A Multi-Center Randomized, Double-Blind, Placebo Controlled, Parallel Group, Phase IIa Study to Evaluate the Efficacy, Safety and Tolerability of an Anthocyanin Rich Extract (ACRE) in Patients with Ulcerative Colitis

Luc Biedermann¹†, Michael Doulberis¹,²,³†, Philipp Schreiner¹, Ole Haagen Nielsen⁴, Frans Olivier The¹, Stephan Brand⁵, Sabine Burk¹, Petr Hruz⁶, Pascal Juillerat⁷, Claudia Krieger – Grübel⁵, Kristin Leu¹, Gabriel Leventhal¹, Benjamin Misselwitz⁷, Sylvie Scharl¹, Alain Schoepfer⁸, Frank Seibold⁹, Hans Herfarth¹⁰ Gerhard Rogler¹¹

¹Department of Gastroenterology & Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland luc.biedermann@usz.ch, philippschreiner@hotmail.com, sabine.burk@usz.ch

²Gastroklinik, Private Gastroenterological Practice, Horgen, Switzerland doulberis@gmail.com

³Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland.

⁴Department of Gastroenterology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark ole.haagen.nielsen@regionh.dk

⁵Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland stephan.brand@kssg.ch, Claudia.Krieger-Gruebel@kssg.ch

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Department of Gastroenterology, Clarunis - University Center for Gastrointestinal and Liver Diseases, 4052 Basel, Switzerland petr.hruz@clarunis.ch

Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, 3010 Bern, Switzerland pascal.juillerat@insel.ch, benjamin.misselwitz@insel.ch

Department of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland alain.schoepfer@chuv.ch

Cabinet de Gastroentérologie, Balsiger, Seibold & Partenaires, Villars-sur-Glâne, 1752 Fribourg, Switzerland frank.seibold@magendarmsuisse.ch

University of North Carolina at Chapel Hill, Division of Gastroenterology and Hepatology, NC 27514 Chapel Hill, NC, USA hans.herfarth@med.unc.edu

† Sharing equally first position

* Sharing equally last position

Short title: ACRE for active refractory ulcerative colitis

Corresponding author: Prof. Gerhard Rogler MD, PhD, Chief and Chairman of Department of Gastroenterology and Hepatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland. Phone +41 44 255 24 01. E-mail: Gerhard.rogler@usz.ch

Funding: This work was supported by grants from the Swiss National Science Foundation (SNF) to GR [Grant No. 33IC30_166844] and the Litwin Foundation (New Hyde Park, NY).
Clinicaltrials.gov number: NCT04000139

Ethical approval number: BASEC2017-00156

Informed consent statement: All patients signed an informed consent form

Data availability statement: Data available on request due to privacy/ethical restrictions

Conflicts of interest:

PS received consulting fees from Pfizer, Abbvie, Takeda and Janssen-Cilag and travel support from Falk, UCB and Pfizer.

LB reports fees for consulting/advisory board from Abbvie, MSD, Vifor, Falk, Esocap, Calypso, Ferring, Pfizer, Shire, Takeda, Janssen, Ewopharma.

GR declares consulting fees from Abbvie, Augurix, BMS, Boehringer, Calypso, Celgene, FALK, Ferring, Fisher, Genentech, Gilead, Janssen, MSD, Novartis, Pfizer, Phadia, Roche, UCB, Takeda, Tillots, Vifor, Vital Solutions and Zeller; speaker’s honoraria from Astra Zeneca, Abbvie, FALK, Janssen, MSD, Pfizer, Phadia, Takeda, Tillots, UCB, Vifor and Zeller; and grants support from Abbvie, Ardeypharm, Augurix, Calypso, FALK, Flamentera, MSD, Novartis, Pfizer, Roche, Takeda, Tillots, UCB and Zeller.

BM reports traveling fees from Takeda, Vifor, Gilead and MSD. BM received fees as a speaker from Takeda. BM has served at an advisory board for Gilead, Takeda and BMS. BM has received research grants from MSD and BMS unrelated to the submitted work.

MD reports traveling fees from Takeda, FALK, Abbvie as well as consulting fees from Takeda.

Rest of the authors declare no compelling conflict of interests.
Abstract

Background: In an open label pilot study dried bilberries were effective in inducing clinical, endoscopic and biochemical improvement in ulcerative colitis (UC) patients. Aim was the investigation of efficacy of anthocyanin rich extract (ACRE), the presumptive active ingredient of bilberries, in a controlled clinical trial in moderate-severe UC.

Methods: We performed a multicenter randomized, placebo-controlled, double-blind study (planned initially for 100 patients; premature termination due to COVID-19 pandemic). Patients had moderate-severe active UC at screening (Mayo-score 6-12, endoscopic sub-score at least 2) and were randomized at baseline (verum: placebo, 2:1). Continuation of all UC-directed stable medical therapy was allowed. Primary endpoint was clinical response at week 8 (reduction of total Mayo-score at least 3 points). Biochemical (fecal calprotectin) and centrally-read endoscopic response were amongst the secondary endpoints.

Results: Out of 48 patients screened in six Swiss trial centers, 34 were randomized. Eighteen ACRE and eight placebo patients could be analyzed in the Per-Protocol-Set. Half (9/18) of ACRE patients and 3/8 of placebo patients revealed clinical response at week 8 (CI 0.399-6.963; p=0.278). An improvement of the Mayo-score was observed in 77.8% of ACRE treated patients (62.5% of placebo). Fecal calprotectin dropped from 1049+/-1139 to 557+/-756μg/g feces in the ACRE but not in the placebo group (947+/-1039 to 1040+/-1179; p=0.035). Adverse events were rare.
Conclusions: ACRE therapy was not significantly superior to placebo at inducing a clinical response. However, placebo response was unusual high. Moreover, there was a significant calprotectin decrease at end of treatment, indicative of ACRE biochemical efficacy in UC.

Clinicaltrials.gov number: NCT04000139

Keywords: Ulcerative colitis, anthocyanin rich extract (ACRE), inflammatory bowel disease (IBD), complementary therapy, bilberries
Study Highlights

What is known:

- Dried bilberries have been reported to ameliorate active ulcerative colitis (UC) in an uncontrolled pilot trial
- Anthocyanins (flavonoids) are regarded to be the active anti-inflammatory compound of bilberries
- An anthocyanin rich extract (ACRE) of bilberries was reported to ameliorate colitis in mouse models

What is new here:

- In a multi-center randomized, double-blind, placebo controlled, parallel group study in patients with moderate to severe active UC, ACRE did not reach the statistical endpoint of clinical response
- An unusually high placebo response was observed
- ACRE induced significant biochemical response with significant decrease in calprotectin levels
Abbreviations

5-ASA, aminosalicylic acid (mesalazine); AC, anthocyanins; ACRE, anthocyanin rich extract; CI, confidence interval; IBD, inflammatory bowel disease; IFN, interferon; IL, interleukin; NF-κB, nuclear factor kappa B; NSAID, non-steroidal anti-inflammatory drugs; OR, odds ratio; PPS, Per-Protocol-Set; ROS, reactive oxygen species; PRO, patient reported outcome; QOL, quality of life; SIBDQ, short inflammatory bowel disease questionnaire; TNF, tumor necrosis factor; TMS, total Mayo score; UC, ulcerative colitis

Introduction

Ulcerative colitis (UC) comprises along with Crohn’s disease, the most common forms of inflammatory bowel diseases (IBD). UC is an idiopathic, chronic relapsing pathology of the colon affecting mainly young adults with a peak age range between 30 - 40 years and no gender predominance. Amongst the most typical symptoms are severe, often bloody diarrhea, as well as abdominal discomfort. Although the clinical course is variable, most patients suffer from recurrent flares and an unpredictable disease course. Quality of life may be severely impaired by persistent, frequent, recurrent or waxing and waning symptoms.

Despite the incurable nature of the disease, about two thirds of all UC patients with moderate disease activity can be successfully treated with mesalamine (5-
Nevertheless, patients who do not achieve a sufficient response remain a clinical challenge and up to 10% of all patients have to undergo colectomy in the long-term, according to a very recent (2023) systematic review and meta-analysis.\(^6\)

Although there is a plethora of potential effective drugs to treat UC, the overall profile of those is far from being ideal: They harbor a considerable risk of short- and long-term toxicity and numerous side effects.\(^7,^9\) Moreover, the annual costs of newer treatment options (such as biologics and small molecules) are often high.\(^10,^11\) Most importantly, even the latest treatments demonstrate efficiency in only a proportion of UC patients.\(^12\) Therefore, the development of further medical treatment options, with favorable cost-benefit ratios and salutary side-effect profiles clearly represents an urgent requirement for UC management. In this respect, herbal and natural compound treatments constitute an appealing therapy option for UC patients.

Secondly, many Swiss patients long for more natural therapies. In this context, several relevant studies report positive effect of curcuma\(^13\) (Curcuma zedoaria, an Indian spice), or of boswellia tree resin (Boswellia serrata) as well as aloe vera\(^14,^15\) on UC patients.

In recent years there has been a rising interest in natural flavonoids, a subgroup of polyphenols, due to their beneficial effects on many conditions including cardiovascular disease and cancer. Anthocyanins (AC), compounds belonging to flavonoids, are abundant in red, blue and black berries, but also present in red wine and dark colored vegetables.\(^16,^17\)
AC have been associated with many protective biological effects, including antioxidative, anticarcinogenic, antimicrobial, and anti-inflammatory properties.15,18,19 Due to their phenolic structure, AC exhibit anti-oxidative capacity \textit{in vivo} as they scavenge reactive oxygen species (ROS),18,20 a classical effect of 5-ASA.21 AC interrupt pro-inflammatory signaling and are inhibitors of 5-lipoxygenase, a key enzyme implicated in the arachidonic acid pathway, for the biosynthesis of active leukotrienes (mainly via the unstable intermediate LTA\textsubscript{4} to LTB\textsubscript{4} and 5-HETE22,23). In the presence of flavonoids monocytes release less tumor necrosis factor (TNF) and interleukin (IL) – 8.24 AC also impede activation of nuclear factor κB (NF-κB) by inhibition of proteasomal function. NF-κB as well as TNF and IL-8 constitute key molecules orchestrating inflammation in IBD.15,25,26

Several research groups27-33 including ours19,34-39 reported a beneficial effect of AC on preclinical models of UC. In view of the aforementioned results, the potential of AC in a small uncontrolled pilot trial in 13 patients with UC was tested.40 During six weeks, patients received a daily AC-rich extract from bilberries (\textit{Vaccinium myrtillus}). Strikingly, clinical disease activity, as well endoscopic histological and biochemical indicators for intestinal inflammation markedly improved. Side effects were not observed. These data suggest AC as a potential adjunctive treatment option in UC with very few, if any, side effects.40,41

This study aims to confirm these results in a multi-center double-blind, placebo controlled, parallel group study to evaluate the efficacy, safety and tolerability of an anthocyanin rich extract (ACRE) in subjects with moderately active UC.
Materials and Methods

Study Population

Patients with moderately or severely active UC were recruited between April 2019 and March 2021 at six IBD centers in Switzerland. Moderately or severely active UC was defined as a Mayo score 6-12 with an endoscopic sub-score ≥ 2. Patients aged 18–70 years and diagnosed with UC since at least three months with the disease extending at least 15 cm from the anal verge were included. Current oral or rectal 5-ASA/sulfapyridine (SP) use or a history of oral or rectal 5-ASA/SP was allowed.

Furthermore, patients were eligible for the study if they fulfilled one of the following criteria: a. Steroid intake up to 30 mg/day as well as a history of steroids dependency, refractory, or intolerance, including no steroids treatment due to earlier side-effects.

OR b. Active disease despite induction therapy with 5-ASA agents, either mesalamine (2–4.8 g/day) or sulfasalazine (4–6 g/day) administered for at least two weeks. Topical treatment with 5-ASA was permissible but not sufficient for inclusion in the study. OR c. Intolerance to oral 5-ASA or azathioprine. OR d. Active disease despite thiopurine (adequately dosed according to treatment guidelines, such as 2-3 mg/kg for azathioprine) or methotrexate treatment administered for at least 12 weeks. OR e. Active disease despite treatment with biologics effective in UC or calcineurin inhibitors. No restrictions regarding other IBD therapies applied: Azathioprine/6-mercaptopurine was allowed, providing that the dose had been stable for 8 weeks prior to baseline and had been initiated at least two months before screening. TNF inhibitors (i.e. infliximab, adalimumab or golimumab) were allowed,
providing that the dose was unchanged for at least two months prior to baseline and
during the study treatment period. Vedolizumab and tofacitinib were allowed,
providing that the dose remained unchanged for at least two months prior to
baseline and during the study treatment period.

Exclusion criteria were a suspicion or diagnosis of Crohn's disease, ischemic
colitis, radiation colitis, indeterminate colitis, infectious colitis, diverticular disease
associated colitis, microscopic colitis, massive pseudopolyps or a colonic stenosis
that could not be passed endoscopically, acute severe UC (as defined by Truelove
and Witt's criteria45) and/or signs of systemic toxicity, UC limited to the rectum
disease which extends <15 cm above the anal verge), long term treatment with
antibiotics or non-steroidal anti-inflammatory drugs (NSAID) within two weeks
prior to screening (one short treatment regime for antibiotics and occasional use of
NSAID was allowed), and within at least 30 days after last treatment of the
experimental product prior to enrolment history of malignancy, a history or presence
of any clinically significant disorder that, in the opinion of the investigator, could
impact on the patient's ability to adhere to the study protocol and study procedures
or would confound the study result or compromise patient safety.

All patients signed an informed consent form. The study was approved by the
ethics committee of each center (BASEC2017-00156) and was conducted in
accordance with the latest revision of Declaration of Helsinki44 as well as the
guidelines of Good Clinical Practice.45 Moreover, the study was registered in the US
online database of clinical research studies ClinicalTrials.gov (NCT04000139). All
authors were offered full access to the study data and reviewed and approved the final manuscript.

Study design and procedures

This was a multicenter randomized, double-blind, placebo-controlled trial. Patients with active moderate-severe UC despite state of the art 5-ASA, steroid, immunosuppressive of biological treatment were enrolled. Patients were randomized 2:1 (ACRE: placebo).

Upon study entry, all patients were instructed to continue their current medications unchanged. They either received a standardized anthocyanin extract (ACRE, referring to 800-1000 mg AC) administered per os three times daily or an optically identical placebo. Of note, similar or even lower AC doses have been previously administered in human studies investigating (extra)intestinal beneficial actions and with favorable results. As the ACRE capsule preparation contained purple compounds (which could not be eliminated during the production process), we added equally purple powder to the placebo capsule preparation, in order to avoid any unblinding. The total duration of investigational product administration amounted to eight weeks (56 days). All participating physicians were blinded to treatment assignment throughout the study. After enrollment, patients underwent a physical examination and laboratory blood tests including a complete blood count, liver function tests, and C-reactive protein, which were performed at both baseline
and at the end of the phase protocol. Patients also underwent flexible rectosigmoidoscopy at study entry (baseline) and at week 8, and endoscopic activity was determined according to the endoscopic Mayo index sub-score by a local and a central reader.

Clinical Assessment and Trial End Points

Primary objective of the study was to evaluate the efficacy of the ACRE preparation in subjects with moderately-severely active UC according to clinical, endoscopic, histologic and biochemical markers. Secondary objectives included the effects of ACRE on quality of life (QoL) as well as its safety.

(Mayo score 6-12, endoscopic sub-score ≥ 2) by comparing the clinical response rate of subjects on an ACRE versus a placebo arm at week 8. As clinical response was defined the reduction of total Mayo score (TMS) ≥ 3 points. Of note, the mentioned cut-off for clinical response exhibits an established validity in several studies previously. Secondary objectives were the evaluation of 1) ACRE-efficacy at week 8 where clinical remission is defined as Mayo Score ≤ 2, with no individual sub-score > 1; 2) ACRE safety and tolerability; 3) efficacy of an ACRE preparation in subjects with moderately active UC compared to placebo in clinical remission, clinical response and clinical symptoms; 4) ACRE efficacy in subjects with moderately-severe active UC compared to placebo in endoscopic and histological remission and response; 5) quality of life (QOL) in patients of ACRE arm.
The primary endpoint was the clinical response at week 8 with clinical response defined as a reduction of TMS by ≥ 3 points, similar to previous studies. Secondary endpoints were:

- The proportion of patients with symptomatic remission at week 8, defined by the presence of both, a Mayo rectal bleeding sub-score of 0, and a stool frequency sub-score of 0 or 1 (with at least one point decrease from baseline, week 0), (patient reported outcome) [PRO2].

- The proportion of patients without rectal bleeding at week 8, defined by a Mayo rectal sub-score bleeding of 0.

- The proportion of patients with normal or enhanced stool frequency at week 8, defined by the Mayo stool frequency sub-score of 0 or 1 (with at least one point decrease from baseline, week 0).

Other secondary endpoints assessed rectal bleeding, clinical response and remission at week 4, durable remission (i.e. remission in weeks 8 and 12) and clinical response at week 8 according to the modified Mayo-score, defined as a three point and ≥30% drop from baseline of the sum of the rectal bleeding, stool frequency, endoscopy score (excluding friability) and physicians’ global assessment (PGA).

- The proportion of patients with endoscopic remission at week 8, defined by a modified Mayo endoscopic sub-score of 0 or 1 (excluding friability).

- The proportion of patients with histological remission at week 8, defined by a Geboes Index of grade 0 or 1.
• Mean change in fecal calprotectin concentrations at weeks 1, 2, 4, and 8 compared to baseline, week 0.
• Mean change in steroid dosage compared to baseline for patients in remission at week 8 to 12.
• Mean change in each of the short inflammatory bowel disease questionnaire (SIBDQ) sub-domains at week 8 compared to baseline (week 0).

The rate and time point of premature study withdrawals between both arms was also explored in the data analysis.

Data acquisition and management were performed using OpenClinica Community Edition, Version 3.14, and an OpenClinica eCRF.

Analysis plan

A sample size of 112 patients was initially planned, leading to 100 patients completing the study, assuming a drop-out rate of 12%, based on a frequentist power calculation. According to our previous data, a clinical response was assumed in the active treatment arm of 55% and in the placebo of 25%. For a 1:1 placebo vs. verum randomization ratio, a patient number of 41 per group would be sufficient to achieve statistical significance with a power of 80%, assuming an α-error of maximal 5%. For the planned 1:2 ratio the respective numbers were be 33 (placebo) and 66 (verum) patients for both the groups. The analysis of the primary endpoint was conducted on the FAS (full analysis set) and PPS (per-protocol set). Data analysis was performed
using SAS version 9.4 (Windows x64 version). Missing singular data items were carried forward. This did not apply, of course, when entire visits were missed (p.ex., in the case of premature study termination).

RESULTS

Study Population

Out of 48 patients screened in a total of six Swiss trial centers, 34 (70.9%) were enrolled and randomized, whereas 14 (29.1%; 4 females and 10 males) were considered screening failures.

Five randomized ACRE and two placebo patients prematurely terminated the study before the scheduled end of treatment at visit 3 (week 8). One ACRE patient started prednisone (20 mg/day) treatment at visit 1 and was excluded from all analyses for violation of the protocol. Thus, 18 ACRE and eight placebo patients could be analyzed in the per-protocol-set (PPS).

At screening, the majority of patients (69.2%) were on concomitant steroid medication. 16.7% in the bilberry group and 25% in the placebo group received anti-TNF treatment. Patient baseline characteristics are enclosed in Table 1.

Efficacy Analysis

Primary endpoint (Clinical Response at Week 8)
Clinical response at week 8 was achieved in nine out of 18 ACRE patients and three out of eight (3/8) placebo patients (Figure 1, Table 2). This corresponds to an odds ratio (OR) for response of 1.667 in favor of ACRE arm, with a 90% confidence interval (CI) between 0.399 – 6.963 and a one-sided p = 0.278 in the logistic analysis and the primary endpoint was not met.

In a post-hoc analysis, mean reduction in partial Mayo score was 2.61 ± 2.79 for ACRE arm and 2.00 ± 3.07 for placebo arm (Figure 2, not significant). Assuming a normal distribution, the 90% CI of the change in TMS does not include the point 0 (no change) for ACRE while this point is within the 90% CI for placebo arm.

An interesting finding of this study is the unusual high percentage of placebo response, i.e., 37.5% for the clinical response and 62.5% for the Mayo score amelioration.

Secondary endpoints

The secondary endpoint of clinical remission at week 8 was achieved in 9/18 patients of ACRE arm versus 3/8 patients of placebo arm (CI 0.399–6.963; p=0.278, not significant), even though we noted numerical improvements in both individual subscores rectal bleeding and stool frequency (Table 3).
The endoscopic findings (with central reading and site reading) yielded similar results, which are inconclusive and fail to demonstrate therapeutic effects.

Change in fecal calprotectin Endpoint vs. Baseline

Fecal calprotectin remained practically the same in placebo group between baseline and end of experiment values (947±1039 to 1040±1179) whereas it significantly decreased for ACRE group (1049±1139 to 557±756μg/g, p=0.035). No difference for any of the other secondary endpoints was noted.

Safety Analysis

Among the treated patients, a total of 68 adverse events, two of which were regarded to be serious, were recorded in 29 patients. All serious adverse events were assessed as unrelated to study medication. One patient developed an infectious colitis before enrolment. Another individual experienced an exacerbation of UC, which required hospitalization. Overall ACRE was very well tolerated and no new safety signals were detected.

DISCUSSION

In this multi-center, randomized, double-blind and placebo controlled, phase IIa study, we aimed to evaluate the efficacy, safety as well as tolerability of ACRE in patients with UC. Although the clinical response at the end of the study did not
differ between the two arms, a statistically significant difference was recorded in the secondary endpoint of fecal calprotectin.

Fecal calprotectin serves as a valuable indicator of inflammation within the intestines and has become an integral component of routine testing for diagnosing and monitoring IBD. According to a recent meta-analysis, fecal calprotectin is an inexpensive, valuable and rather accurate predictor IBD relapses. Additionally, further evidence has established fecal calprotectin as a useful marker recognizing an early response to IBD treatment, since it correlates robustly with serologic markers, endoscopic inflammation and disease activity indices of IBD subjects.

As aforementioned, our research group firstly reported in 2013 within a pilot study the beneficial effects of bilberries on UC patients, results that we could also confirm later on. Comparable beneficial results of have been demonstrated independently by Kropat et al. An ongoing relevant Australian clinical trial with double-blind, randomized, controlled, multi-arm design has been recently announced, investigating the effect of administration of AC and/or multi-strain probiotics on UC patients.

In respect to the available in vivo preclinical scientific evidence, we reported as early as 2011 that bilberries and their AC positively impacted on an experimental acute and chronic colitis mouse model. Later, and again by utilizing the same murine model mimicking human UC and UC-associated cancer, we demonstrated that AC ingestion could avert the onset and progression of murine tumors in colon.
Comparable favorable results of AC on IBD murine models have been henceforth published by other study groups.29-31,59,60

Interestingly, there is emerging evidence, that AC administration offers beneficial effects beyond IBD to further intestinal diseases such as colorectal carcinoma and irritable bowel syndrome.61 Bilberries and/or AC have also been investigated as a treatment targeting extraintestinal organs in various settings and have shown a positive impact in clinical trials, among others, for vascular health and cognitive function,46 or metabolic syndrome and associated conditions.26 A very recent US study with a large sample of patients ($n = 37,232$) found a direct inverse relationship between overall mortality risk and consumption of diverse berries and their containing flavonoids.17

One of the reasons for the health-promoting effects of AC is regarded to be their antioxidant effect owing to their phenolic structure, enabling them to neutralize ROS.39 Additionally, AC display antimicrobial effects, such as against \textit{Bacillus cereus}, and \textit{Helicobacter pylori}.62 They also reduce the expression of various genes involved in atherosclerosis formation in animal models.63 Moreover, AC inhibit inflammation-promoting pathways in immune cells.39

As stressed in the results section, an unusual high percentage of placebo response for the Mayo score improvement was noted. In this respect, a Cochrane meta-analysis64 of 61 studies estimated the placebo response and remission rates of induction treatment for UC (adult population) to be 33\% and 12\%, respectively. Placebo effect and rates of remission fluctuated based on several factors, including
the severity of endoscopic disease and the rectal bleeding score upon trial initiation, the type of medication used, duration of the disease, and the specific time when the primary outcome was assessed.⁶⁴

In a second more recent systematic review with meta-analysis (2022), clinical, endoscopic, histological and safety placebo rates in induction and maintenance trials of UC have been evaluated.⁶⁵ After considering a total number of 119 trials (of which 92 in induction and 27 in maintenance) the abovementioned parameters were for the induction studies 11%, 19% and 15%, respectively. Again, the authors deduced placebo response rates observed in trials for UC differ depended on the endpoint evaluated, whether it pertains to response assessment or achieving remission, and whether the trial focuses on induction or maintenance.

The purple color of the drug as well as the placebo might be partially responsible for the high placebo rates. As a possible interpretation of this unexpected placebo effect, studies conducted in the past have identified the color of the placebo pills to correlate with outcomes.⁶⁶-⁶⁸ Thus, the colors of drugs may impact how their effects are perceived and may also play a role in their effectiveness. Additionally, there appears to be a connection between the coloring of drugs that affect the central nervous system and the conditions they are prescribed for. In this context there is evidence that red, yellow, and orange color of pills are linked to a stimulant effect, whereas blue, purple and green are connected to a tranquillizing – sedative effect.⁶⁶-⁶⁸

The strengths of this study includes the double-blinded, randomized and multi-center study design. The low number of participants is the main limitation of this
study, this is at least partially due to restriction during the COVID-19 pandemic.

since individual patients, as aforementioned commented, have impacted relevantly
the outcome. However, this did not prevent a statistical significance for fecal
calprotectin between the two study arms.

CONCLUSION

In conclusion, ACRE did not induce clinical response at 8 weeks in patients
with moderate to severe UC. However, due to limitations to recruit a large sample
size, limiting some analyses, significant decreases in fecal calprotectin levels upon
ACRE treatment were noted.

CONFLICTS OF INTEREST

PS received consulting fees from Pfizer, Abbvie, Takeda and Janssen-Cilag and travel
support from Falk, UCB and Pfizer.

LB reports fees for consulting/advisory board from Abbvie, MSD, Vifor, Falk, Esocap,
Calypso, Ferring, Pfizer, Shire, Takeda, Janssen, Ewopharma.

GR declares consulting fees from Abbvie, Augurix, BMS, Boehringer, Calypso, Celgene,
FALK, Ferring, Fisher, Genentech, Gilead, Janssen, MSD, Novartis, Pfizer, Phadia, Roche,
UCB, Takeda, Tillots, Vifor, Vital Solutions and Zeller; speaker’s honoraria from Astra
Zeneca, Abbvie, FALK, Janssen, MSD, Pfizer, Phadia, Takeda, Tillots, UCB, Vifor and Zeller;
and grants support from Abbvie, Ardeypharm, Augurix, Calypso, FALK, Flamentera, MSD,
Novartis, Pfizer, Roche, Takeda, Tillots, UCB and Zeller.
BM reports traveling fees from Takeda, Vifor, Gilead and MSD. BM received fees as a speaker from Takeda. BM has served at an advisory board for Abbvie, Gilead, Takeda and BMS. BM has received research grants from MSD, BMS and Nestlé unrelated to the submitted work.

MD reports traveling fees from Takeda, FALK, Abbvie as well as consulting fees from Takeda.

Rest of the authors declare no compelling conflict of interests.

ACKNOWLEDGEMENTS

The authors wish to thank all the patients for their cooperation as well as their families for their support during this endeavor.

REFERENCES

Figure 1: Clinical Response of both arms (ACRE vs placebo) at Week 8 after baseline. ACRE, Anthocyanin rich extract. Numbers within the bars indicate the absolute number of patients.
Figure 2: post-hoc analysis, mean reduction in partial Mayo score, with 90% confidence interval for mean, albeit without statistical significance. ACRE, anthocyanin rich extract.
Figure 3: Calprotectin levels (μg/g) over the observation period between two arms.

ACRE, anthocyanin rich extract.

Table 1: Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>ACRE</th>
<th>Placebo</th>
<th>All patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (f/m)</td>
<td>10/14</td>
<td>5/5</td>
<td>15/19</td>
</tr>
<tr>
<td>All randomized patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (f/m)</td>
<td>8/10</td>
<td>4/4</td>
<td>12/14</td>
</tr>
<tr>
<td>Per protocol set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Mayo Score</td>
<td>8.43 ± 1.31</td>
<td>8.50 ± 1.90</td>
<td></td>
</tr>
<tr>
<td>(Mean value ± SD) at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steroids/no steroids</td>
<td>14 (77.8%)</td>
<td>4 (50.0%)</td>
<td>18 (69.2%)</td>
</tr>
<tr>
<td></td>
<td>4 (22.2%)</td>
<td>4 (50.0%)</td>
<td>8 (30.8%)</td>
</tr>
<tr>
<td>TNF tx/no TNF tx</td>
<td>3 (16.7%)</td>
<td>2 (25.0%)</td>
<td>5 (19.2%)</td>
</tr>
<tr>
<td></td>
<td>15 (83.3%)</td>
<td>6 (75.0%)</td>
<td>21 (80.8%)</td>
</tr>
</tbody>
</table>
ACRE, anthocyanin rich extract; f/m, female/male; SD, standard deviation; TNF, tumor necrosis factor; tx, treatment

Table 2: Categorized Change in Total Mayo Score

<table>
<thead>
<tr>
<th>Change in Total Mayo Score</th>
<th>Treatment</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACRE</td>
<td>Placebo</td>
</tr>
<tr>
<td>Clinical response</td>
<td>9 patients, 50.0%</td>
<td>3 patients, 37.5%</td>
</tr>
<tr>
<td>Improved</td>
<td>5 patients, 27.8%</td>
<td>2 patients, 25.0%</td>
</tr>
<tr>
<td>Unchanged</td>
<td>2 patients, 11.1%</td>
<td>2 patients, 25.0%</td>
</tr>
<tr>
<td>Worsened</td>
<td>2 patients, 11.1%</td>
<td>1 patient, 12.5%</td>
</tr>
<tr>
<td>All</td>
<td>18 patients, 100.0%</td>
<td>8 patients, 100.0%</td>
</tr>
</tbody>
</table>

ACRE, anthocyanin rich extract
<table>
<thead>
<tr>
<th></th>
<th>ACRE</th>
<th></th>
<th>Placebo</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients</td>
<td>%</td>
<td>Patients</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Symptomatic remission</td>
<td>8/18</td>
<td>44.4</td>
<td>3/8</td>
<td>37.5</td>
<td>0.371</td>
</tr>
<tr>
<td>No bleeding</td>
<td>13/18</td>
<td>72.2</td>
<td>4/8</td>
<td>50.0</td>
<td>0.139</td>
</tr>
<tr>
<td>Normal stool frequency</td>
<td>10/18</td>
<td>11.1</td>
<td>4/8</td>
<td>50.0</td>
<td>0.397</td>
</tr>
<tr>
<td>Endoscopic remission</td>
<td>4/18</td>
<td>22.2</td>
<td>2/8</td>
<td>25</td>
<td>0.412</td>
</tr>
</tbody>
</table>

Table 3: Categorized Changes at week 8

ACRE, anthocyanin rich extract