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BACKGROUND.	Medical	decision‐making	 is	 commonly	 guided	 by	 systematic	 analysis	of	peer‐reviewed	 scientific	 literature,	
published	as	systematic	literature	reviews	(SLRs).	These	analyses	are	cumbersome	to	conduct	as	they	are	they	require	large	
amounts	of	time	and	subject	matter	expertise	to	be	available.	Automated	extraction	of	key	datapoints	from	clinical	publications	
could	speed	up	the	process	of	systematic	literature	review	assembly.	To	this	end,	we	built,	trained	and	validated	SURUS,	a	named	
entity	 recognition	 (NER)	 system	 comprised	 of	 a	Bidirectional	 Encoder	Representations	 from	Transformers	 (BERT)	model	
trained	on	a	highly	granular	dataset.	The	aim	of	this	study	was	to	assess	the	quality	of	classification	of	critical	elements	in	clinical	
study	abstracts	by	SURUS,	in	particular	the	patient,	intervention,	comparator	and	outcome	(PICO)	elements	and	elements	of	
study	design.	
DATASET	&	METHODS.	The	PubMedBERT‐based	model	was	trained	and	evaluated	using	a	dataset	of	400	interventional	study	
abstracts,	manually	annotated	by	experts	using	25	labels	with	a	total	of	39,531	annotations	according	to	a	strict	annotation	
guideline,	with	Cohen’s	 κ	 inter‐annotator	agreement	of	0.81.	We	evaluated	 in‐domain	quality,	and	assessed	out‐of‐domain	
quality	of	the	system	by	testing	it	on	out‐of‐domain	abstracts	of	other	disease	areas	and	observational	study	types.	Finally,	we	
tested	the	utility	of	SURUS	by	comparing	its	predictions	to	expert‐assigned	PICO	and	study	design	(PICOS)	classifications.	
RESULTS.	The	SURUS	NER	system	achieved	an	overall	F1	score	of	0.95,	with	minor	deviation	between	labels.	In	addition,	SURUS	
achieved	a	NER	F1	of	0.90	 for	out‐of‐domain	 therapeutic	area	abstracts	and	0.84	 for	observational	study	abstracts.	Finally,	
SURUS	showed	considerable	utility	when	compared	to	expert‐assigned	PICOS	classifications	of	interventional	studies,	with	an	
F1	of	0.89	and	a	recall	of	0.96.	
CONCLUSION.	To	our	knowledge,	with	an	F1	score	of	0.95,	SURUS	ranks	among	the	best‐performing	models	available	to	date	for	
conducting	exhaustive	systematic	literature	analyses.	A	strict	guideline	and	high	inter‐annotation	agreement	resulted	in	high‐
quality	 in‐domain	medical	 entity	 of	 a	 finetuned	BERT‐based	model,	which	was	 largely	preserved	during	 extensive	out‐of‐
domain	evaluation,	indicating	its	utility	across	other	indication	areas	and	study	types.	Current	approaches	in	the	field	lack	the	
granularity	 in	 training	data	and	versatility	demonstrated	by	 the	SURUS	approach,	 thereby	making	 the	 latter	 the	preferred	
choice	for	automated	extraction	and	classification	tasks	in	the	clinical	literature	domain.	We	think	that	this	approach	sets	a	new	
standard	in	medical	literature	analysis	and	paves	the	way	for	creating	highly	granular	datasets	of	labelled	entities	that	can	be	
used	for	downstream	analysis	outside	of	traditional	SLRs.	
KEYWORDS.	Language	Model;	Evidence‐Based	Medicine;	PICO;	Systematic	Literature	Review;	Natural	Language	Processing;	Bi‐
directional	Encoder	Representations	from	Transformers;	Named	Entity	Recognition	
 

Introduction 
Interventional trials are an important source of scientific 
data for medical decision-making. Unstructured data from 
trials are carefully evaluated in systematic literature re-
views (SLRs), which are typically accompanied by meta-
analyses. These efforts result in essential medical docu-
ments that help drive decision making in the medical field. 
The key purpose of SLRs is to provide scientific validity 
through the inclusion of the complete body of evidence to 
answer a specific research question through an evidence-
based approach. As such, the generation of SLRs is an intri-
cate process, during which a broad selection of literature in 
the field of study is manually screened for eligibility and 
evaluated for the quality of evidence. It is paramount that 
an SLR represents an exhaustive evaluation of an area 
within a scientific field, and it is of high importance that the 
task of eligibility assessment is scrutinized and performed 
with complete recall to avoid incorrect exclusion of 

evidence. This assessment is particularly important in the 
context of the growing body of scientific publications avail-
able; from 1960 onwards, the number of PubMed records 
has grown exponentially [1], [2]. Nowadays, the initial 
screening process for SLRs in active medical fields often in-
cludes more than 3000 scientific abstracts. This means that 
assuming one would be able to process abstracts at a pace 
of 1 per minute, this task alone would take a human at least 
50 hours of reading time. Given that the Cochrane Institute’s 
guidelines for an SLR involve independent screening by two 
trained experts, a modern, manual SLR process places a dis-
proportional workload on expensive medical experts, often 
resulting in months of full-time work and costs easily ex-
ceeding $100,000 per SLR [3], [4]. 
Clinical questions for evidence-based practice are typically 
structured according to elements of an established frame-
work called PICO. For a clinical SLR project, information on 
the Patient, Intervention, Comparator, and Outcome (PICO) 
are defined to determine the scope of the work and the trials 
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eligible for the project [5]. For example, the PICO0F0F0F

1 frame-
work of a trial could comprise “acute coronary syndrome” 
(Patient), “rivaroxaban” (Intervention), “placebo” (Compar-
ison) and “systolic blood pressure” (Outcome). Along with 
elements listed in the PICO framework, study design char-
acteristics (“randomized”) provide additional valuable in-
sights for the selection of eligible studies [6], [7]. Hereafter, 
the combination of PICO and study design characteristics 
will be referred to as the PICOS framework or PICOS in 
short.  
One of the challenges in the identification of elements of PI-
COS is their dependence on textual context. For example, 
“stroke” may refer to a criterium of study participants for 
their inclusion into the study (i.e. part of “Patient”) or to an 
endpoint that is measured during the study (i.e. part of 
“Outcome”). It may also refer to related research, in which 
case its identification is of no use to the reviewer. 
Over the past decades, the increasing popularity of machine 
learning (ML) models has given rise to the development of 
methods to speed up the SLR screening process. Some ML 
approaches rank scientific publications according to their 
eligibility to a research question, thus providing the re-
viewer with the option of a priority cut-off for screening [8], 
[9], [10]. Alternatively, ML methods can provide the re-
viewer with information on scientific publications, which 
can be used to include or exclude studies in further anal-
yses. In particular, ML-based natural language processing 
(NLP) methods may extract elements of PICOS from un-
structured medical text or predict the eligibility of a study 
based on a set of eligible studies initially selected by the re-
viewer. Ultimately, accurate and complete extraction of 
study characteristics by ML models could enable reviewers 
to base their eligibility decisions on the model outputs dur-
ing the screening process of an SLR. A subset of biomedical 
NLP methods currently focuses on named entity recogni-
tion (NER) classification techniques. Using NER, unstruc-
tured text is processed and words, expressions or sentences 
are labeled with pre-defined classes (e.g. diseases, drugs, 
etc.) [2].  
Several approaches have been proposed for the extraction 
of elements of PICOS from clinical publication texts [11]. De-
spite their apparent advantages, these NLP tools currently 
have a few limitations: (1) valuable study design features 
are often not extracted (e.g. study duration and study size); 
(2) PICO-focused ML-solutions typically focus on prediction 
of relatively large text sequences, resulting in coarse-
grained extraction of limited use to the reviewer; (3) the 
quality of current NER systems are insufficient to approxi-
mate expert reviewer eligibility assessment performance 
[12]; and (4) there are only few datasets available which are 
designed specifically for PICO extraction [13], [14], [15], 
[16], but they are limited in terms of size and granularity, 
and models trained on these datasets lack performance re-
quired. 
In this paper, we provide an elaborate evaluation of SURUS, 
a BERT-based classification model finetuned on a highly 
granular, manually annotated dataset of medical annota-
tions. SURUS was designed for the extraction of PICOS 

 
 
1 https://www.cochranelibrary.com/about/pico-search 

elements from clinical texts. SURUS (which is not an acro-
nym) was trained to classify 25 different annotation labels 
in the abstracts of interventional studies. In addition to this, 
the SURUS NER method design is intended to facilitate the 
extraction of the results of clinical endpoints using relation 
extraction. Currently, SURUS is being integrated in software 
for systematic literature selection and analysis by medical 
professionals and scientists. The software allows for identi-
fication of relevant literature through the recognition of 
medical named entities and abstract sections.  

The primary aims of this research were to validate the an-
notation method used to create the fine-grained dataset un-
derlying SURUS and to evaluate the quality, consistency and 
utility of the SURUS system. Our contributions are two-fold: 
(1) we show that, using a detailed and highly granular an-
notation method, the BERT model can be fine-tuned to rec-
ognize a large diversity of contextually divergent medical 
entities with high accuracy; (2) the annotation method pro-
posed can be used for classification of key, medically rele-
vant concepts in clinical texts with high reliability, and may 
be extrapolated for use in other (medical) fields. To the best 
of our knowledge, SURUS is the first deep learning-based 
system capable of extracting a wide variety of clinically rel-
evant entities from a text with an accuracy high enough for 
use in clinical practice.  

Related work 
Previously, data classification and categorization of scien-
tific study records were experimented with using Support 
Vector Machines (SVMs), Conditional Random Fields 
(CRFs), Long Short-Term Memory (LSTM) or, more re-
cently, Bidirectional Encoder Representations from Trans-
formers (BERT) models. Examples of tools employing one 
or more of these techniques were recently reviewed and 
evaluated in a systematic review [11]. 

Whilst all of the models listed above have their advantages 
and drawbacks, the consensus is that transformer-based 
methods such as BERT combine high potential with rela-
tively small (annotation) effort compared to alternatives 
[11]. BERT is a transformer encoder model, pretrained on a 
vast dataset of books and Wikipedia [17]. BERT models 
have shown superiority compared to BiLSTM models on 
several tasks including NER [18], [19]. Later on, BERT was 
expanded upon by adding biomedical scientific texts to its 
pretraining, including the specialized BERT-derivatives Bi-
oBERT [20], SciBERT [21] and PubMedBERT [22].  

The most recent innovation in the field of NLP are genera-
tive large language models (LLMs). LLMs, such as GPT-4 and 
ALPACA, excel in summarization, contextualization and ex-
trapolation of information from a wide range of scientific 
fields. In the medical field, contributions include summari-
zation of medical texts, chat-bot mediated diagnosis and 
medical education [23], [24]. However, the generative na-
ture of these models make them prone to hallucination and 
classification inaccuracy, which is undesirable in a task de-
manding extensive classification recall [23], [25]. For this 



Evaluation of SURUS: a Named Entity Recognition System to Extract Knowledge from Interventional Study Records 

Peeters et al. 2024 (preprint)   3

reason, we decided to use a variant of BERT as the classifi-
cation model of choice for validation of the quality of the da-
taset presented here. 
BERT-based models can be fine-tuned to perform well in 
specialized supervised learning tasks. Manual, task-specific 
labeling for fine-tuning a model is work-intensive and re-
quires expert knowledge of the task and domain. In addi-
tion, currently available datasets for NER are often of lim-
ited quality and consistency [26].  
To our knowledge, there are currently 3 datasets publicly 
available for recognition of PICO specifically. First, Kim et	al. 
created the NICTA-PIBOSO dataset1F1F1F2, which consists of 1000 
abstracts with manually labeled sentence annotations 
amongst 5 label classes [27]. Second, Jin et	al. presented the 
PubMed-PICO dataset 2F 2F2F 3 , consisting of almost 25,000 ab-
stracts of which relevant sentences were automatically as-
signed to 1 of 7 labels using a rule-based algorithm [28]. 
Third, Nye et	al.	[29] reported the EBM-NLP corpus 3F 3F3F4, which 
consists of 5190 abstracts of scientific publications, 190 of 
which are annotated by experts and 5000 by laymen, using 

 
 
2 https://github.com/jind11/NICTA-PIBOSO-Dataset 
3 https://paperswithcode.com/dataset/pubmed-pico-element-detection-
dataset 

Population, Intervention and Outcome labels. The EBM-NLP 
corpus was used to train PICO-extracting systems on a sen-
tence [30], [31] and span level [32], [33].  
For SURUS to be able to accurately and concisely predict el-
ements of PICOS, we created a dataset that offers the follow-
ing advantages: (1) the annotation approach is suitable for 
word-level extraction; (2) we distinguish 25 different labels 
allowing for fine-grained extraction of PICOS characteris-
tics; (3) the dataset presented here consists exclusively of 
expert-annotated labels; (4) our dataset is designed in a 
way that would facilitate extraction of detailed study results 
through relation extraction in a later phase of SURUS devel-
opment.  

Materials and Methods 
Dataset 
For our dataset, we used a set of scientific articles abstracts, 
publicly available in the PubMed database4F 4F4F5. PubMed is the 
most widely used source of clinical evidence and consists of 
the Medline and PMC databases. Our dataset consisted of 
abstracts of interventional study reports. Interventional 

4 https://ebm-nlp.herokuapp.com/ 
5 https://pubmed.ncbi.nlm.nih.gov/ 

Figure 1 - Sankey diagram of all 48,833 expert annotations in the NER dataset. From left to right, the distribution of annotations is illustrated 
between different categories (nodes) of therapeutic area, annotation label class, annotation label and record domain. The width of the connec-
tions between nodes illustrate the number of overlapping annotations between nodes. Total number of annotations in nodes are listed between 
brackets behind the node name.   
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studies are characterized by investigation of a medical in-
tervention and group distinction is typically based on differ-
ences in therapeutic regimen [34]. Though of similar study 
type, the style of reporting may vary greatly between ther-
apeutic areas and interventional study subtypes. For this 
reason, abstracts included in the SURUS dataset were of var-
ious interventional study subtypes and therapeutic areas. 
T o ascertain high versatility, 4 of the most important ther-
apeutic areas as reported in WHO ICD-115F5F 5F6 were selected to 
be represented in the dataset: cardiovascular diseases, en-
docrine diseases, neoplasms and respiratory diseases. In to-
tal, 400 article abstracts of interventional studies (100 for 
each therapeutic area) were randomly selected from the 
PubMed database for in-domain evaluation of the NER sys-
tem. In addition, a set of 123 other article abstracts was ran-
domly selected for out-of-domain therapeutic area (90) and 
study type (33) evaluation. During randomization, the aim 
was to achieve a fitting representation of the real-world di-
versity of interventional publication abstracts in our da-
taset.  

Expert annotations in the NER dataset 

The abstracts of these selected publications were manually 
annotated. During annotation, entities were labeled and as-
signed to one of 25 labels, amongst 7 label classes. Label 
classes that not relevant to extraction of PICOS elements 
were designed for either extraction of additional valuable 
information outside of PICOS or extract entities of study re-
sults. In addition, an element of PICOS may consist of multi-
ple labels. For example, “Population” may be composed of 
entities of the “Methodology Inclusion Criteria” but also 
“Disease Indication”. We chose this structure to clearly de-
fine the contextual niche of every label class, and to add to 
the granularity and the utility of the predictions made. All 
label classes had distinct contextual dependencies and 
unique labels. A full overview of annotations in the dataset 
is visualized in Figure 1, the mapping of labels to elements 
of PICOS and more detailed descriptions of the label class 
are available in Appendix table B. Correct labeling of text el-
ements is dependent on the context of the element and an-
notations made in its vicinity. For example, when men-
tioned in the methods section, “overall survival” was la-
beled as an element of the label class ‘Methodology’, 
whereas it was labeled as an element of the ‘Parameter’ 
class in the results section. However, when “overall sur-
vival” was mentioned in the results section without any as-
sociation with annotations of the ‘Result’ class (so without 
associated results), it was not labeled at all. These nuances 
add to the intricacy of the annotation process. 
In total, the 400 scientific abstracts were labeled with 
39,531 annotations, averaging 98.83 (±29.70) annotations 
per abstract. 

NER dataset annotation process 

Master students with a pharmaceutical or biomedical back-
ground were tasked to annotate the scientific abstracts. To 
warrant the quality and consistency of the annotations 
made, we made four provisions: (1) a detailed annotation 

 
 
6 https://icd.who.int/browse11/l-m/en 
7 https://huggingface.co/transformers/model_doc/bert.html#bertto-
kenizer 

manual was assembled by the first author to guide the an-
notators; (2) all annotators followed a 2-day course, during 
which they were instructed about the annotation method-
ology and process; (3) all annotations made were reviewed 
by one of two expert annotators; (4) annotation consistency 
was manually monitored using an extensive set of restric-
tive rules for annotation span range and context. 
The primary aims of the manual created was to facilitate 
complete extraction of PICOS elements and to promote con-
sistency of annotations made between articles in different 
fields and of different designs. Due to the high diversity of 
contextual situations in medical articles, the assembly of the 
manual was an iterative process featuring regular ‘consen-
sus sessions’, during which the judgment of one expert an-
notator was decisive. Figure 2 shows a fully annotated ex-
ample of a study abstract.  

Inter-annotator agreement 

To estimate the reliability of the data, we measured inter-
annotator agreement (IAA) between four annotators (two 
expert annotators and two of the student annotators) on a 
randomly determined subset of the scientific abstracts. For 
IAA assessment, 35 scientific abstracts (5 for each therapeu-
tic area in the annotated dataset) were randomly selected 
to be separately annotated by the four annotators. Due to 
the abundance of unlabeled tokens in the dataset (introduc-
ing a positive bias), F1 on a token level was calculated in ad-
dition to Cohen’s κ to approximate IAA, as unlabeled tokens 
may be left out of the calculation with this method [35], 
[36], [37], [38]. Token-level agreement between annotators 
had a κ of 0.81 (±0.05 between articles) and a F1 of 0.88 
(±0.01). 

Dataset split into test and train sets 

After annotation, all (n=400) abstracts were split randomly 
into 10 partitions, each consisting of 10 articles from each 
therapeutic area (Appendix table C), which were used for 
model quality evaluation through k-fold cross-validation. 
Randomization of the abstracts was stratified by the pres-
ence of headers in the abstract, annotation-to-word ratio 
and the number of study arms. The Randomice tool was 
used for unbiased randomized stratification of records 
amongst the datasets [39]. 

Model 
Input for the NER system 

All abstracts of the NER dataset were tokenized using the 
BERT tokenizer6F6F6F 7  and subword token embedding tensors 
were assigned with the BERT base uncased model7F7F7F8. It is 
common for clinical publication abstracts to consist of more 
than 512 subword tokens. To resolve this issue of exceeding 
the BERT input limit of 512 subword tokens, we used a slid-
ing window approach. Scientific abstracts longer than 512 
subword tokens were divided into n	batches of 512 sub-
word tokens, with a 256 subword stride. The number of 
batches (𝑛ሻ was determined according to: 

𝑛 ൌ  ඄
𝑡

256
െ 1ඈ 

8 https://huggingface.co/bert-base-uncased 
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Where t was the total number of subword tokens. For exam-
ple, a scientific abstract of 1200 subword tokens was di-
vided into 4 batches. 

NER model training 

The NER model was trained on all train set articles of the 
NER dataset. 512 subword tokens at a time were fed to 
BERT in the sliding-window approach. For training, a learn-
ing rate of 5*10-5 (momentum 0.99) with Adam optimiza-
tion was used, training for 8 epochs using a batch size of 1. 
The system was trained to assign a BILOU tag and one of 25  
labels, based on BERT prediction. Compared to more con-
ventional BIO tags, BILOU tags (Beginning, Intermediate, 
Last, Outside, Unit) allow for more granularity of a dataset 
by distinguishing between single- and multiple-token 
chunks [40]. In the sliding window set-up, a BILOU tag and 
label of a subword could be predicted up to 2 times (the la-
bel predicted may differ between predictions, due to the 
context difference between strides). During post-pro-
cessing, the average of the probabilities for each label pre-
dicted between batches was taken as the final prediction, 
and the label with the highest probability was assigned to 
the token. Finally, adjacent tokens with the same annotation 
label were aggregated into a single annotation according to 
their BILOU classification pattern. 

Quality evaluation  

Evaluation of the model quality was done by calculation of 
the precision, recall and F1 (Eq. 1) of the model output com-
pared to annotations in the test set. NER evaluation was 
done on the entity level with only complete matches as true 
positives. A complete match was defined by a token start, 
token end and label match between predicted and true la-
bels. As such, the corresponding label class but different 
prediction onset or end compared to the annotation was 

insufficient for a complete match. For example, a span clas-
sified by NER as ‘Inclusion Criteria’ and annotated as ‘Out-
come’ did not yield a full match, even though both are of the 
‘Methodology’ label class. Similarly, comparison of a predic-
tion of “complete remission” with an annotation of “remis-
sion”, both in the ‘Effect’ label, yielded a false positive. 

 

Experiments 
The system quality was evaluated in two settings: in-do-
main and out-of-domain quality. All in-domain metrics re-
ported were the result of 10-fold cross-validation. Quality 
assessment was based on the F1 mean and standard devia-
tion over the different labels resulting from the set of meas-
urements. First, we present the experimental setup of in-do-
main evaluation of the NER and section prediction systems. 
Subsequently, we describe experiments concerned with 
consistency and out-of-domain quality. Finally, we describe 
the protocol of a utility study comparing expert PICOS an-
notations with the system.  

In-domain quality evaluation 
For evaluation of in-domain system quality, the F1 measure 
of the system was evaluated on a test set of abstracts de-
scribing a similar therapeutic area. Evaluation of in-domain 
quality consisted of four phases: (1) the optimal BERT 
model for the task was selected through experiments; (2) 
the quality of the section prediction system was measured; 

Figure 2 - An example of a fully annotated interventional study abstract of the record with Pubmed identifier 18204830. Different types of 
labels are colored according to their label class. The label class of different annotations is abbreviated in the image. For example, “P EFFECT” 
represents an ‘Effect’ label of the ‘Parameter’ class. 

𝑝 ൌ  
𝑡𝑝

𝑡𝑝 ൅ 𝑓𝑝
           𝑟 ൌ  

𝑡𝑝
𝑡𝑝 ൅ 𝑓𝑛

         𝐹1 ൌ
2𝑝 ൉ 𝑟
𝑝 ൅ 𝑟

 

Eq. 1 -	Equations describing calculations of precision (left), recall 

(middle) and F1 measure (right) using true positives (tp), false pos-

itives (fp) and false negatives (fn).  
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(3) its added value to the F1 of the NER model was evalu-
ated; and (4) using the optimal model, the robustness of the 
dataset was evaluated. 

First, the optimal BERT model to be used during further ex-
perimentation was determined. NER quality of four pre-
trained BERT models (BERT base and domain-specific al-
ternatives BioBERT [20], SciBERT [21] and PubMedBERT 
[22]) was tested through 10-fold cross-validation, using the 
train-test splits of all 400 annotated abstracts as specified 
in section 2.1.4. Based on the resulting F1, the best perform-
ing model was selected to be used in the remainder of the 
experiments. The selected optimal model was the one with 
the highest mean F1 score between runs.  
We assessed the effect of a smaller training set on the in-
domain NER prediction quality of the optimal NER system. 
Prediction quality was compared between systems using 2, 
3, 4, 5 and 7 batches as training set (each batch consists of 
10% of all dataset articles). This was done using 10-fold 
cross-validation, where each training fold consisted of block 
number k as the testing set and block numbers [k+1…k+n+1] 
as the training set where k was the fold number and n was 
the number of batches included in the training set. 

Out-of-domain quality evaluation 
We assessed the quality of the SURUS for abstracts either on 
another subject or of a different type than the ones included 
in the annotated training set. For this, we tested the perfor-
mance on two out-of-domain test sets: one on out-of-do-
main therapeutic areas and another one on out-of-domain 
observational study types. For each out-of-domain NER ex-
periment, the SURUS system was tested on abstracts manu-
ally annotated by experts as out-domain test sets, according 
to the annotation rules applied during the annotation of the 
in-domain dataset. In the out-of-domain therapeutic area 
test set, we randomly included 10 article abstracts from 9 
ICD-11 therapeutic areas not included in the in-domain da-
taset. In the out-of-domain observational study type da-
taset, we randomly included 33 abstracts of various obser-
vational study types. Amongst the observational study 
types of the included articles were cohort studies, case-con-
trol studies, diagnostic accuracy studies and case studies. 
Abstracts included in type out-of-domain quality evaluation 
were of the same therapeutic area as the ones included in 
the SURUS dataset. A detailed overview of the composition 
of the out-of-domain NER datasets is provided in Appendix 
table C. 

Utility of SURUS 
To determine the utility of the dataset in the workflow of a 
systematic literature review specialist, we compared 
SURUS predictions to expert-determined PICOS character-
istics of interventional studies. For this evaluation, we 
worked with elements of PICOS from Cochrane published in 
a systematic literature review. 8 study records (2 for each 
therapeutic area included in the dataset) were randomly 
picked from 8 Cochrane systematic literature reviews. The 
Cochrane-assigned elements of PICOS were extracted from 
the “Characteristics of studies” section. Any element of 
study design or patient eligibility of the included studies 
mentioned in the methods section of the Cochrane review 
was also added to the experiment. Elements of intervention 
and comparison were merged as these show very limited 
contextual differences. 
To appropriately compare Cochrane classifications to 
SURUS predictions, two preparatory steps preceded the 
comparison: 
1. All Cochrane-determined elements were manually 

screened for presence in the study abstract. Any ele-
ment not present in the abstract was excluded from the 
experiment. This step was included because Cochrane 
experts make use of the full record rather than the ab-
stract to determine elements of PICOS.  

2. SURUS predictions were mapped manually to 
Cochrane-assigned elements, as Cochrane-assigned el-
ements may use different wording compared to the ab-
stracts,. The full mapping for the experiment is docu-
mented in Appendix table D. 

After these steps, the precision, recall and F1 of the SURUS 
predictions were calculated. For these calculations, the met-
rics were defined as follows: 
 True	 positives	 were unique predictions correctly 

mapped towards the correct constituent of PICOS. 
 False	positives	were unique predictions that are either 

not mapped or mapped to the wrong element of PI-
COS. 

 False	negatives were elements of PICOS to which no 
prediction of SURUS was mapped or for which ele-
ments of SURUS inadequately describe the content. 

 True	negatives were not included in the evaluation as 
these would bias the quality evaluation. 

Table 1 – F1 scores and standard deviations between folds of the 10-fold cross-validation of NER with BERT and 3 science domain-specific 
derivatives BioBERT, SciBERT and PubMedBERT. 

Label Class  BERT BioBERT SciBERT PubMedBERT 

Disease 0.92 (±0.03) 0.95 (±0.02) 0.94 (±0.01) 0.95 (±0.02) 

Drug 0.93 (±0.01) 0.95 (±0.02) 0.95 (±0.01) 0.95 (±0.01) 

Identifier 0.95 (±0.02) 0.97 (±0.03) 0.97 (±0.02) 0.98 (±0.01) 

Methodology 0.91 (±0.02) 0.94 (±0.01) 0.93 (±0.01) 0.94 (±0.01) 

Parameter 0.81 (±0.04) 0.87 (±0.02) 0.86 (±0.03) 0.87 (±0.03) 

Result 0.96 (±0.01) 0.98 (±0.00) 0.98 (±0.00) 0.98 (±0.00) 

Therapy 0.90 (±0.03) 0.93 (±0.03) 0.93 (±0.03) 0.94 (±0.02) 

Weighted Average 0.92 (±0.01) 0.95 (±0.01) 0.94 (±0.01) 0.95 (±0.01) 
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Availability 
The full code for NER training, the full NER dataset and the 
detailed annotation guideline for reproduction efforts will 
be publicly available upon journal publication of the manu-
script. 

Results 
We report the results of experiments regarding the quality, 
robustness and out-of-domain viability of SURUS. The ex-
perimental results are listed in the following order: results 
of the in-domain evaluation (1); results of out-of-domain 
evaluation (2); results of a utility case-study (3). Recall, pre-
cision and support for all classes of all evaluations are listed 
in Appendix table D. 

 PubMedBERT performs superior compared to other BERT 
variants when fine-tuned on SURUS dataset 
 To determine the optimal BERT model for SURUS, we com-
pared the F1 using BERT, BioBERT and PubMedBERT on the 
full NER dataset. BioBERT and PubMedBERT showed simi-
lar prediction quality overall with an F1 of 0.95, as well as 
for the predictions of entities from different label classes. 
The results of the evaluations are listed in Table 1 and more 
detailed result metrics are listed in Appendix table A. Both 
models improved NER F1 compared to BERT for all annota-
tion classes and compared to SciBERT for most label classes. 
The finetuned NER systems showed high prediction accu-
racy for Drug and Methodology, the label classes most com-
monly featured in PICOS.  
BioBERT and PubMedBERT performed superior compared 
to BERT and SciBERT. We expected that the performance of 
a PubMedBERT-finetuned model would extrapolate better  
 for an out-domain task compared to a BioBERT-finetuned 
model, considering its specialization on Pubmed texts. For 
this reason, we decided to use PubMedBERT for the remain-
der of the dataset validation. 

Prediction quality plateaus at training on 70% of dataset 
items 
To assess the rigidity of the annotation method, and the fea-
sibility of further improving F1 by adding more training 
data, we fine-tuned the SURUS model leaving out varying 
percentages of the training set. High prediction quality was 
reached using a small selection of training data (F1 >90% 
using 20% of the dataset for training, Figure 3). For all cat-
egories, F1 mean and variability increased gradually with 
increasing dataset use, with the highest F1 and lowest 

Table 2 – Utility assessment metrics, matching SURUS predictions 
to mapped Cochrane extracts of elements of PICOS. 

PICOS label TP FP FN P R F1 

Participants 26 4 1 0.87 0.96 0.91 

Interventions / 
Comparisons 

32 3 2 0.91 0.94 0.93 

Outcomes 27 9 1 0.75 0.96 0.84 

Study Design 16 5 0 0.76 1 0.86 

Weighted Mean 101 21 4 0.83 0.96 0.89 

Abbreviations: TP: True Positive; FP: False Positive; FN: False Negative; P: Precision; R: 
Recall 

Figure 3 – Effect of limiting the volume of train data on the model quality. Weighted mean F1 does not dip below 0.9 even when 80 an-
notated abstracts are used for finetuning. Mean F1 steadily increases up to 0.95 with full use of train corpus (90% of the dataset). Individual 
label classes show a similar trend, with a relatively steep increase in context understanding for the Parameter label class, improving up to 0.05 
in F1. 
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variability eventually reached using the full train set (90% 
of the dataset).  

Prediction quality was largely upheld testing out-of-domain 
abstracts 
 To evaluate the feasibility of using the system on other 
types of abstracts than the ones included in the dataset, we 
assessed the F1 on abstracts of out-of-domain therapeutic 
areas and observational study type (Table 2). The F1 of the 
finetuned model on the out-of-domain therapeutic area da-
taset was 0.90. Similar to the in-domain evaluation, predic-
tion of the Parameter label class appeared to be most incon-
sistent in the observational dataset relative to the other la-
bel classes (the out-of-domain study type), the model 
scored an overall F1 of 0.84.  

High recall on PICO classification task shows utility of 
SURUS  
 To assess the utility of SURUS in the practice of systematic 
literature screening, we compared SURUS predictions to 
Cochrane-assigned PICOS labels for 8 randomly chosen in-
terventional abstracts for the relevant therapeutic area. The 
results of the experiment are shown in Table 3. The overall 
F1 of SURUS during the utility assessment was 0.89. Most 
false positive predictions could be attributed to prediction 
of entities that made no appearance in the Cochrane “Char-
acteristics of Studies” section. The high recall reflected a 
minimal risk of missing relevant elements of PICOS. 

Discussion 
In this paper, we evaluated a densely annotated and highly 
granular medical dataset for finetuning NLP text classifica-
tion models. We compared the quality of multiple BERT 
model variants, fine-tuned on this dataset to identify named 
entities from clinical abstracts. Our measurements confirm 
that SURUS is capable of fine-grained classification and ex-
traction of 25 different medically relevant categories, with 
a weighted mean F1 of 0.95 on interventional abstracts 
across 4 key therapeutic areas. The relatively high inter-an-
notator agreement (κ of 0.81) and the adequate out-of-do-
main performance of the fine-tuned underline the quality of 
the dataset. The high recall measured during the utility as-
sessment demonstrate the value of SURUS to systematic lit-
erature reviewers in the screening process. The dataset and 
the annotation manual are available to the public and allow 
for expansion of the dataset for use in other domains. 
To the best of our knowledge, of annotated medical NLP cor-
pora published, the SURUS annotated dataset allows for the 

highest label prediction quality, for the largest diversity of 
clinical entity types. In addition, it shows the highest predic-
tion quality of elements of PICOS as extracted by experts. 
This metric provides the key utility advantage of SURUS, 
granting high, time-saving opportunities to systematic liter-
ature reviewers with low risk of missing relevant elements 
of PICOS. 
Current classification model alternatives typically focus on 
sentence or sentence clause classification, leaving much of 
the interpretation to the scientist performing the screening. 
In addition, mapping such text strands towards an ontology 
is laborious and inefficient. The fine-grained extraction of 
25 labels allow SURUS to provide the reviewer with more 
detailed information on the PICOS element of studies in 
their selection. Important study features, such as infor-
mation on drugs and treatments (0.95), elements of meth-
odology (0.94) and disease (0.95) are predicted with high 
reliability, with limited variation between runs of the k-fold 
validation and in-domain therapeutic areas. Prediction 
quality in the current paper exceeds the current state-of-
the-art prediction quality on other datasets focused on clin-
ical studies such as EBM-PICO (0.73, PubmedBERT [22]), 
NICTA-PIBOSO (0.57-0.91, BioBERT [41]) and comparable 
to PubMedPICO (0.85-0.99, BioBERT [41]), recognizing 
more granular text spans and more label classes in the pro-
cess. With the annotation manual and the test set (available 
on our git repository), the quality and feasibility of the 
SURUS annotation method can be reproduced. In addition, 
the SURUS is the only PICOS classification model on which 
the utility is assessed compared to mapped expert extrac-
tions, rather than annotation span comparison, which typi-
cally introduces a layer of subjectivity and inconsistency. 
When applying the trained system on abstracts in other 
therapeutic areas than the ones included, system perfor-
mance remains sufficient. Even though the quality drops 
from 0.95 to 0.90, the most important classes for PICOS ex-
traction retain high prediction quality. This signifies the 
utility of SURUS to systematic researchers specialized in any 
therapeutic area. Nevertheless, users are advised to pro-
duce a limited annotation set to include in the training pro-
cedure. This additional training dataset may be as small as 
20 articles for out-of-domain therapeutic areas, considering 
the model quality already surpasses an F1 of 0.92 using 
20% of the SURUS dataset as train dataset. 
The prediction quality of SURUS falls off slightly for ab-
stracts of observational studies compared to out-domain 

Table 3 –	Out-of-domain evaluation metrics of PubMedBERT finetuned on the full SURUS dataset.	

Label class 
Interventional Observational 

Precision Recall F1 Support Precision Recall F1 Support 

Disease 0.99 0.90 0.94 664 0.95 0.87 0.91 302 

Drug 0.91 0.85 0.87 4,759 0.81 0.74 0.76 338 

Id 1.00 0.98 0.99 341 1.00 1.00 1.00 15 

Methodology 0.96 0.89 0.92 3,851 0.91 0.77 0.82 1,627 

Parameter 0.83 0.76 0.79 3,003 0.78 0.68 0.73 1,345 

Result 0.96 0.96 0.96 5,164 0.93 0.91 0.92 1,976 

Therapy 0.97 0.85 0.90 1,273 0.33 0.50 0.40 2 

Weighted Mean 0.93 0.88 0.90 19,055 0.88 0.80 0.84 5,605 
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therapeutic area prediction (F1 of 0.84 vs 0.90). The dis-
crepancy is likely because of the methodological and stylis-
tic differences between study types. For example, in some 
observational studies diseases may be key study group dif-
ferentiators, whereas in interventional studies, study 
groups are defined based on the therapeutic regimens re-
ceived. In addition, there is large variety in writing style be-
tween different types of observational studies, which in-
clude study types such as diagnostic accuracy studies, co-
hort studies and case reports. Still, important NER class cat-
egories such as Disease and Methodology can relatively re-
liably be extracted from observational studies (F1 of 0.91 
and 0.82, respectively). The current prediction quality of-
fers perspective for additional fine-tuning efforts to im-
prove the prediction quality of relevant medical labels in 
observational studies. 

Conclusion 
Our findings show that the SURUS system is well-suited to 
classify 25 different medically relevant entity labels in in-
terventional study abstracts with high prediction quality. 
Combined, its predictions can be used to extract elements of 
PICOS from clinical abstracts with high accuracy. Prediction 
quality is highest for articles on indications the system is 
trained on but remains considerable when applying SURUS 
to other indications. In addition, SURUS shows considerable 
practical utility when used to extract elements of PICOS 
from scientific abstracts, with very limited risk of failing to 
identify elements of PICOS. 
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P R F1 S P R F1 S P R F1 S P R F1 S

Disease Indication 1 Patient 0.95 
(±0.03)

0.88 
(±0.05)

0.92 
(±0.03)

546 
(±78)

0.99 
(±0.02)

0.92 
(±0.03)

0.95 
(±0.02)

594 
(±81)

0.99 
(±0.01)

0.9 
(±0.03)

0.94 
(±0.01)

355 
(±58)

0.99 
(±0.01)

0.92 
(±0.03)

0.95 
(±0.02)

333 
(±47)

Drug Class 2 Intervention/C
omparison

0.94 
(±0.04)

0.92 
(±0.03)

0.93 
(±0.03)

586 
(±105)

0.96 
(±0.04)

0.95 
(±0.03)

0.95 
(±0.02)

632 
(±117)

0.96 
(±0.04)

0.93 
(±0.05)

0.94 
(±0.03)

368 
(±64)

0.96 
(±0.03)

0.96 
(±0.03)

0.96 
(±0.02)

339 
(±60)

Drug Device 3 Intervention/C
omparison

0.96 
(±0.04)

0.92 
(±0.09)

0.93 
(±0.05)

219 
(±128)

0.96 
(±0.03)

0.96 
(±0.05)

0.96 
(±0.03)

246 
(±149)

0.96 
(±0.05)

0.95 
(±0.05)

0.95 
(±0.03)

177 
(±100)

0.97 
(±0.03)

0.96 
(±0.05)

0.97 
(±0.03)

153 
(±83)

Drug Formulation 4 Intervention/C
omparison

0.66 
(±0.24)

0.56 
(±0.15)

0.58 
(±0.16)

115 
(±58)

0.7 
(±0.22)

0.73 
(±0.23)

0.67 
(±0.2)

136 
(±76)

0.67 
(±0.25)

0.7 
(±0.15)

0.67 
(±0.19)

103 
(±51)

0.73 
(±0.18)

0.69 
(±0.16)

0.69 
(±0.13)

99 
(±48)

Drug Funder 5 Other 0.96 
(±0.1)

0.93 
(±0.09)

0.94 
(±0.09)

72 
(±32)

0.94 
(±0.12)

0.91 
(±0.09)

0.92 
(±0.1)

83 
(±40)

0.94 
(±0.15)

0.96 
(±0.06)

0.94 
(±0.1)

74 
(±39)

0.95 
(±0.11)

0.96 
(±0.05)

0.95 
(±0.08)

81 
(±38)

Drug Molecule 6 Intervention/C
omparison

0.97 
(±0.01)

0.98 
(±0.02)

0.97 
(±0.01)

2,436 
(±222)

0.98 
(±0.01)

0.99 
(±0.01)

0.98 
(±0.01)

2,727 
(±286)

0.97 
(±0.01)

0.98 
(±0.01)

0.98 
(±0.01)

1,810 
(±141)

0.98 
(±0.01)

0.99 
(±0.01)

0.98 
(±0.01)

1,488 
(±124)

Drug Treatment 
Group

7 Intervention/C
omparison

0.88 
(±0.06)

0.78 
(±0.07)

0.83 
(±0.05)

565 
(±80)

0.95 
(±0.03)

0.84 
(±0.06)

0.89 
(±0.03)

644 
(±86)

0.93 
(±0.03)

0.84 
(±0.05)

0.88 
(±0.03)

469 
(±61)

0.94 
(±0.03)

0.85 
(±0.05)

0.89 
(±0.03)

443 
(±57)

Identifier Trial 8 Other 0.97 
(±0.04)

0.94 
(±0.02)

0.95 
(±0.02)

208 
(±32)

0.97 
(±0.05)

0.98 
(±0.03)

0.97 
(±0.03)

253 
(±41)

0.99 
(±0.01)

0.95 
(±0.03)

0.97 
(±0.02)

159 
(±27)

0.99 
(±0.02)

0.98 
(±0.03)

0.98 
(±0.01)

160 
(±27)

Methodolog
y

Determinati
on

9 Patient 0.76 
(±0.13)

0.59 
(±0.16)

0.65 
(±0.14)

51 
(±21)

0.76 
(±0.17)

0.61 
(±0.16)

0.67 
(±0.14)

53 
(±22)

0.7 
(±0.21)

0.6 
(±0.26)

0.63 
(±0.21)

48 
(±18)

0.79 
(±0.12)

0.7 
(±0.15)

0.73 
(±0.11)

48 
(±18)

Methodolog
y

Inclusion 
Criteria

10 Patient 0.93 
(±0.03)

0.9 
(±0.04)

0.91 
(±0.03)

950 
(±141)

0.95 
(±0.02)

0.93 
(±0.03)

0.94 
(±0.03)

1,013 
(±149)

0.95 
(±0.01)

0.91 
(±0.04)

0.93 
(±0.02)

748 
(±113)

0.95 
(±0.02)

0.93 
(±0.03)

0.94 
(±0.02)

719 
(±110)

Methodolog
y

Outcome 11 Outcome 0.96 
(±0.02)

0.9 
(±0.03)

0.93 
(±0.02)

906 
(±100)

0.98 
(±0.01)

0.93 
(±0.02)

0.95 
(±0.01)

1,038 
(±147)

0.98 
(±0.01)

0.9 
(±0.04)

0.94 
(±0.02)

626 
(±53)

0.98 
(±0.01)

0.91 
(±0.03)

0.94 
(±0.02)

584 
(±45)

Methodolog
y

Study 
Design

12 Study Design 0.97 
(±0.02)

0.93 
(±0.03)

0.95 
(±0.01)

476 
(±32)

0.98 
(±0.01)

0.94 
(±0.04)

0.96 
(±0.02)

484 
(±31)

0.97 
(±0.02)

0.94 
(±0.03)

0.95 
(±0.01)

405 
(±31)

0.98 
(±0.01)

0.94 
(±0.03)

0.96 
(±0.02)

397 
(±31)

Methodolog
y

Study 
Duration

13 Study Design 0.85 
(±0.08)

0.75 
(±0.11)

0.79 
(±0.08)

81 
(±26)

0.9 
(±0.06)

0.83 
(±0.11)

0.86 
(±0.09)

84 
(±29)

0.87 
(±0.1)

0.79 
(±0.1)

0.82 
(±0.08)

77 
(±23)

0.91 
(±0.08)

0.82 
(±0.1)

0.86 
(±0.08)

76 
(±22)

Methodolog
y

Study Size 14 Study Design 0.9 
(±0.08)

0.94 
(±0.03)

0.91 
(±0.05)

76 
(±6)

0.95 
(±0.04)

0.97 
(±0.02)

0.96 
(±0.02)

82 
(±7)

0.93 
(±0.06)

0.96 
(±0.03)

0.94 
(±0.03)

74 
(±4)

0.95 
(±0.04)

0.98 
(±0.01)

0.96 
(±0.02)

73 
(±5)

Parameter Baseline 15 Population 0.85 
(±0.12)

0.61 
(±0.15)

0.7 
(±0.13)

121 
(±57)

0.82 
(±0.12)

0.78 
(±0.1)

0.79 
(±0.09)

138 
(±67)

0.91 
(±0.07)

0.77 
(±0.1)

0.83 
(±0.05)

87 
(±30)

0.87 
(±0.08)

0.8 
(±0.13)

0.83 
(±0.07)

83 
(±29)

Parameter Determinati
on

16 Outcome 0.79 
(±0.05)

0.68 
(±0.07)

0.73 
(±0.06)

684 
(±166)

0.84 
(±0.04)

0.76 
(±0.07)

0.8 
(±0.05)

768 
(±174)

0.87 
(±0.05)

0.76 
(±0.07)

0.81 
(±0.06)

561 
(±124)

0.86 
(±0.06)

0.78 
(±0.08)

0.81 
(±0.05)

538 
(±115)

Parameter Effect 17 Outcome 0.89 
(±0.04)

0.84 
(±0.03)

0.86 
(±0.03)

1,378 
(±150)

0.93 
(±0.02)

0.89 
(±0.02)

0.91 
(±0.01)

1,601 
(±174)

0.92 
(±0.03)

0.87 
(±0.04)

0.89 
(±0.02)

964 
(±115)

0.93 
(±0.02)

0.88 
(±0.04)

0.9 
(±0.02)

894 
(±102)

Result Baseline 18 Population 0.91 
(±0.04)

0.72 
(±0.13)

0.8 
(±0.07)

106 
(±35)

0.95 
(±0.07)

0.84 
(±0.06)

0.89 
(±0.04)

115 
(±39)

0.94 
(±0.04)

0.81 
(±0.09)

0.86 
(±0.05)

98 
(±27)

0.95 
(±0.06)

0.87 
(±0.09)

0.91 
(±0.06)

98 
(±28)

Result Significance 19 Result 0.99 
(±0.01)

0.98 
(±0.01)

0.99 
(±0.01)

685 
(±141)

0.99 
(±0.01)

0.99 
(±0.01)

0.99 
(±0.0)

772 
(±139)

0.99 
(±0.01)

0.99 
(±0.01)

0.99 
(±0.01)

630 
(±136)

1.0 
(±0.0)

0.99 
(±0.01)

0.99 
(±0.0)

529 
(±104)

Result Unit 20 Result 0.97 
(±0.02)

0.96 
(±0.03)

0.96 
(±0.02)

1,002 
(±135)

0.98 
(±0.01)

0.98 
(±0.01)

0.98 
(±0.01)

1,112 
(±146)

0.98 
(±0.02)

0.97 
(±0.01)

0.97 
(±0.01)

869 
(±120)

0.98 
(±0.01)

0.98 
(±0.01)

0.98 
(±0.01)

839 
(±115)

Result Variability 21 Result 0.98 
(±0.01)

0.97 
(±0.04)

0.98 
(±0.02)

863 
(±166)

1.0 
(±0.01)

0.99 
(±0.01)

1.0 
(±0.01)

912 
(±176)

0.99 
(±0.01)

0.99 
(±0.01)

0.99 
(±0.01)

777 
(±131)

1.0 
(±0.0)

0.99 
(±0.01)

0.99 
(±0.01)

750 
(±143)

Result Determinati
on

22 Result 0.96 
(±0.01)

0.93 
(±0.02)

0.94 
(±0.01)

700 
(±77)

0.97 
(±0.01)

0.95 
(±0.01)

0.96 
(±0.01)

848 
(±95)

0.96 
(±0.02)

0.95 
(±0.01)

0.96 
(±0.01)

623 
(±65)

0.97 
(±0.01)

0.95 
(±0.01)

0.96 
(±0.01)

601 
(±71)

Result Value 23 Result 0.95 
(±0.03)

0.97 
(±0.01)

0.96 
(±0.01)

1,358 
(±201)

0.98 
(±0.01)

0.99 
(±0.0)

0.99 
(±0.0)

1,459 
(±215)

0.98 
(±0.01)

0.98 
(±0.01)

0.98 
(±0.01)

1,223 
(±163)

0.98 
(±0.01)

0.99 
(±0.01)

0.98 
(±0.01)

1,183 
(±161)

Therapy Dose 
Frequency

24 Intervention/C
omparison

0.94 
(±0.03)

0.87 
(±0.05)

0.9 
(±0.03)

667 
(±82)

0.95 
(±0.03)

0.91 
(±0.04)

0.93 
(±0.03)

691 
(±87)

0.95 
(±0.03)

0.92 
(±0.03)

0.94 
(±0.03)

628 
(±72)

0.96 
(±0.02)

0.92 
(±0.03)

0.94 
(±0.02)

616 
(±76)

Therapy Method of 
Administrati

25 Intervention/C
omparison

0.92 
(±0.05)

0.87 
(±0.1)

0.9 
(±0.07)

71 
(±30)

0.94 
(±0.08)

0.88 
(±0.11)

0.9 
(±0.07)

81 
(±37)

0.91 
(±0.07)

0.87 
(±0.14)

0.89 
(±0.1)

39 
(±12)

0.92 
(±0.12)

0.87 
(±0.12)

0.88 
(±0.1)

39 
(±12)

0.94 
(±0.01)

0.9 
(±0.01)

0.92 
(±0.01)

14,924 
(±712)

0.96 
(±0.01)

0.94 
(±0.01)

0.95 
(±0.01)

16,565 
(±797)

0.96 
(±0.01)

0.93 
(±0.01)

0.94 
(±0.01)

11,992 
(±504)

0.96 
(±0.01)

0.94 
(±0.01)

0.95 
(±0.01)

11,163 
(±559)

Abbreviations:  P: Precision; R: Recall; S: Support

Weighted Average

PICOS 
Element

Label 
ID

BERT BioBERT

Appendix table A – F1, precision, recall and support data for all annotation classes individually and the weighed average for all evaluation experiments.

SciBERT PubMedBERT
LabelLabel 

class
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Appendix table B – Overview of WHO ICD-11 therapeutic areas included in the in-domain and out-domain datasets 
 

Annotation class cate-
gory 

Class description 
Contribution to PICOS  

extraction 

 

  

Disease 
Any reference to disease, independent of 

relevance to described study 
Patient 

 

 

Drug Any reference to treatments Intervention/Comparison 
 

 

Identifier Trial identifiers of clinical trials - 
 

 

Methodology 
Any reference to elements of design, inclu-
sion criteria, outcomes measured, size or 

duration of the described study 
Patient, Outcome, Study design 

 

 

Parameter 
References to outcomes of the study of 

which results are described 
Outcome 

 

 

Result 
Any reference to a result, result description 

or significance 
- 

 

 

Therapy 
Any reference to treatment dosing and ad-

ministration frequency 
Intervention/Comparison 

 

 

Appendix table C – Number of articles and annotations included in every model assessment described. 

Therapeutic area ICD identifier 
Interventional Observational 

Abstracts Annotations Abstracts Annotations 

Circulatory system diseases 11 100 9,501 8 457 

Endocrine, nutritional or meta-
bolic diseases 5 100 10,461 7 511 

Neoplasms 2 100 9,737 10 502 

Respiratory system diseases 12 100 9,832 8 457 

Nervous system diseases 8 10 853 - - 

Immune system diseases 4 10 897 - - 

Infectious or parasitic diseases 1 10 1,165 - - 

Blood or blood-forming organ 
diseases 3 10 713 - - 

Digestive system diseases 13 10 661 - - 

Mental, behavioural or neurode-
velopmental disorders 6 10 771 - - 

Musculoskeletal system or con-
nective tissue diseases 15 10 880 - - 

Skin diseases 14 10 754 - - 

Visual system diseases 9 10 917 - - 

        

In-domain interventional      
Out-domain therapeutic 
area      
Out-domain study type      
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