Abstract
Repetitive transcranial magnetic stimulation (rTMS) therapy could be improved by better and earlier prediction of response. Latent class mixture (LCMM) and non-linear mixed effects (NLME) modelling have been applied to model the trajectories of antidepressant response (or non-response) to TMS, but it is not known whether such models can predict clinical outcomes. We compared LCMM and NLME approaches to model the antidepressant response to TMS in a naturalistic sample of 238 patients receiving rTMS for treatment resistant depression (TRD), across multiple coils and protocols. We then compared the predictive power of those models. LCMM trajectories were influenced largely by baseline symptom severity, but baseline symptoms provided little predictive power for later antidepressant response. Rather, the optimal LCMM model was a nonlinear two-class model that accounted for baseline symptoms. This model accurately predicted patient response at 4 weeks of treatment (AUC = 0.70, 95% CI = [0.52-0.87]), but not before. NLME offered slightly improved predictive performance at 4 weeks of treatment (AUC = 0.76, 95% CI = [0.58 – 0.94], but likewise, not before. In showing the predictive validity of these approaches to model response trajectories to rTMS, we provided preliminary evidence that trajectory modeling could be used to guide future treatment decisions.
Competing Interest Statement
ASW reports consulting income from Abbott Laboratories, and multiple unlicensed patents in the area of neurostimulation. SRW reports income as a guest lecturer for the PULSES introduction to TMS course sponsored by the Clinical TMS Society. All other authors report no relevant financial interests.
Funding Statement
This work was supported by the National Institutes of Health (R21MH120785; T32MH115886), the MnDRIVE Brain Conditions Initiative, and the Medical Discovery Team - Addictions at the University of Minnesota.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of University of Minnesota gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data availability statement
Deidentified data will be made available upon request.