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Abstract 15 

Identifying underlying causal genes at significant loci from genome-wide association studies 16 
(GWAS) remains a challenging task. Literature evidence for disease-gene co-occurrence, 17 
whether through automated approaches or human expert annotation, is one way of nominating 18 
causal genes at GWAS loci. However, current automated approaches are limited in accuracy 19 
and generalizability, and expert annotation is not scalable to hundreds of thousands of 20 
significant findings. Here, we demonstrate that large language models (LLMs) can accurately 21 
identify genes likely to be causal at loci from GWAS. By evaluating the performance of GPT-3.5 22 
and GPT-4 on datasets of GWAS loci with high-confidence causal gene annotations, we show 23 
that these models outperform state-of-the-art methods in identifying putative causal genes. 24 
These findings highlight the potential of LLMs to augment existing approaches to causal gene 25 
discovery. 26 

Main  27 

 28 
Genome-wide association studies (GWAS) have identified many regions of the genome 29 
associated with complex traits, enhancing our understanding of trait biology. However, a 30 
significant limitation of GWAS is the difficulty in pinpointing the underlying causal gene for a 31 
given association. Approaches to causal gene identification from GWAS loci use a broad range 32 
of information including functional annotation, colocalization with quantitative trait loci (QTL) 33 
datasets, biological insights, and literature evidence. Literature mining for the co-occurrence of a 34 
(disease, gene) pair in a publication potentially provides evidence for the causal role of the gene 35 
in the disease, and may recapitulate the knowledge that an expert biologist or clinician might 36 
use to identify the causal gene at a GWAS locus. However, current literature mining approaches 37 
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(Kafkas, Dunham, and McEntyre 2017; Tirunagari et al. 2024) for causal gene prioritization have 38 
been evaluated in limited settings or through related tasks such as drug/gene entity recognition 39 
and normalization, and their generalizability to all datasets is unclear. 40 
 41 

Large language models (LLMs) are deep learning models trained on large text corpora, 42 
initially to predict masked/next words from a sentence, and then subsequently trained for a large 43 
number of tasks including text generation, summarization, and question-answering. Recent 44 
studies have demonstrated their capability to perform biomedical tasks (Sarwal et al. 2023), 45 
including summarizing gene function (Chen and Zou 2024), medical question answering 46 
(Singhal et al. 2023), cell-type annotation (Hou and Ji 2024), and identifying causal genetic 47 
factors from murine experimental data (Tu et al. 2023). We hypothesize that large language 48 
models like GPT-3.5 (Brown et al. 2020) and GPT-4 (OpenAI et al. 2024) offer a systematic way 49 
to mining literature and identifying causal genes at GWAS loci, as their training datasets include 50 
scientific literature and other sources of information about genetics. This approach would enable 51 
efficient and scalable annotation of likely causal genes at GWAS loci using literature evidence, 52 
which is impractical through expert human annotation. 53 
 54 
 We performed a systematic evaluation of GPT-3.5 and GPT-4 for the task of causal 55 
gene identification, and compared their performance to state-of-the-art computational methods 56 
(Supplementary Figure 1). Four evaluation datasets containing 641 to 1692 GWAS loci, with 57 
ground-truth annotations of causal genes based on different criteria, were used to test the 58 
generalizability of the LLM-based approach (Supplementary Table 1). Given that LLMs are 59 
trained on large undisclosed text datasets and it is hard to verify which datasets were used in 60 
their training, we selected several well-studied benchmark datasets, including a newly curated 61 
dataset created after the training period of GPT-3.5 and GPT-4, as well as a benchmark dataset 62 
that is not available on the internet (referred to as GWAS catalog and Weeks et al. respectively, 63 
Methods).  64 
 65 

The input prompt to the LLMs contained a generic description of an expert geneticist 66 
seeking to identify the causal gene, followed by the name of the GWAS phenotype and a list of 67 
all genes within 500 kbp of the lead variant at the locus (Figure 2, Methods). Additionally, the 68 
LLM was instructed to output the name of the causal gene, a confidence score between 0 and 69 
1, and a short reason for the choice. We queried the LLMs using available APIs to use specific 70 
model versions and ensure reproducibility of results (Methods).  71 

