Abstract
Researchers in the RECOMIA network have been developing AI tools for the automated analysis of PET/CT studies in lymphoma patients. To enhance these AI tools, the CALGB 50303 dataset from The Cancer Imaging Archive was identified for inclusion in their project. Ensuring the quality of databases used for AI training is crucial, and one quality control (QC) measure involves the AI-based Fingerprint method to verify correct de-identification of clinical trial images. The study applied the Fingerprint method to PET/CT studies from 130 patients, successfully detecting an incorrectly de-identified study and identifying its correct trial identification number. This demonstrates the feasibility of using AI for QC in clinical trials. AI-based methods offer significant opportunities for enhancing QC, providing automated, consistent, and objective analyses that reduce the workload on human annotators. Integrating AI into QC processes promises to improve accuracy, consistency, and efficiency, thereby enhancing data integrity and the reliability of clinical trial results. This study underscores the importance of further developing AI-based QC methods in clinical trials.
Competing Interest Statement
Edenbrandt is CMO of SliceVault AB, the company that has developed the AI tool used in the project.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This manuscript was prepared using data from Dataset CALGB 50303 from the NCTN/NCORP Data Archive of the National Cancer Institutes (NCIs) National Clinical Trials Network (NCTN).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors