Evaluation of the diagnostic value of YiDiXie™-SS in PSA-positive patients

Xutai Li1,2*, Zhenjian Ge1,2*, Qingshan Yang1,2*, Yutong Wu1,2*, Huimei Zhou1,2*, Chen Sun1,2*, Wenkang Chen1,2*, Yingqi Li1,2*, Shengjie Lin1,2*, Pengwu Zhang1,2, Woping Wang1,2, Siwei Chen1,2*, Wei Li2, Lingzhi Tao2, Rong Huang2, Liangchao Ni1,2, Yongqing Lai1,2*

1 Department of Urology, Peking University Shenzhen Hospital, Shenzhen, 518036; 2 Institute of Urology, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036; 3 The Fifth Clinical Medical College of Anhui Medical University, Hefei 230032; 4 Shantou University Medical College, Shantou, Guangdong 515041; 5 Shenzhen University Health Science Center, Shenzhen, China 518055; 6 Shenzhen KeRuiDa Health Technology Co., Ltd., Shenzhen, 518071; 7 Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, 518036; 8 Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036.

Contributed equally to this work.

*Correspondence: Yongqing Lai, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E-mail: yqlord@163.com; Liangchao Ni, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E-mail: lncord@163.com; Rong Huang, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E-mail: huangrong0260@outlook.com; Lingzhi Tao, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, E-mail: 520111058@qq.com.

Background: Prostate cancer is one of the most common malignant tumors and poses a substantial threat to human health. The PSA test is commonly used in prostate cancer screening, however its high rate of false-positive results causes unnecessary mental suffering, expensive examination costs, physical injury and other adverse consequences. Therefore, there is an urgent need to find a convenient, cost-effective and non-invasive diagnostic method to reduce the false-positive rate of PSA. This study aimed to assess the diagnostic value of YiDiXie™-SS in PSA-positive patients.

Patients and methods: The study finally included 465 subjects with positive PSA test (prostate cancer group, n=292; BPH group, n=173). Remaining serum samples from the subjects were collected and tested with YiDiXie™ all-cancer detection kit. The sensitivity and specificity of YiDiXie™-SS were evaluated respectively.

Results: The sensitivity of YiDiXie™-SS for the malignant group was 100% (95% CI: 98.7% - 100%; 292/292), with a false negative rate of 0 (95% CI: 0 - 1.3%; 0/292). The specificity of YiDiXie™-SS for the benign group was 57.2% (95% CI: 49.8% - 64.4%; 99/173), with a false positive rate of 42.8% (95% CI: 35.6% - 50.2%; 74/173). This means that YiDiXie™-SS reduces the false positive rate by 57.2% (95% CI: 49.8% - 64.4%; 99/173) with essentially no increase in malignancy leakage.

Conclusion: YiDiXie™-SS significantly reduces the false-positive rate of PSA-positive patients without increasing the number of underdiagnosed malignant tumors. YiDiXie™-SS has vital diagnostic value in PSA-positive patients, and is expected to solve the problem of "high false-positive rate of PSA".

Clinical trial number: ChiCTR2200066840.

Key words: Prostate cancer, PSA, False-positive, YiDiXie™-SS

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
INTRODUCTION

Prostate cancer is one of the most common malignant tumors. According to the latest data for 2022, there are 1.5 million new cases of prostate cancer and 397,000 new deaths worldwide, making it the second most prevalent malignancy and the fifth most common cause of cancer-related deaths among males. Compared with 2020, prostate cancer incidence and death rates in 2022 increased by 3.71% and 5.72%, respectively. When discovered and diagnosed early, the survival rate for individuals with localized prostate cancer can be as high as 99% at 10 years or more; however, the overall 5-year survival rate for men diagnosed with advanced disease (distant metastases) is only about 30%. Therefore, prostate cancer poses a significant risk to human health.

PSA screening is widely used in prostate cancer screening. However, PSA screening can produce a large number of false-positive results. The PLCO trial indicated that among men who underwent prostate biopsy following a positive screening, only 32.3% were diagnosed with prostate cancer within 120 days. In another study, among all screened men who underwent biopsy after a positive screening, only 24.7% were diagnosed with prostate cancer within 12 months of testing. In another study, only 24.7% of all screen-positive men who underwent biopsy were diagnosed with prostate cancer within 12 months after testing. When the PSA test is positive, patients usually undergo a puncture biopsy or MRI for further diagnosis. False-positive results for prostate cancer mean that patients will have to undergo puncture biopsy or MRI for further diagnosis, and therefore these patients will have to bear unnecessary mental suffering, expensive tests, physical injuries and other negative consequences. Hence, there is an urgent need to establish a convenient, affordable, and non-invasive diagnostic approach to lower the false-positive rate of PSA screening for prostate cancer.

Based on the detection of miRNAs in serum, Shenzhen KeRuiDa Health Technology Co., Ltd. has developed “YiDiXie™ all-cancer test” (hereinafter referred to as the “YiDiXie™ test”). With only 200 milliliters of whole blood or 100 milliliters of serum, the test can detect multiple cancer types, enabling detection of cancer at home. The “YiDiXie™ test” consists of three independent tests: YiDiXie™-HS, YiDiXie™-SS and YiDiXie™-D.

The purpose of this study is to evaluate the diagnostic value of YiDiXie™-SS in PSA-positive patients.
PATIENTS AND METHODS

Study design

This work is part of the sub-study “Evaluating the diagnostic value of the “YiDiXie™ test” in multiple tumors” of the SZ-PILOT study (ChiCTR2200066840).

The SZ-PILOT study (ChiCTR2200066840) was a single-center, prospective, observational study. Subjects who signed the broad informed consent for donation of remaining samples at the time of admission or medical health checkup were included, and 0.5 ml of their remaining serum samples were collected for this study.

This study was blinded. Neither the laboratory personnel performing the “YiDiXie™ test” nor the technicians of KeRuiDa Co. evaluating the raw results of the “YiDiXie™ test” were informed of the subject’s clinical information. The clinical experts assessing the subjects’ clinical information were also unaware of the results of the “YiDiXie™ test”.

The study was approved by the Ethics Committee of Peking University Shenzhen Hospital and was conducted in accordance with the International Conference on Harmonization for “Good clinical practice guidelines” and the Declaration of Helsinki.

Participants

Subjects with TPSA ≥ 4ng/ml were included in this study. Subjects in the two groups were enrolled separately, and all subjects who met the inclusion criteria were included consecutively.

The malignant group initially enrolled hospitalized patients with “suspected (solid or hematological) malignant tumors” with a signed broad informed consent for donation of the remaining samples. Subjects with a pathologic diagnosis of “prostate cancer” were included in the malignant group, and those with a pathologic diagnosis of “benign prostatic hyperplasia” were included in the benign group. Participants who had ambiguous pathologic results were excluded from the study. Some of these prostate cancer samples were used in our prior work²⁵.

Subjects who were not qualified in the serum sample quality test prior to the “YiDiXie™ test” were excluded from the study. For further information on enrollment and exclusion, please see our prior work²³.

Sample collection, processing

The serum samples used in this study were obtained from serum left over after a normal consultation, without the need for additional blood sampling. Approximately 0.5 ml of serum was collected from the remaining serum of the participants in the Medical Laboratory and stored at -80°C for use in the subsequent “YiDiXie™ test”.

“YiDiXie™ test”

The “YiDiXie™ test” is performed using the “YiDiXie™ all-cancer detection kit”. The “YiDiXie™ all-cancer detection kit” is an in-vitro diagnostic kit developed and manufactured by Shenzhen KeRuiDa Health Technology Co., Ltd. for use in fluorescent quantitative PCR instruments. It detects the expression levels of dozens of miRNA biomarkers in serum to determine whether cancer is present in the subject. It predetermines appropriate thresholds for each miRNA biomarker, ensuring that each miRNA marker has a high specificity. The YiDiXie™ kit integrates these independent assays in a concurrent testing model to significantly increase the sensitivity in broad-spectrum cancers and maintain a high specificity.

The “YiDiXie™ test” consists of three tests with highly different characteristics: YiDiXie™ -HS, YiDiXie™ -SS and YiDiXie™ -D. The YiDiXie™ -HS (YiDiXie™ -Highly Sensitive) is developed with high sensitivity and high specificity. YiDiXie™ -SS (YiDiXie™ -Super Sensitive) significantly increases the number of miRNA tests to achieve extremely high
sensitivity for all stages in all malignancy types. YiDiXie™ -D (YiDiXie™ -Diagnosis) significantly increases the diagnostic threshold of individual miRNA tests to achieve very high specificity.

Perform the "YiDiXie™ test" according to the instructions of the "YiDiXie™ all-cancer detection kit". Refer to our prior work for detailed procedures15.

The original test results were analyzed by the laboratory technicians of KeRuiDa Co. and determined to be “positive” or “negative”.

Clinical data collection
Clinical, pathological, laboratory, and imaging data in this study were extracted from the subjects’ hospitalized medical records or physical examination reports. Clinical staging was completed by trained clinicians assessed according to the AJCC staging manual (7th or 8th edition)14,15.

Statistical analyses
Descriptive statistics were presented for baseline attributes and demographic information. For continuous variables, the total number of subjects (n), mean, standard deviation (SD) or standard error (SE), median, first quartile (Q1), third quartile (Q3), minimum, and maximum values were calculated. For categorical variables, the number and percentage of subjects in each category were calculated. The Wilson (score) technique was used to compute the 95% confidence intervals (CI) for several indicators.
RESULTS

Participant disposition

465 study participants were involved in this research (n = 292 cases for the malignant group and 173 cases for the benign group). The 465 participants’ clinical and demographic details are listed in Table 1.

Table 1. Participants’ demographic and clinical manifestation

<table>
<thead>
<tr>
<th></th>
<th>Malignant (n = 292)</th>
<th>Benign (n =173)</th>
<th>Total (N = 465)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>68.7 (8.74)</td>
<td>63.9 (8.61)</td>
<td>66.9 (8.99)</td>
</tr>
<tr>
<td>Median (Q1,Q3)</td>
<td>69 (63, 75)</td>
<td>64 (59, 70)</td>
<td>67 (61, 74)</td>
</tr>
<tr>
<td>Min, max</td>
<td>44, 87</td>
<td>36, 88</td>
<td>36, 88</td>
</tr>
<tr>
<td>Age, group, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>8 (2.7)</td>
<td>8 (4.6)</td>
<td>16 (3.4)</td>
</tr>
<tr>
<td>≥50</td>
<td>284 (97.3)</td>
<td>165 (95.4)</td>
<td>449 (96.6)</td>
</tr>
<tr>
<td><65</td>
<td>93 (31.8)</td>
<td>97 (56.1)</td>
<td>190 (40.9)</td>
</tr>
<tr>
<td>≥65</td>
<td>199 (68.2)</td>
<td>76 (43.9)</td>
<td>275 (59.1)</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>187</td>
<td>142</td>
<td>329</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>23.6 (2.86)</td>
<td>23.9 (2.91)</td>
<td>23.7 (2.88)</td>
</tr>
<tr>
<td>Median (Q1,Q3)</td>
<td>23.4 (21.8, 25.6)</td>
<td>23.8 (22.0, 25.9)</td>
<td>23.6 (21.9, 25.6)</td>
</tr>
<tr>
<td>Min, max</td>
<td>16.5 31.2</td>
<td>15.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Body mass index category, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight</td>
<td>8 (2.7)</td>
<td>3 (1.7)</td>
<td>11 (2.4)</td>
</tr>
<tr>
<td>Benign</td>
<td>96 (32.9)</td>
<td>72 (41.6)</td>
<td>168 (36.1)</td>
</tr>
<tr>
<td>Overweight</td>
<td>73 (25.0)</td>
<td>56 (32.4)</td>
<td>129 (27.7)</td>
</tr>
<tr>
<td>Obese</td>
<td>10 (3.4)</td>
<td>11 (6.4)</td>
<td>21 (4.5)</td>
</tr>
<tr>
<td>Missing</td>
<td>105 (40.0)</td>
<td>31 (17.9)</td>
<td>136 (29.2)</td>
</tr>
<tr>
<td>TPSA value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4, 10)</td>
<td>89 (30.5)</td>
<td>143 (82.7)</td>
<td>232 (49.9)</td>
</tr>
<tr>
<td>[10, 20)</td>
<td>73 (25.0)</td>
<td>25 (14.5)</td>
<td>98 (21.1)</td>
</tr>
<tr>
<td>[20, 100)</td>
<td>77 (26.4)</td>
<td>4 (2.3)</td>
<td>81 (17.4)</td>
</tr>
<tr>
<td>[100, 1000+)</td>
<td>53 (18.2)</td>
<td>1 (0.6)</td>
<td>54 (11.6)</td>
</tr>
<tr>
<td>AJCC clinical stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>6 (2.1)</td>
<td></td>
<td>6 (2.1)</td>
</tr>
<tr>
<td>Stage II</td>
<td>161 (55.1)</td>
<td></td>
<td>161 (55.1)</td>
</tr>
<tr>
<td>Stage III</td>
<td>15 (5.1)</td>
<td></td>
<td>15 (5.1)</td>
</tr>
<tr>
<td>Stage IV</td>
<td>109 (37.3)</td>
<td></td>
<td>109 (37.3)</td>
</tr>
<tr>
<td>Missing</td>
<td>1 (0.3)</td>
<td></td>
<td>1 (0.3)</td>
</tr>
</tbody>
</table>

Q1,Q3, first quartile, third quartile; SD, standard deviation.
Diagnostic Performance of YiDiXie™-SS

As shown in Table 2, the sensitivity of YiDiXie™-SS for the malignant group was 100% (95% CI: 98.7% - 100%; 292/292), with a false negative rate of 0 (95% CI: 0 - 1.3%; 0/292).

The specificity of YiDiXie™-SS for the benign group was 57.2% (95% CI: 49.8% - 64.4%; 99/173), with a false positive rate of 42.8% (95% CI: 35.6% - 50.2%; 74/173) (Table 2).

This means that YiDiXie™-SS reduces the false positive rate by 57.2% (95% CI: 49.8% - 64.4%; 99/173) with essentially no increase in malignancy leakage.

<table>
<thead>
<tr>
<th></th>
<th>Malignant</th>
<th>Benign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test positive</td>
<td>292</td>
<td>173</td>
<td>465</td>
</tr>
<tr>
<td>Test negative</td>
<td>0</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

SEN = 292/292 = 100% (98.7% - 100%) SPE = 99/173 = 57.2% (49.8% - 64.4%)
FNR = 0/292 = 0 (0 - 1.3%) FPR = 74/173 = 42.8% (35.6% - 50.2%)

Two-sided 95% Wilson confidence intervals were calculated.
SEN, Sensitivity. SPE, Specificity. FNR, False negative rate. FPR, False positive rate.

Figure 1. Basic flowchart of the "YiDiXie™ test".
DISCUSSION

Reasons for choosing YiDiXie™-SS

The "YiDiXie™ test" includes three distinct tests: YiDiXie™-HS, YiDiXie™-SS, and YiDiXie™-D. Among them, YiDiXie™-HS combines high sensitivity and high specificity. YiDiXie™-SS has extremely high sensitivity for all malignant tumor types, but slightly lower specificity. YiDiXie™-D is extremely high specific for all forms of malignant tumors but has lesser sensitivity.

The sensitivity and specificity of further diagnostic techniques are crucial in PSA-positive patients. On the one hand, sensitivity is important. A higher percentage of false negatives results from lower sensitivity. When this diagnostic approach yields a negative result, the patient’s diagnosis is usually terminated. A larger false-negative rate means that more cancerous tumors are overlooked, which will lead to delays in their treatment, progression of the malignancy, and possibly even development of advanced stages. Patients will thus have to bear the adverse consequences of poor prognosis, poor quality of life and high treatment costs.

On the other hand, specificity is important. Lower specificity means a higher rate of false positives. When the results of this diagnostic method are positive, the diagnosis of prostate cancer is usually confirmed by a puncture biopsy. A higher false-positive rate means that more non-prostate cancer cases undergo puncture biopsy. This undoubtedly substantially increases the patient’s mental anguish, cost of testing, physical harm and other adverse consequences.11,12

Consequently, there is a trade-off between "fewer malignant tumors missed" and "fewer benign tumors misdiagnosed" when it comes to sensitivity and specificity. When non-prostate cancer cases is mistakenly identified as malignant tumor, aspiration biopsy is typically performed instead of surgical resection. Therefore, PSA false positives do not lead to serious consequences in terms of organ loss. Thus, for PSA-positive patients, "fewer missed diagnoses of malignant tumors" is considerably more essential than "fewer misdiagnoses of benign tumors." Therefore, YiDiXie™-SS was chosen for reducing the false-positive rates of PSA rather than YiDiXie™-HS or YiDiXie™-D.

Clinical Implications of YiDiXie™-SS in PSA-positive patients

As shown in Table 2, the sensitivity of YiDiXie™-SS for the malignant group was 100% (95% CI: 98.7% - 100%; 292/292), with a false negative rate of 0 (95% CI: 0 - 1.3%; 0/292). The specificity of YiDiXie™-SS for the benign group was 57.2% (95% CI: 49.8% - 64.4%; 99/173), with a false positive rate of 42.8% (95% CI: 35.6% - 50.2%; 74/173) (Table 2). These results indicate that YiDiXie™-SS reduces the false-positive rate of 57.2% (95% CI: 49.8% - 64.4%; 99/173) in patients with a positive PSA test, while maintaining a sensitivity close to 100%.

As mentioned earlier, missed diagnosis of prostate cancer means delayed treatment, and false-positive PSA results mean wrong puncture biopsy. These results imply that, with essentially no increase in malignancy leakage, YiDiXie™-SS substantially reduces the probability of erroneous puncture biopsies in PSA-positive patients.

In other words, YiDiXie™-SS considerably decreases the emotional suffering, expensive examination costs, physical injuries, and other harmful consequences for PSA-positive patients without significantly increasing the delay in the treatment of malignant tumors. Therefore, YiDiXie™-SS meets the clinical needs well and has important clinical significance and wide application prospects.

YiDiXie™-SS is expected to solve the problem of "high false-positive rate of PSA"

Firstly, YiDiXie™-SS offers outstanding diagnostic performance in PSA-positive patients.
As previously mentioned, YiDiXie™-SS significantly reduces the probability of erroneous puncture biopsy in patients with false-positive PSA.

Secondly, YiDiXie™-SS reduces physician burdens and allows for rapid treatment of malignancies that might otherwise be postponed. When a PSA test is positive, the patient is often treated with a puncture biopsy or an MRI™. The number of surgeons and imaging physicians determines how many biopsies are performed. That appointments for prostate biopsies or MRIs can take months or even more than a year are widely available around the world. It is inevitable that the treatment of malignant cases would be delayed. It is not uncommon for PSA-positive patients awaiting treatment to develop malignant progression or even distant metastases.

Table 2 shows that “YiDiXie™-SS” reduces false-positive rates by 57.2% (95% CI: 49.8% - 64.4%; 99/173) in PSA-positive patients without increasing underdiagnosis of malignant cases. As a result, YiDiXie™-SS greatly relieves surgeons and imaging physicians from unnecessary workloads and facilitates the timely treatment of malignant tumor cases that would otherwise be delayed.

Finally, the YiDiXie™-SS offers “just-in-time diagnosis” for PSA-positive patients. On the one hand, The YiDiXie™ test is non-invasive and only requires a small amount of blood, allowing patients to complete the diagnostic process at home.

Limitations of the study

First, the number of cases in this study was small, and future studies with larger sample sizes are needed for further evaluation.

Second, this study was a case-control study of hospitalized patients, and future cohort studies of PSA-positive patients are needed for further evaluation.

CONCLUSION

YiDiXie™-SS significantly reduces the false-positive rate of PSA-positive patients without increasing the number of under-diagnosed malignant tumors. YiDiXie™-SS has vital diagnostic value in PSA-positive patients, and is expected to solve the problem of “high false-positive rate of PSA”. YiDiXie™ test requires only 20 microliters of serum, equivalent to around 1 drop of whole blood (1 drop of whole blood is approximately 50 microliters, which yields 20-25 microliters of serum). Considering the pre-test sample quality assessment test and 2-3 repetitions, 0.2 mL of whole blood is sufficient for the “YiDiXie™ test”. General patients can obtain the 0.2 mL of finger blood at home with a finger blood collection needle, without the need for venous blood collection by medical staff. Patients can complete the entire diagnostic process non-invasively without leaving their homes.

On the other hand, YiDiXie™-SS has nearly infinite diagnostic capability. Figure 1 shows the basic flow chart of YiDiXie™-SS. This means that YiDiXie™-SS not only does not require a doctor or medical equipment, but also does not require medical staff to collect blood.

As a result, YiDiXie™-SS has an almost infinite diagnostic capacity and is totally independent of the quality of clinician and medical facilities. Thus, YiDiXie™-SS enables PSA-positive patients to receive a “just-in-time diagnosis” without making them wait anxiously for an appointment.

In short, YiDiXie™-SS can play an important role in PSA-positive patients, and is expected to solve the problem of “high false-positive rate of PSA”.
FUNDING

This study was supported by Shenzhen Hospital (LCYJ2020002, LCYJ2020015, LCYJ2020020, LCYJ2017001) and Clinical Research Project of Peking University Shenzhen Hospital.

REFERENCES

8. Pinsky PF, Parsons HL and Andriole G: Mortality and complications after prostate biopsy in the Prostate, Lung, Colorectal and Ovarian Cancer Screening (PLCO) trial. BJU Int. 113: 254-9, 2014.