 72 
For comparison, we evaluated other state-of-the-art approaches for predicting the causal 73 

gene, including the polygenic priority score (PoPS, Weeks et al. 2023), locus-to-gene score 74 
(L2G, Mountjoy et al. 2021), OpenTargets text-mining (Tirunagari et al. 2024), and the ‘nearest 75 
gene’ method (Stacey et al. 2019), all applied on the same datasets. We evaluated all methods 76 
based on agreement of predictions with the ground-truth annotations of causal genes in the 77 
original dataset, using precision, recall, and F-score (the harmonic mean of precision and recall) 78 
as performance measures. 79 
  80 
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 We found that GPT-3.5 is competitive with existing methods, and GPT-4 outperforms 81 
existing methods on all four datasets in F-score (Figure 2a and 2b, Supplementary Table 2 and 82 
Supplementary Table 8, p = 8.1e-8, 3.84e-15, 8.72e-4, 1.04e-11 for a paired Wilcoxon signed-83 
rank test on OpenTargets, Pharmaprojects, Weeks et al., and GWAS catalog respectively, when 84 
comparing GPT-4 with the best non-LLM approach). The performance of the LLM-based 85 
methods correlates with a number of factors related to the GWAS locus. We observed that 86 
prediction accuracy is negatively correlated with the number of genes in the locus, a relationship 87 
observed for all methods (Figure 2c, Supplementary Table 2). LLM-based methods showed a 88 
positive correlation between prediction accuracy and the number of publications for the causal 89 
gene, and a similar correlation was observed in other methods (Figure 2d, Supplementary Table 90 
2). Additionally, we also noticed a small number of obvious hallucinations, where the LLMs 91 
reported a causal gene that was not included in the set of provided genes at a locus (fewer than 92 
2% of all loci for GPT-3.5, fewer than 0.9% for GPT-4, Supplementary Table 3).  93 
 94 

Next we assessed the LLM-based methods' ability to generate a confidence score 95 
associated with their prediction. We observed that LLMs were well-calibrated at higher 96 
confidence levels (>= 0.8), but overly optimistic in their confidence estimates at lower 97 
confidence levels (0.5-0.7), with GPT-4 showing better calibration than GPT-3.5 (Supplementary 98 
Figure 2, Supplementary Table 4). We found that focusing only on the high-confidence 99 
predictions from GPT-4 (confidence >= 0.8) allowed additional improvements to precision, with 100 
improvements from 10% to 43% across the datasets (Supplementary Figure 7).  101 

 102 
We examined the purported reasoning underlying the LLMs' confidence and predictions, 103 

which might shed light on their ability to interpret complex prompts. The reasons provided by the 104 
LLMs for correct predictions include phrases describing the functions of genes (“is involved in”, 105 
“the regulation of”, “in immune response” etc.), or their association with the phenotype (“is 106 
associated with”, “is implicated in” etc.) among others (Supplementary Table 9). Since LLMs are 107 
sensitive to their input prompts, we tested the impact of prompt structure on our results. In our 108 
sensitivity analysis, we found that the LLM-based methods maintained their performance even 109 
when provided with only a minimal prompt containing the output format, task instruction, 110 
phenotype name, and gene names, without any additional context (Supplementary Figure 3). 111 
This suggests that the LLMs internally contained most of the information needed for the causal 112 
gene identification task without requiring substantial context.  113 

 114 
To further explore the internal model representation of genetic and phenotypic 115 

associations, we examined the embeddings of phenotypes and genes using the “text-116 
embedding-3-large” model (OpenAI 2024). LLMs represent words as points in a high-117 
dimensional embedding space, where similarity in these representations can capture semantic 118 
relationships (Mikolov et al. 2013). In the context of causal gene identification, we hypothesized 119 
that causal genes are likely to be proximal to the phenotypes they influence in the embedding 120 
space. To test this hypothesis, we use pre-computed high-dimensional embeddings of LLM-121 
generated gene and phenotype descriptions at a GWAS locus. The predicted causal gene at the 122 
locus is the gene which is most similar to the phenotype in the embedding space. We found that 123 
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using similarity of pre-computed embeddings alone achieves about 75-90% of the performance 124 
of GPT-3.5 (Supplementary Figure 4).  125 

 126 
To illustrate the role of embeddings in prediction, we present t-SNE projections for a 127 

locus associated with LDL cholesterol from the Weeks et al. dataset in Figure 3a. For this locus, 128 
which has 12 candidates for the causal gene, the text embeddings of the PCSK9 gene are 129 
closest to those of LDL cholesterol (as measured through cosine similarity). Consequently, the 130 
LLM-based approaches correctly nominate PCSK9 as the causal gene at the locus. 131 
Supplementary Figure 5 shows a barplot of the gene-phenotype similarities for this locus. Figure 132 
3b quantifies the similarity between the causal gene and phenotype in the embedding space for 133 
all loci in our evaluation datasets. We observe that the causal gene is most similar to the 134 
phenotype for 40-70% of all examples, depending on the evaluation set, among all genes at the 135 
locus. Extending this further, we find that the causal gene is among the top 5 most similar genes 136 
to the phenotype in the embedding space for 75%-93% of all examples (Supplementary Figure 137 
6). 138 

 139 
Although similarity in high-dimensional embedding space explains a large proportion of 140 

the performance of LLM-based approaches, we find that LLMs improve on these phenotype 141 
embeddings. For instance, the GWAS catalog dataset contains 250 loci for a phenotype related 142 
to sex differences that is only described as “Multi-trait sex score” (originally defined as the sum 143 
of multiple quantitative traits, weighted by their respective sex-difference effect sizes). The 144 
embedding-based approach makes incorrect predictions for most of these loci (precision for 145 
phenotype = 0.05) while GPT-4 achieves a precision of 0.65 for the same phenotype 146 
(Supplementary Table 5). This suggests that with the additional context of the task description 147 
and the gene information, the LLM is correctly able to infer that the short phenotype description 148 
refers to sexual dimorphism and sex-specific traits. 149 

 150 
In considering the broad applicability of this approach for causal gene prediction beyond 151 

currently published phenotypes, we found a couple of notable failure modes when examining 152 
phenotypes where GPT-4 had very low precision. First, GPT-4 had a precision of 0.08 for the 153 
“Total protein” phenotype. The reasons provided by the LLM suggest an incomplete 154 
understanding of the short phenotype description, interpreting it only in terms of broad protein 155 
levels rather than specifically about protein levels in blood (Supplementary Table 6). This 156 
indicates that more specific phenotype descriptions could improve the performance of LLMs.  157 

 158 
In a second instance, GPT-4 had a precision of 0.0 for the phenotype "Neonatal 159 

circulating Complement Component 4 (C4) protein concentration". For this phenotype, all the 160 
GWAS loci in the evaluation dataset include the C4A gene in the 500 kbp window around the 161 
lead variant, though they have different causal genes based on coding variant signals. Since the 162 
C4A gene is a major part of the complement system, the LLM-based approach always predicts 163 
C4A as the causal gene. This suggests that combining LLMs with functional annotation data 164 
could improve causal gene prioritization. Supplementary Table 5 shows the precision and recall 165 
for all methods stratified by phenotype.  166 

 167 
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While we have demonstrated the potential of LLMs for causal gene identification, it is 168 
important to consider the limitations and challenges associated with their use in our study. The 169 
lack of disclosure regarding the training datasets for most LLMs makes it challenging to verify 170 
whether our evaluation datasets were somehow included in their training. To mitigate this risk, 171 
we introduced a study design using data curated after the LLM training period as well as a 172 
benchmark dataset not available on the internet. Additionally, while LLMs return plausible 173 
reasons along with their predictions, it is challenging to pinpoint the exact information the LLM 174 
used to make each prediction. This is a current shortcoming, but it also points to an area of 175 
active research in the field. As reasoning capabilities continue to improve in LLMs, we anticipate 176 
that their ability to provide transparent and verifiable explanations will evolve rapidly. 177 
 178 

Overall, our study demonstrates for the first time that LLMs can significantly enhance 179 
causal gene identification and GWAS interpretation by systematically incorporating literature 180 
evidence. LLM-based approaches, requiring only the location of the lead variant, can be applied 181 
to any GWAS locus. With improved prompting, these methods could become valuable tools for 182 
causal gene identification. Furthermore, combining LLM-based approaches with functional data 183 
holds the potential to create even more accurate and robust methods for identifying causal 184 
genes, advancing our understanding of genetic contributions to complex traits. 185 

