of Live Birth was introduced to improve data quality (11), and by January 1, 2014, 96.2% of all births to U.S. residents were documented utilizing the 2003 standard (12). We restricted our analysis to cover the years 2014–2022.

We defined seven racial and ethnic categories: non-Hispanic American Indian/Alaska Native (AIAN), non-Hispanic Asian (Asian), non-Hispanic Black/African American (Black), Hispanic/Latino (Hispanic), non-Hispanic Multiracial (Multiracial), non-Hispanic Native Hawaiian/Other Pacific Islander (NHPI), and non-Hispanic White (White).

Syphilis infection status in the birth certificates was extracted from the medical records utilizing the Facility Worksheets (13, 14), in accordance with the protocols outlined in the “Guide to Completing the Facility Worksheets for the Certificate of Live Birth and Report of Fetal Death (2003 Revision).” (15) The identification of syphilis infection (also referred to as lues) was determined by one of two criteria: (1) a positive test for Treponema pallidum presenting at the start of pregnancy or confirmed diagnosis during pregnancy with or without documentation of treatment; (2) the presence of documented treatment for syphilis during pregnancy was deemed sufficient in the absence of a definitive diagnosis within the accessible records (15).
Statistical modeling

We estimated syphilis prevalence among people who are pregnant with live births stratified by year and race and ethnicity using a Bayesian model. The model is anchored on syphilis positivity observed in birth certificate data in each race and ethnicity and year stratum. We modeled the probability of observing a positive syphilis infection among people who are pregnant \(\theta_{yr} \) as:

\[
\theta_{yr} = \left[P_{yr} \times \text{Sens} + (1 - P_{yr}) \times (1 - \text{Spec}) \right] \times T_r
\]

Where \(P_{yr} \) is syphilis prevalence among people who are pregnant stratified by race and ethnicity and year, Sens and Spec are the sensitivity and specificity of syphilis diagnostic test; both assumed constant by year and population. \(T_r \) is the proportion of people who are pregnant screened for syphilis during their pregnancy stratified by race and ethnicity but assumed constant over time.

Parameters and their prior distributions are presented in Table 1. To estimate a prior distribution for test sensitivity and specificity, we conducted a random-effect meta-analysis to pool sensitivity and specificity on estimates reported in a systematic review (16) (Appendix Figure S1 and Figure S2).

There is limited information on syphilis screening coverage among people who are pregnant by race and ethnicity, albeit we know there are racial and ethnic disparities in testing and treatment (17). We relied on a study of screening coverage among Medicaid-insured people who are pregnant in six southern states (18), which reported screening coverage for White, Black, and Hispanic women. To determine prior distribution for AIAN, Asian, Multiracial, and NHPI women, we used the lower and higher of 95% confidence intervals for Black and Hispanic women.

We calibrated the model to the observed syphilis infections in birth certificate data using binomial likelihood:

\[
Y_{yr} \sim \text{Binomial}(n_{yr}, \theta_{yr})
\]

Where \(Y_{yr} \) is the number of syphilis positivity in birth certificate data by year and race and ethnicity (Appendix Table S1). \(n_{yr} \) represents the number of women with live births.
births by year and race and ethnicity (Numbers reported in Appendix Table S2).

The model was developed in R (version 4.3.2) and Stan (version 2.26.1) with “rstan” (19), “tidybayes” (20), and “ggplot2” (21) packages. Calibration was performed via Markov Chain Monte Carlo sampling using the No-U-Turn Sampler (NUTS) (22). We specified 12,000 iterations per chain across four independent chains, with the first 8,000 designated as burn-in. Convergence of the model was assessed using the potential scale reduction factor (r-hat), where 1.1 was set as the indication of convergence (23). The analytic code is available at: [https://github.com/Yizhi-Liang/Trends-Syph].

Comparison against external measures of burden

We compared the prevalence estimates and syphilis positivity in the birth certificates against syphilis diagnoses among women of reproductive age (15–44 years) (24) and syphilis diagnoses among people who are pregnant (4) (Appendix Table S3 and Table S4). Birth certificate data allows estimation of syphilis prevalence among people who are pregnant who delivered live births. Given that vertical transmission of syphilis increases the risk of stillbirth, the syphilis burden may be higher among pregnancies that did not result in live births. To examine the discrepancy, we obtained stillbirths attributable to congenital syphilis (4) and the total number of stillbirths reported as part of fetal death data from the NCHS (25). We calculated the rate of syphilis attributable to stillbirths and compared this to the prevalence estimate among live births. This indicates the degree of unobserved syphilis burden not measured in the main analysis.

Analysis

Using 16,000 posterior samples, we calculated the mean and 95% uncertainty intervals (UIs) to estimate syphilis prevalence by race and ethnicity and year. We calculated different measures to describe changes in prevalence. Temporal trends in syphilis prevalence were examined by comparing changes in estimated syphilis prevalence over time, with 2014 used as the baseline. To evaluate racial and ethnic disparities, prevalence ratios were computed with White women, who had the largest number of live births and were used as the reference population. We computed the Index of Disparity to quantify the variance in the estimated syphilis prevalence across races/ethnicity populations relative to the population mean, serving as a comprehensive
measure of relative disparities (26):

\[Index \text{ of Disparity}_{y} = 100 \times \left(\sum_{r=1}^{R} \left| \frac{P_{yr} - P_{y}}{P_{yr}} \right| \times w_{yr} \right) / \bar{P}_{y} \]

Where \(P_{yr} \) is the estimated syphilis prevalence for each race and ethnicity population in a year, \(\bar{P}_{y} \) is the average of the estimated syphilis prevalence for the whole population in the same analytical year, and \(w_{yr} \) is the population share for each race and ethnicity in each year.

Sensitivity analysis

The prior distribution used for screening coverage during pregnancy came from an analysis of Medicaid insured population in six Southern States, which may not represent the country. As a sensitivity analysis, we calibrated the model using a wider uncertainty range in the prior distribution: the 2.5th percentile reflected reported Medicaid screening rates and the 97.5th percentile represented the proportion of people who are pregnant receiving any prenatal care from birth certificates (Table 1). The upper level assumes that all women who received prenatal care received syphilis screening.

We also tested alternative prior distributions for the syphilis prevalence by year and race and ethnicity to examine the impact of the shape of the weakly informative prior distribution on the posterior distribution (Appendix Table S5).

Results

We estimated an increase in syphilis in all racial and ethnic populations during 2014–2022, and syphilis prevalence estimates were higher than syphilis positivity in birth certificate data (Figure 1). The syphilis prevalence ratio comparing 2022 with 2014 was 5.2: in 2014, the prevalence was 88.7 (95% UI: 77.3–104.7) per 100,000 live births, and in 2022, it reached 462.2 (95% UI: 430.9–502.4) per 100,000 live births. The highest prevalence in 2014 was among NHPI women at 659.0 (95% UI: 391.9–1044.0) per 100,000 live births, while Asian women had the lowest at 10.3 (95% UI: 0.4–32.4) per 100,000 live births. In 2022, AIAN women were estimated to have the highest prevalence at 2610.9 (95% UI: 1908.3–3717.5) per 100,000 live births, followed by NHPI women with 1316.7 (95% UI: 882.0–1975.4), and Black women with 909.7 (95%
Asian women were estimated to have the lowest prevalence at 97.9 (95% UI: 57.3–161.2) per 100,000 live births.

Compared to reported diagnoses among people who are pregnant, the estimated syphilis prevalence was higher, and gaps between the two estimates remained stable, with a ratio of 1.68 comparing prevalence to diagnoses (Figure 2). Conversely, the gap between syphilis diagnoses and birth certificate positivity estimates decreased over time, converging in 2021–2022. As expected, the syphilis prevalence among people who are pregnant was higher than the syphilis diagnosis rate among women of reproductive age.

All racial and ethnic populations, excluding Asian women, were estimated to have a higher syphilis prevalence compared to White women between 2014 and 2022. The absolute differences between populations widened, while the prevalence ratio decreased over time in all racial and ethnic groups. This pattern emerged due to the increase in syphilis prevalence estimated for the White population (Appendix Figure S3 and Figure S4). There was a decreasing trend in the disparity of syphilis prevalence across racial and ethnic groups, as measured by the Index of Disparity (Figure 1). This index decreased from 113.6 in 2014 (95% UI: 107.9–119.4) to 69.7 in 2022 (95% UI: 66.8–72.9). The Index of Disparity decreased due to the rising prevalence across all racial and ethnic populations.

In a sensitivity analysis, we calibrated the model with a broader prior distribution for syphilis screening coverage, assuming that the coverage could have been up to 100%. If the screening coverage had been higher than reported in Medicaid claims analysis, prevalence estimates would be lower for all racial and ethnic populations (Figure 3). Compared to syphilis positivity data, these lower prevalence estimates would suggest very similar levels of burden to those observed in the data and, in some cases, prevalence estimates were lower than observed positivity. For example, higher screening coverage than that used in the main analysis, implies Asian people who are pregnant would have a lower syphilis prevalence than observed in birth certificates across all years, which would mean a number of false positive syphilis cases in the birth certificate records. In the second sensitivity analysis, prevalence estimates were robust under different weakly informative prior distributions, maintaining stability even when the prior distributions’ central values and the 95% uncertainty ranges were increased (Appendix Figure S5).
When we compared our estimate of syphilis prevalence among live births to the prevalence among stillbirths based on surveillance data, the estimated syphilis prevalence among live births was consistently lower than the proxy estimates for stillbirths, with the discrepancy widening over the years (Figure 4). In 2022, the syphilis prevalence estimated among stillbirths based on surveillance data was 1145.6 per 100,000 births, which was 2.5 (95% UI: 2.3–2.7) times the estimated syphilis prevalence among those with live births.

Discussion

We estimated an upward trend syphilis prevalence associated with persistent racial and ethnic disparities between 2014 and 2022. Racial and ethnic disparities were predicted to increase over time on an absolute scale but diminish in relative terms, driven by increasing burden in all racial and ethnic groups. In addition, we estimated that syphilis prevalence in women who experience stillbirth is more than twice our estimated syphilis prevalence among women with live births.

The disparities observed are rooted in systemic racism and are perpetuated by socioeconomic factors such as poverty, inequalities in access to quality healthcare, and broader social determinants of health (2). In cases of congenital syphilis, the absence or delay of syphilis screening during pregnancy has been identified as a critical factor, particularly pronounced among AIAN and NHPI women (17). Furthermore, in 2022, Black and Hispanic people who are pregnant with congenital syphilis outcomes were observed to have the highest rates of inadequate treatment for syphilis (17). The Healthy People 2030 project has documented a decline in the proportion of people who are pregnant receiving early and adequate prenatal care across all groups, with NHPI and AIAN women experiencing the lowest in 2018–2022 (27). Studies on racial and ethnic disparities in syphilis among people who are pregnant have focused on White, Black, and Hispanic populations, and there remain data gaps for the smaller racial and ethnic populations, such as NHPI and AIAN, who are disproportionately affected by the poor quality of prenatal care, and syphilis prevention and treatment (18, 28).

US Preventive Services Task Force recommends early syphilis screening for all people who are pregnant, with a further recommendation for an additional test during the third trimester for those at elevated risk (8).
American College of Obstetricians and Gynecologists have also updated their guidelines, advocating for three syphilis screens (first trimester, third trimester and at delivery) as part of routine prenatal care (29).

The contribution of syphilis to stillbirths remains understudied. The identification of stillbirths attributable to congenital syphilis presents a challenge; different infectious diseases during pregnancy increase the risk of stillbirth, and there is inadequate adherence to syphilis screening at the time of stillbirth (30). Consequently, syphilis attributable stillbirths reported to congenital syphilis surveillance may present an underestimate, and the discrepancy between syphilis prevalence in live births and stillbirths may be higher than estimated.

Our study leverages a comprehensive dataset representing almost all live births in the United States for 2014–2022. This allowed us to estimate prevalence for the smaller racial and ethnic populations, such as AIAN and NHPI, who experience disproportionate burden but are often not represented in analyses. Our findings accounted for imperfect test sensitivity and specificity. The estimates were broadly aligned and showed similar trends with surveillance data despite uncertainty around testing coverage by time and in different populations. However, our analysis was confined to pregnancies with live births, and it does not include the burden among stillbirths. Our analysis is at the national level. There is geographic variation in syphilis burden, and there may be variation in prenatal syphilis screening practices, which was not accounted for in this study.

This study provides evidence of the increasing syphilis burden among people who are pregnant with live births, demonstrating the increasing syphilis burden in all racial and ethnic populations in the United States and presence of racial and ethnic disparities. Addressing these disparities is needed to improve inequalities in birth outcomes.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Race and ethnicity</th>
<th>Estimate</th>
<th>Prior Distribution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syphilis prevalence</td>
<td>All</td>
<td>Main analysis: Mean: 0.13, Range: 0.01–0.52</td>
<td>Main analysis: Beta(1, 5)</td>
<td>Weakly informative prior</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensitivity analysis: Mean: 0.98, Range: 0.97–0.99</td>
<td>Sensitivity analysis: Appendix Table S5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean: 0.99, Range: 0.98–0.99</td>
<td>Prior Distribution: Beta(786.28, 18.93)</td>
<td>Appendix Table S5</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>All</td>
<td>Mean: 0.57, Range: 0.40–0.73</td>
<td>Main analysis: Beta(18.42, 13.80)</td>
<td>(18, 25)</td>
</tr>
<tr>
<td>Specificity</td>
<td>All</td>
<td>Mean: 0.85, Range: 0.69–0.96</td>
<td>Main analysis: Beta(19.77, 3.37)</td>
<td></td>
</tr>
<tr>
<td>Proportion of people who are pregnant screened for syphilis</td>
<td>Non-Hispanic Asian</td>
<td>Mean: 0.57, Range: 0.40–0.73</td>
<td>Main analysis: Beta(18.42, 13.80)</td>
<td>(18, 25)</td>
</tr>
<tr>
<td></td>
<td>Non-Hispanic Black/African American</td>
<td>Mean: 0.73, Range: 0.73–0.74</td>
<td>Main analysis: Beta(125389.27, 45297.09)</td>
<td>(18, 25)</td>
</tr>
<tr>
<td></td>
<td>Hispanic/Latino</td>
<td>Mean: 0.85, Range: 0.69–0.96</td>
<td>Main analysis: Beta(21.91, 3.53)</td>
<td></td>
</tr>
<tr>
<td>Proportion of people who are pregnant screened for syphilis</td>
<td>Non-Hispanic Multiracial</td>
<td>Mean: 0.57, Range: 0.40–0.73</td>
<td>Main analysis: Beta(12236.60, 18319.62)</td>
<td>(18, 25)</td>
</tr>
<tr>
<td></td>
<td>Non-Hispanic Native Hawaiian/Other Pacific Islander</td>
<td>Mean: 0.85, Range: 0.69–0.96</td>
<td>Main analysis: Beta(15.57, 2.28)</td>
<td></td>
</tr>
<tr>
<td>Proportion of people who are pregnant screened for syphilis</td>
<td>Non-Hispanic White</td>
<td>Mean: 0.57, Range: 0.40–0.73</td>
<td>Main analysis: Beta(18.42, 13.80)</td>
<td>(18, 25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean: 0.57, Range: 0.40–0.73</td>
<td>Sensitivity analysis: Beta(25.28, 4.94)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean: 0.68, Range: 0.68–0.69</td>
<td>Sensitivity analysis: Beta(13.05, 1.72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean: 0.85, Range: 0.69–0.96</td>
<td>Sensitivity analysis: Beta(154701.32, 71339.73)</td>
<td>(18, 25)</td>
</tr>
</tbody>
</table>
Figure 1. Comparison of the estimated syphilis prevalence and syphilis positivity in birth certificate data by race and ethnicity among people who are pregnant with live births per 100,000 live births, with the Index of Disparity for the estimated syphilis prevalence for 2014–2022. The y-axis varies by subplot.

Footnote: The Index of Disparity for the estimated syphilis prevalence by year among people who are pregnant with live births across race and ethnicity is shown in the right-bottom corner. Race and ethnicity categories: non-Hispanic American Indian/Alaska Native (AIAN), non-Hispanic Asian (Asian), non-Hispanic Black/African American (Black), Hispanic/Latino (Hispanic), non-Hispanic Multiracial (Multiracial), non-Hispanic Native Hawaiian/Other Pacific Islander (NHPI), and non-Hispanic White (White).
Figure 2. Comparison of the estimated syphilis prevalence per 100,000 live births, syphilis positivity in birth certificate data per 100,000 live births, syphilis diagnoses among people who are pregnant per 100,000 women, and syphilis diagnoses among women of reproductive age per 100,000 women for 2014–2022.

Footnote: all available data is presented for completeness.
Figure 3. Sensitivity analysis: the estimated syphilis prevalence per 100,000 live births with an alternative prior distribution for the proportion of people who are pregnant screened for syphilis, compared with the main analysis and syphilis positivity in birth certificate data per 100,000 live births for 2014–2022.

Footnote: Race and ethnicity categories: non-Hispanic American Indian/Alaska Native (AIAN), non-Hispanic Asian (Asian), non-Hispanic Black/African American (Black), Hispanic/Latino (Hispanic), non-Hispanic Multiracial (Multiracial), non-Hispanic Native Hawaiian/Other Pacific Islander (NHPI), and non-Hispanic White (White).
Figure 4. Comparison between the estimated syphilis prevalence per 100,000 live births and the prevalence based on reported stillbirths attributable to congenital syphilis among stillbirths per 100,000 stillbirths.

![Graph comparing syphilis prevalence](image-url)

17. McDonald R. Vital Signs: Missed Opportunities for Preventing Congenital

