Abstract
Background As MRI use grows in medical diagnostics, applying NLP techniques could improve management of related text data. This review aims to explore how NLP can augment radiological evaluations in MRI.
Methods We conducted a PubMed search for studies that applied NLP in the clinical analysis of MRI, including publications up to January 4, 2024. The quality and potential bias of the included studies were assessed using the QUADAS-2 tool.
Results Twenty-six studies published between April 2010 and January 2024, covering more than 160k MRI reports were analyzed. Most of these studies demonstrated low to no risk of bias of the NLP. Neurology was the most frequently studied specialty, with twelve studies, followed by musculoskeletal (MSK) and body imaging. Applications of NLP included staging, quantification, and disease diagnosis. Notably, NLP showed high precision in tumor staging classification and structuring of free-text reports.
Conclusion NLP shows promise in enhancing the utility of MRI. However, there is a need for prospective studies to further validate NLP algorithms in real-time clinical and operational scenarios and across various radiology specialties, which could lead to broader applications in healthcare.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors