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Abstract
Background
Rapid, reagent-free pathogen-agnostic diagnostics that can be performed at the point of need
are vital for preparedness against future outbreaks. Yet, many current strategies (polymerase
chain reaction, lateral flow immunoassays) are pathogen-specific and require reagents; whereas
others such as sequencing-based methods; while agnostic, are not (as yet) conducive for use at
the point of need. Herein, we present hyperspectral sensing as an opportunity to overcome
these barriers, realizing truly agnostic reagent-free diagnostics. This approach can identify both
pathogen and host signatures, without complex logistical considerations, in complex clinical
samples. The spectral signature of biomolecules across multiple wavelength regimes provides
rich biochemical information, which, coupled with machine learning, can facilitate expedited
diagnosis of disease states, the feasibility of which is demonstrated here.
Innovation
First, we present ProSpectral™ V1, a novel, miniaturized (~8 lbs) hyperspectral platform with
ultra-high (2-5 nm full-width, half-max, i.e., FWHM) spectral resolution that incorporates two
mini-spectrometers (visual and near-infrared). This engineering innovation has enabled
reagent-free biosensing for the first time. To enable expedient outcomes, we developed
state-of-the-art machine learning algorithms for near real-time analysis of multi-wavelength
spectral signatures in complex samples. Taken together, these innovations enable near-field
ready, reagent-free, expedient agnostic diagnostics in complex clinical samples. Herein, we
demonstrate the feasibility of this synergy of ProSpectral™ V1 with machine learning to
accurately identify SARS-CoV-2 infection status in double-blinded saliva samples in real-time (3
seconds/measurement). The infection status of the samples was validated with the
CDC-approved polymerase-chain reaction (PCR). We report accuracies comparable to
first-in-class PCR tests. Further, we provide preliminary support that this signal is specific to
SARS-CoV-2, and not associated with other respiratory conditions.
Interpretation
Preparedness against unanticipated pathogens and democratization of diagnostics requires
moving away from technologies that demand specific reagents; and relying on intrinsic
biochemical properties that can, theoretically, inform on all pathologies. Integration of
hyperspectral sensors and in-line machine learning analytics, as reported here, shows the
feasibility of such diagnostics. If realized to full potential, the ProSpectral™ V1 platform can
enable agnostic diagnostics, thereby improving situational awareness and decision-making at
the point of need; especially in resource-limited settings – enabling the distribution of newly
developed tests for emerging pathogens with only a simple software update.
Funding
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Research in context:
Evidence before this study
Our inability to quickly and effectively deploy and use reliable diagnostics at the point of need is
a major limitation in our arsenal against infectious diseases. We searched PubMed and Google
Scholar for articles published before May 2024 in English applying hyperspectral sensing
technologies of pathogen detection with terms, “hyperspectral,” “pathogens”, and “COVID-19”.
Various factors such as speed, sensitivity, availability of reagents, deployability, requirements
(expertise, resources), and others determine our choice of diagnostic. Today, diagnosis of
infection remains largely pathogen-specific, requiring ligands specific to the target of interest.
Indeed, Polymerase Chain Reaction (PCR)-based methods, the gold-standard technology to
diagnose COVID-19, are pathogen-specific and have to be re-evaluated with the emergence of
new variants. Lateral flow immunoassays, while readily deployable, are associated with lower
sensitivity and specificity, and require the development of ligands, which can be time-consuming
when addressing unanticipated or new threats. Select pathogen-agnostic methods such as
sequencing are evolving and becoming more feasible, but still require sample processing,
reagents, cold-chain, and expert handlers - and hence are not (as yet) available for routine
point-of-care use. In contrast, the characterization of biochemical signatures across multiple
spectral regimes (hyperspectral) can facilitate reagent-free agnostic diagnostics. Yet, many
spectroscopic methods are either limited to narrow wavelength ranges; or are too large for use
in the point-of-care setting; and may require complex and time-consuming analytics.

Added value of this study
This manuscript presents a paradigm-shifting miniaturized hyperspectral sensor with embedded
machine learning-enabled analytics that can overcome the above limitations, making
reagent-free agnostic diagnostics achievable. To our knowledge, this establishes the fastest
hyperspectral diagnostic platform (3 seconds/measurement), with no preprocessing and in a
small form factor, and executable with liquid (clinical) samples, without ligands or reagents. Our
data demonstrates that the sensitivity of this assay is comparable to gold-standard PCR-based
assays; and that the signatures are specific to COVID-19 and not associated with influenza and
other respiratory pathogens – establishing the truly agnostic nature of the platform. The sensor
consists of two embedded spectrometers, covering spectral bandwidth 400-1700 nm, which
covers spectral patterns associated with relevant biological moieties. With appropriate data
processing, we demonstrate balanced accuracies between 0·97 and 1·0 under a 10-fold
cross-validation (depending on the ML/AI algorithm used for prediction).

Implications of all the available evidence
With the optimization of algorithms and analytical methods and the development of appropriate
spectral databases, the ProSpectral™ hyperspectral diagnostics platform can be a flexible tool
for rapid, reagent-free pathogen-agnostic detection/diagnosis of disease at the point of need,
which can be a disruptive force in our preparedness to counter emerging diseases and threats.
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Introduction:
Rapid identification of infection at the point of need is critical to curbing downstream severity,
incidence, mortality, and morbidity.1,2 In current practice, the choice of the biochemical target
(e.g., nucleic acids vs. proteins), the mode of disease manifestation (e.g.; respiratory vs.
gastrointestinal), and the availability of resources and reagents; all determine the type of
diagnostic and its deployment across a population.3 During the COVID-19 pandemic, nucleic
acid amplification methods such as PCR were identified as the gold standard for pathogen
identification.4 Lateral flow immunoassays were deployed as home-based diagnostics for
improved situational awareness, while PCR-based methods provided specific identification at
the regional laboratory. While both methods are highly effective for diagnosing COVID and other
diseases, they have significant drawbacks. With regards to the identification of new and
emerging threats and future outbreaks, the most significant drawback of these methods is that
they are pathogen-specific. While easily deployed and simple to use, lateral flow immunoassays
require specific antibodies and/or ligands; and are also intrinsically associated with poor
sensitivity compared to nucleic-acid amplification methods. The latter, such as PCR, are highly
specific and sensitive. Yet, they require reagents, cold chain procedures, and, most commonly,
a laboratory interface for execution. Finally, the specificity of a diagnostic, while desirable,
requires constant iteration and re-design of primers and probes to address emerging variants,
as was evidenced during the COVID-19 pandemic.5,6 Overall, conventional targeted diagnostics
do not prepare us to rapidly address emerging and unanticipated outbreaks. Thus, there is an
urgent need for pathogen-agnostic and readily deployable, easy-to-use, reagent-free platforms
to effectively combat the next outbreak.
Beyond outbreaks, such technologies can also improve our ability to routinely identify and
effectively treat infectious diseases in the clinical setting. Previous work from our laboratory and
others has highlighted the risk of missed or ineffective diagnostics in routine medical practice
and highlighted the need for effective methods for routine use in such situations.4,7,8

Sequencing-based methods have demonstrated the most promise of the pathogen-agnostic
diagnostic modalities in development.9 Next-generation sequencing (NGS) technologies can
(arguably) identify any pathogen in a clinical sample, including previously uncharacterized or
emerging microbes. Studies from our team demonstrated the effectiveness of this method in
accurately identifying respiratory pathogens associated with disease in patients.4,10 However, the
dependency of the platform on reagents and expertise cannot be questioned, and there is a
need for further innovation and automation to enable ready use at the point of need. Beyond
sequencing, other biochemical sensor platforms are currently being studied.11 These include
lab-on-a-chip and microfluidics-based methods, surface-enhanced Raman spectroscopy, and
surface plasmon resonance-based methods; among others. 12 While many hold promise, the
critical need for reagent-free pathogen-agnostic diagnostics at the point of need remains
unresolved.
Herein, we present hyperspectral sensing as a potential solution to this significant challenge.
Hyperspectral sensing is a non-destructive measurement technique that uses light to
understand the composition of complex mixtures. In hyperspectral sensing, light at multiple
sequential wavelengths is passed through a sample. The molecular bonds of the compounds in
the sample will absorb light at specific wavelengths. A spectrometer measures the light that isn’t
absorbed and compares it with the light input, and the difference at each wavelength forms
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spectra. All biological moieties emanate distinctive spectral signatures which can provide unique
signature patterns that can theoretically allow for the identification of all biomarkers. Indeed,
several studies have applied hyperspectral sensing to develop diagnostics. These have proven
accurate in detecting biomarkers for Huntington’s disease, COVID-19, and more.13–22 However,
most of these studies used traditional spectrometers, which are typically bulky and expensive.
More recently, a new class of miniaturized spectrometers has enabled the adaptation of this
technology for inexpensive point-of-care diagnostics.23 To take advantage of the size and speed
of these miniature spectrometers, we also need to choose a sample collection approach that is
rapid, low-cost, and readily available.
Saliva has been increasingly recognized as a promising, non-invasive sample type.24 Infectious
disease, cancer - both localized and systemic, cardiovascular disease, diabetes, and more have
demonstrated detectable biomarkers in saliva.24–26 We choose to use saliva as the diagnostic
medium for detecting SARS-CoV-2 infection. Unlike previous studies that use saliva for
diagnostics, our study did not employ any preprocessing steps to enhance data quality.
Thus, miniaturized hyperspectral sensing can provide a reagent-free platform for point-of-care
pathogen-agnostic diagnostics via measurement of COVID-19 metabolites in saliva. While
further work is required to demonstrate the full potential of this technology, the work shown here
offers preliminary insights into the feasibility of realizing the same.
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Results:
A miniaturized hyperspectral platform combining multiple spectrometers is ideal for efficiently
capturing the desired spectra. Pattern’s ProSpectralTM V1 platform combined custom software
drivers and a data acquisition package deployed to a small, embedded computing system with
two miniature spectrometers (Figure 1A). The resulting platform is capable of measuring
biological moieties from 400-1700 nm, in continuum. At these wavelength ranges, all key
biomolecular species – proteins, lipids, nucleic acids and carbohydrates – are captured
effectively. To validate the real-world efficacy of this platform, we performed measurements in
blinded saliva samples collected from a commercial source as described in the methods (Figure
1B). We first generated ten replicate spectral measurements from 470 saliva samples over the
400-1700 nm wavelength range. Our sample set includes male and female participants (Figure
2A, B), across multiple age groups. After quality processing (see methods), our dataset
contained replicate hyperspectral measurements from 359 samples, split between 152
SARS-CoV-2-negative and 207 SARS-CoV-2-positive samples (Figure 2C).
To determine optimal preprocessing steps and machine learning classifiers to analyze
hyperspectral measurements, and to classify patients as either SARS-CoV-2 negative or
SARS-CoV-2 positive, we compared random forest, XGBoost, and H2O AutoML-based models
(Supplementary Figure 1A, B). Random forest classifiers consist of an ensemble of decision
trees that use randomness to create robust classification models. XGBoost is a
gradient-boosting framework that uses an ensemble approach similar to random forests and has
been shown to have high performance on a variety of classification tasks. Lastly, H2O AutoML is
a framework that allows for training a large variety of models and includes features to evaluate
these models efficiently and build ensembles of models based on the highest-performing
models. We also evaluated the dataset using Pattern Computer Inc.’s suite of machine learning
algorithms called the Pattern Discovery Engine™ (PDE). The PDE is a suite of proprietary
algorithms developed by Pattern Computer Inc. and can discover previously unknown patterns
within large datasets, without making prior assumptions, performing feature engineering, or
pruning data. The PDE uses relationships within the data to build a set of directed acyclic
graphs and leverage their topology to reduce dimensionality and discover hidden patterns within
the data. These algorithms use the patterns they uncovered to build predictive and, when
required, explainable models.
With up to ten spectral measurements for each saliva, we also wanted to explore how to
aggregate the spectra or probabilities into a single likelihood of COVID-19 infection
(Supplementary Figure 1C-E). For each of the mentioned models, input the data with the
spectra averaged, concatentated all the measurements into a single input, or treated each of the
ten as an individual sample and took the average of all the probabilities.
As noted earlier, to cover an expansive spectral range, our diagnostic platform contains two
spectrometers, thereby ensuring coverage of a broad suite of biochemical targets. However, this
feature also increases cost and complexity. Therefore, to quantify the benefit of incorporating
two spectrometers, we compared the Receiver Operating Characteristic and Precision-Recall
curves on random forest and XGBoost models trained solely on data from one of the
spectrometers to those generated while using both spectrometers. (Supplementary Figure
2A-D). We found that using two spectrometers to span across the visible and near-infrared
wavelengths achieved a higher classification score (Area Under the Curve (AUC)=0·97-0·98,
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Average Precision (AP) = 0·98) compared to using data from only one spectrometer (AUC =
0·74-0·87, AP = 0·79-0·92). Based on this, we conclude that while using two spectrometers will
increase the cost and complexity, the combined data is necessary for accurate prediction of
SARS-CoV-2 infection status and to make this platform competitive with the gold standard,
which is PCR. Further, the tandem use of two spectrometers will ensure the ability to capture
diverse biochemical signatures along the entire electromagnetic spectrum, which is required for
truly agnostic sensing.
To understand the best way to convert our spectral data into biological insights, we applied four
different models and multiple preprocessing approaches to determine the best overall approach
to classifying COVID-19 status from saliva. Machine learning and artificial intelligence have
different bias and variance trade-offs, and previous work applying models to hyperspectral
sensing data shows that it's hard to predict which one will be the best.27 Across all four models,
we achieved high sensitivity (0·89 to 1·0) and specificity (0·74 to 1·0) across each aggregation
approach (Table 1). The range of balanced accuracy metrics across all classifiers and
aggregation methods was from 0·84 to 1·0. In instances where the measured spectral intensity
saturated the spectrometer, a neutral density filter was used to attenuate. In the dataset where
the spectra from a given sample were combined into a single feature vector, the neutral density
filter resulted in 100% accuracy across all models, emphasizing the need to avoid saturating the
spectrometer to realize precise outcomes. However, the H2O AutoML model did achieve 100%
accuracy in samples measured with and without the neutral density filter. Lastly, PDE achieved
100% accuracy when averaging the probabilities across all spectral measurements for each of
the ten replicate measurements for all samples (Figure 2D).
We then determined whether specific saliva-based spectral features were associated with
SARS-CoV-2 infection. Our analysis identified six candidate spectral biomarkers associated with
SARS-CoV-2 infection. While there was wide variation in the association of biomarkers with the
models and datasets, these biomarkers were consistently observed in three model
preprocessing data combinations (Supplementary Figure 2C-E). The spectral features were
observed in the following wavelengths: 689 nm, 732 nm, 735 nm, 736 nm, 739 nm, and 740 nm,
from the visible range spectrometer.
To generate the ground truth, we measured mRNA expression levels for SARS-CoV-2 open
reading frames ORF1a and ORF1b, and the structural protein encoding nucleocapsid (N)
genes, N1, and N2. For each of the saliva samples, cycle threshold (Ct) values were collected
and used as the gold standard for quantifying the accuracy and sensitivity of the diagnostic
prediction. The highest Ct values observed for these genes were 34·5 (ORF1a), 33·5 (ORF1b),
35·0 (N1), and 38·6 (N2), respectively, indicating low viral load for these patients. Our models
could accurately classify even samples with such low viral loads, indicating high predictive
power competitive with RT-PCR based methods.
Our dataset included samples from 23 individuals who were negative for SARS-CoV-2 but
presented with flu-like symptoms (Supplementary Figure 3). Evaluation of these samples
showed that additional spectral biomarkers were identified that were not present in the
SARS-CoV-2 positive samples (Supplementary Figure 4). Although our current sample size is
limited for accurate discriminative identification of other infections, these data provide
preliminary support that spectral measurements have the specificity to achieve a discriminative
diagnosis of related viral infections in a clinical sample.
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Discussion
We present that innovative engineering and miniaturization of hyperspectral sensors and
advances in machine learning and artificial intelligence offer promising progress towards
realizing reagent-free, rapid, and pathogen-agnostic diagnostics at the point of need. As the
first step towards that, we demonstrate the diagnosis of COVID-19 in non-invasively collected
saliva samples from 470 patients with exquisite sensitivity and specificity, irrespective of the
choice of ML classifier used. Indeed, our method could identify COVID-19 even earlier than
PCR-based methods in a very small subset of samples. In addition to identifying spectral
signatures unique to COVID-19; we also demonstrate the feasibility of distinctive spectral
patterns associated with diverse viral pathogens. These findings demonstrate the feasibility of
spectral diagnostics of infection in real-time, without reagents or sample processing, offering
promise, especially in global health and military applications.
As evidenced by COVID-19 and other emerging threats, there is an imminent need for rapidly
developed, reagent-free, deployable diagnostics. Of the methods available, NGS is arguably the
most promising agnostic approach for pathogen detection today. However, NGS requires nucleic
acid extraction, library preparation, sequencing, and annotation through alignment against
reference genomes, similarity searches, or assembling contiguous genomes of novel
pathogens. In addition, NGS demands specialized expertise, complex sample preparation and
data analysis, highly specialized equipment, and significant computational resources. The
ProSpectral™ hyperspectral platform provides a complementary, rapid point-of-care device that
combines reagent-free, field deployable size and a rapid (3 seconds) sensor platform with
automated back-end machine-learning to immediately and accurately identify disease state.
This translates to building out datasets across various pathogens and developing additional
clinical applications of hyperspectral diagnostics.
The expediency of hyperspectral diagnostics is contingent on the associated machine learning
and artificial intelligence algorithms that allow for sensitive signature discovery. Within highly
defined diagnostic questions, such as the one described in this manuscript, it is possible to
validate outcomes accurately and ensure the physiological relevance of the diagnostics. Truly
realizing the potential of hyperspectral imaging for agnostic diagnostics, however, requires
standardization of associated analytic pipelines. Previous work from our laboratory and others
has highlighted the need to standardize data science methods when used in concert with
extremely variable complex biological data.28 Our team is already developing experimental and
in silico standards to benchmark clinical measurements. As noted in the manuscript, there is
ambiguity in the choice of classifiers and data processing methods that can impact the
outcomes of such studies. In our work, we have addressed this issue by evaluating several
classifiers, and iteratively comparing outcomes; and found that these methods yielded high
sensitivity and specificity, assuring us of the validity of our studies. With standardization of data
analytics, and enhanced datasets of relevant metabolite signatures, hyperspectral diagnostics
can change our ability to provide early and timely agnostic diagnostics, improving situational
awareness and associated decision-making during emergencies.
In addition to standardized data methods, another key challenge to expanding hyperspectral
diagnostics is gathering comprehensive training data. Because traditional spectroscopy
approaches can take several minutes to collect data, it is time- and labor-intensive to generate
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large sample sizes. By having a platform that is an order of magnitude faster (>60 seconds vs. 3
seconds), as new pathogens emerge, data can be quickly gathered to build diagnostic tests
efficiently. Standardization also hampers the ability to develop more comprehensive models.
Previous work has explored using miniature spectrometers to develop assays, however, these
works use custom hardware setups that are unstandardized and rely on software developed by
the spectrometer manufacturer and not readily available.29,30 The platform we have presented
has been developed to build custom software drivers and has been adapted into a newer
version of the platform that can work with multiple types of spectrometers. With this new,
commercially available platform, we are able to generate data and develop software to be
readily shared and build more sophisticated models. To further help expand hyperspectral
sensing to implement diagnostic tests, we are building large standardized hyperspectral libraries
of various clinical matrices to address sample uncertainty and improve the feasibility of realizing
such diagnostics. Further, a relatively low number of samples are needed to create/update a
ProSpectral™ usable model for a new pathogen or variant, enabling faster assay development
and applicability to new and emerging targets during emergencies.
To conclude, we present a deployable hyperspectral sensing platform as a potential technology
to enable rapid clinical diagnosis at the point of need.
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Methods
Saliva samples
Saliva from 240 female and 230 male individuals between the ages of 4 - 91 years (median age
= 42) were purchased through Cantor BioConnect, Inc. Of the 470 samples, 196 were
COVID-19 negative and 274 were COVID-19 positive, and validation was performed by PCR. Of
the SARS-CoV-2 negative samples, 77 (16·5%) were male and 119 (25·5%) were female. Of
the SARS-CoV-2 positive samples, 153 (32·8%) were male, and 118 (25·3%) were female.
Following collection, samples were stored at -20℃.

Hyperspectral platform hardware and setup
The ProSpectral™ V1 platform provided by Pattern Comptuer, Inc. includes multiple
spectrometers, a tungsten halogen light source, and a cuvette holder with directed light passed
through via multimode fiber optic cables. The range 400-1700 nm is provided by each scan
performed, at 0·4 nm pixel resolution and 2·5 nm FWHM in the 400-1100 range and 1·8 nm
pixel resolution and 10.0 FWHM in the range 900-1700 (IR range overlaps with VIS range).

Hyperspectral data acquisition
Samples were thawed in a room-temperature water bath, and moved to ice before being
measured immediately in batches of 20 to 40 samples. For samples received in large cups, the
samples were thawed, measured, and then frozen in smaller vials. For each saliva sample, 100
µL was loaded into a cuvette (Eppendorf™ UVette™), the light was transmitted through, and
spectra were generated across a 100 ms integration time. In addition, spectra were generated
for several samples using a 10% neutral density filter to attenuate the signal, where the signal
intensity saturates the spectrometer's resolution. Data was corrected for this factor, as required.
Reference measurements were taken with water using In total, we generated 6465 spectra
measurements. The total assay time (from loading the cuvette to outcomes) for each sample
was 3 seconds.

Data Processing
For each saliva sample, data was filtered; none of the measurements across both
spectrometers was greater than 5000. We also filtered wavelengths outside the manufacturer's
recommended wavelengths, reducing the visible spectrometer data to 400 - 1100 nm and 900 -
1800 nm for the infrared spectra. Data was combined in three different ways. Averaging across
each wavelength, generating a single 2182 array of data points. The second was all
measurements from a sample combined to generate a single array of 21820 data points. Data
from the same filter was combined, and if only a subset of measurements passed the 5000 filter,
we removed it from the analysis. Lastly, we treated each of the 2182 measurements individually,
from ten measurements. The final probabilities were combined by taking the mean of the
probabilities. For the dataset treated individually, the training test splits were generated to
ensure that none of the data from a single sample leaked into both the training and test
datasets. Each model was trained and tested with samples. All data processing was performed
using Python 3.11 and filtering using polars version 0.20. Visualizations were performed using
matplotlib (3.8.2) and seaborn (0.13.2).
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Comparison of measurements made on individual spectrometers versus combined use of both
spectrometers
We performed 10-fold cross-validation using random forest and XGBoost classifiers. These
models were trained on the spectra only from the visible range, only on the spectra from the
near-infrared range, or trained on the combined dataset. Each classifier calculated a probability
of being either SARS-CoV-2 positive or SARS-CoV-2 negative, and these were compared with
the truth labels to generate precision-recall and receiver operator characteristic curves.

Comparison of spectral biomarkers with non-COVID infections
We trained 100 random forest models on the hyperspectral data from 23 non-COVID individuals
with random samples of size 23 from the SARS-CoV-2 positive or SARS-CoV-2 negative
samples where the data treated each measurement as a single sample. Each set of random
forests was trained to compare non-COVID infections vs SARS-CoV-2 positive,
non-SARS-CoV-2 infections vs SARS-CoV-2 negative, and SARS-CoV-2 positive vs
SARS-CoV-2 negative. We extracted and averaged the feature importance for each wavelength
from each random forest, and took the top 25 wavelengths sorted by the averaged feature
importance.

Hyperspectral classifiers for COVID-19
We trained classifiers using Random Forest (sci-kit learn v1.4.0), XGBoost (v.2.0.3) classifier,
and H2O AutoML (v3.44.0.3). The default parameters were used for the random forest and
XGBoost models. For H2O AutoML, the model training was done for twenty minutes, and the
best model was used for subsequent analysis. We also applied the PDE software suite to train
an additional binary classifier. For each dataset, model probabilities were calculated, and
metrics were calculated by using the threshold that maximized the F1 score.
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Figure 1. Rapid hyperspectral sensing for COVID-19 detection. A) The ProSpectral™ V1
assembled platform consists of a light source that shines light through a cuvette holder
enclosing the cuvette with the saliva sample. The light is passed via fiber optic cables to the
ProSpectral™ V1 platform. Custom software drivers developed by Pattern Computer Inc. enable
the platform to initiate the platform and convert the spectrometer output into a data file. B) The
ProSpectral™ V1 platform requires no preprocessing and generates spectra across both
spectrometers within three seconds, and our machine-learning analysis finds spectral features
that lead to high sensitivity and specificity.
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Figure 2. The ProSpectral™ platform can accurately distinguish between SARS-CoV-2 positive
and negative saliva samples across various ages and sexes. A) The age of the frozen samples
spanned from 4 to 91 sampled across both genders. B) This study's distribution of SARS-CoV-2
positive and negative individuals is equally represented across genders. Purple represents
saliva samples from male individuals, yellow represents the number of samples from female
individuals. C) Overview of the spectra across both spectrometers. Spectra from SARS-CoV-2
positive saliva samples are shown in blue, and spectra from SARS-CoV-2 negative samples are
shown in orange. Each line in the plot represents the average across all spectra, and the
standard deviation is represented by the lighter-colored region around it. The left column
contains spectra from the visible range spectrometer from 400 to 1100 nm. The right column
shows data from the near-infrared spectrometer spanning 900 to 1700 nm. The y-axis
represents the measurement value from the spectrometer converted to digital count. The first
row is the unprocessed spectra and is the input to all the machine-learning approaches used in
this study. For visualization, we also show the normalized spectra (second row) and the
Savitzky-Golay 2nd derivative of the normalized spectra (window length = 21, derivative = 2,
polyorder = 3) (third row). D) Across the several models we tested, the Pattern Discovery
EngineTM achieved perfect accuracy in classifying the holdout dataset.
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Supplementary Figure 1. Illustration of preprocessing options. A) Overview of data generation
from sample to data. The saliva sample in the cuvette is used to generate ten spectral
measurements. The different hues represent one of the ten spectral measurements generated.
B) We evaluated four classifiers, Random Forest from scikit-learn, XGBoost classifier, H2O
AutoML classifier, and the Pattern Discovery EngineTM. For each of these models, they will take
the input spectra(s) and output a single probability estimate. C) For flattened spectra, data from
each of the ten measurements are concatenated into a single vector. This vector is then input
into the models we used to produce a single probability estimate. C) For each wavelength, the
spectral measurements are averaged into a single vector and input into the machine learning
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model. D) Each measurement is treated as an individual sample and input into the machine
learning models directly. The resulting probabilities are either averaged into a single probability
estimate.
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Supplementary Figure 2. Spectra from visible and infrared are crucial for high classification
performance on neutral density filter datasets. We trained a random forest classifier and
XGBoost classifier model on data from only the visible, near-infrared, or both visible and
near-infrared, and on the same training and test splits in the previous analyses. A) ROC and B)
Precision-Recall Curves for the random forest classifier and C) ROC and D) curves for the
XGBoost classifier. We found that classification is highest for either model when using spectra
from both spectrometers instead of a single spectrometer. Combining both spectrometers into a
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single diagnostic platform is crucial for high diagnostic performance.
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Supplementary Figure 3. Comparison of non-SARS-CoV-2 saliva spectra with positive and
negative samples shows differences across multiple wavelengths. Comparison of the
SARS-CoV-2 positive spectra (red) with the spectra of saliva samples confirmed to not have
SARS-CoV-2 but have some flu-like symptoms (green) is shown in the left two columns, and the
comparison of the SARS-CoV-2 negative spectra (blue) with the non-SARS-CoV-2 spectra is
shown in the right two columns. The first row is the unprocessed spectra and is the input to all
the machine-learning approaches used in this study. For visualization, we also show the
normalized spectra (second row) and the Savitzky-Golay 2nd derivative of the normalized
spectra (window length = 21, derivative = 2, polyorder = 3) (third row). Overall, because of the
few non-SARS-CoV-2 samples (23), there is a larger variation in the spectra and overall is
different compared to both SARS-CoV-2 positive and SARS-CoV-2 negative samples.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.03.24308300doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.03.24308300


Supplementary Figure 4. Random Forest detects spectral features that are specific to
non-COVID Infections. Three sets of models were trained. Each model, the SARS-CoV-2
negative or SARS-CoV-2 positive dataset was downsampled to 23 samples. We trained 100
random forest models, comparing non-SARS-CoV-2 infections vs SARS-CoV-2 negative (row
1), SARS-CoV-2 positive vs SARS-CoV-2 negative (row 2), and non-SARS-CoV-2 infections vs
SARS-CoV-2 positive (row 3). We averaged the feature importance across all 100 models and
took the top 25 wavelengths ranked by the average feature importance. For these intersection
plots, we also considered the wavelengths within 5 nm of the important wavelengths also as
important. Each dot represents the intersection of important wavelengths for each row. Multiple
dots connected by a line indicate those models had important wavelengths shared between all
of them. We found that of the 25 spectral features in the non-SARS-CoV-2 infections versus
SARS-CoV-2 positive model (column 1), most were specific to this model compared to
non-SARS-CoV-2 infections versus SARS-CoV-2 negative (column 2) or SARS-CoV-2 positive
vs SARS-CoV-2 negative (column 3). Overall, this indicates that the ProSpectral™ V1
diagnostic platform can detect spectral biomarkers that differentiate between SARS-CoV-2
positive and non-SARS-CoV-2 infections, and suggests that with more samples, we could
accurately distinguish between types of infections.
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