 186 
 187 
 188 
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 239 

Methods 240 

 241 

Evaluation datasets 242 

 243 
We used four datasets for evaluation (1) the OpenTargets gold-standard dataset, (2) the 244 
Citeline Pharmaprojects dataset of drug targets and their approved indications, (3) an evaluation 245 
set created by Weeks et al. based on proximity to fine-mapped coding variant associations, and 246 
(4) an evaluation set we created using associations added to the GWAS catalog from 247 
manuscripts published after April 2023. 248 
 249 
The OpenTargets gold-standard dataset is based on GWAS loci for which there is high 250 
confidence (through functional criteria) in the causal gene. We downloaded the OpenTargets 251 
gold-standard dataset from https://github.com/opentargets/genetics-gold-standards/  (file: 252 
https://github.com/opentargets/genetics-gold-253 
standards/blob/master/gold_standards/processed/gwas_gold_standards.191108.tsv). We 254 
subsetted the dataset to only rows that had a high-confidence annotation (highest_confidence = 255 
"High"). We added gene symbol annotations to the dataset with GENCODE release 43, and 256 
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excluded rows where a gene symbol was not found. This resulted in a dataset with 851 rows. To 257 
create descriptions of the phenotypes, we combined trait information from standard trait names 258 
and reported trait names. We appended reported trait names to standard trait names if the 259 
reported trait names are non-redundant, and we also removed irrelevant text from reported trait 260 
names, such as “[EA]”, “non-cancer illness code, self-reported”, “GWAS/Metabochip 2012” and 261 
“conditional on rs7709212”. 262 
 263 
The Pharmaprojects dataset contains drug targets and indications, as well as their drug 264 
development stage. We used the Pharmaprojects dataset released by Minikel et al. (Minikel et 265 
al. 2024) and created additional mappings of disease indications to EFO (Supplementary 266 
Notes). We subsetted the dataset to only rows that have a mapped MeSH or EFO term and that 267 
correspond to launched drugs (hcat = “Launched”). We added gene symbol annotations to the 268 
dataset with GENCODE release 43, and excluded rows where a gene symbol was not found. 269 
This resulted in a dataset with 1692 causal gene - phenotype pairs. Since the Pharmaprojects 270 
data does not contain GWAS information, we created synthetic GWAS hits near the target gene 271 
for each row to mimic real GWAS hits in terms of the distance between the GWAS hit and the 272 
underlying causal gene. More details about the methods for creation of the synthetic GWAS hits 273 
can be found in the Supplementary Note. 274 
 275 
The Weeks et al. evaluation set contains non-coding credible sets that are within 500 kbp of a 276 
high-confidence (posterior inclusion probability > 0.5) fine-mapped coding association in the 277 
same GWAS in UK Biobank (Weeks et al. 2023). We obtained this dataset by emailing the 278 
authors. Since this dataset is not available directly on the internet, it is the least likely to have 279 
been directly used for training the LLMs evaluated in our study (though the underlying GWAS 280 
summary statistics and publication could be part of the LLM training data). We used the gene 281 
symbol annotations provided by the authors. This resulted in a dataset with 1348 causal gene - 282 
phenotype pairs. 283 
 284 
The GWAS catalog dataset contains non-coding lead variants that are within 500 kbp of a 285 
coding lead variant in the same GWAS study. We downloaded the GWAS catalog lead variant 286 
file version “gwas_catalog_v1.0.2-associations_e111_r2024-03-11.tsv” from 287 
https://www.ebi.ac.uk/gwas/docs/file-downloads (download date: 03/19/2024). To avoid the 288 
possibility of these results being included in LLM training datasets, we subset the data to only 289 
include associations added to the GWAS catalog for manuscripts published after April 30, 2023, 290 
the latest reported training cutoff date among the LLMs we evaluated in our study. This resulted 291 
in a dataset with 641 causal gene - phenotype pairs. 292 
  293 

Generating LLM input from datasets 294 

 295 
For input to the LLMs, we converted each (phenotype, lead variant, causal gene) triplet 296 
corresponding to a GWAS locus to a (phenotype, list of genes in locus) pair.  297 
 298 
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For OpenTargets, Pharmaprojects, and the GWAS catalog datasets, we identified all genes 299 
within 500 kbp of the lead variant (using GENCODE release 43) based on the smallest distance 300 
between the gene body and the lead variant. For the Weeks et al. dataset, the dataset provided 301 
by the authors included all genes within 500 kbp of the lead variant, so we used that list of 302 
genes without any additional processing. 303 
 304 
To avoid leaking information about the lead variant location or causal gene position through the 305 
ordering of gene symbols by physical position, we sorted all gene symbols lexicographically 306 
before including them in the prompt to the LLMs.  307 
 308 
As an additional sanity check to verify that the LLM relies on phenotype information and not just 309 
on gene information (such as location) for predictions, we randomly sampled phenotypes at the 310 
evaluation loci and provided those as input to GPT-4. As expected, we found that LLM 311 
performance is considerably degraded from an average precision of 63% across all datasets to 312 
an average precision of 32%, along with an increase in number of obvious hallucinations from 313 
8.25 to 34 (Supplementary Table 10). 314 
 315 

LLM prompts for identifying causal genes 316 

 317 
To query LLMs to identify the causal genes for a (phenotype, list of genes in locus) pair, we 318 
used a prompt describing the task for the LLM along with the phenotype and gene list. The 319 
basic prompt we used had two components, a system prompt (for general behavior), and a user 320 
prompt (pair-specific). For an example pair (“Morning person”,[A,B,C,D]), the prompts are 321 
described below. 322 
 323 
System prompt:  324 
You are an expert in biology and genetics. 325 
Your task is to identify likely causal genes within a locus for a given GWAS phenotype based on 326 
literature evidence. 327 
From the list, provide the likely causal gene (matching one of the given genes), confidence (0: 328 
very unsure to 1: very confident), and a brief reason (50 words or less) for your choice. 329 
Return your response in JSON format, excluding the GWAS phenotype name and gene list in 330 
the locus. JSON keys should be 'causal_gene','confidence','reason'.  331 
Your response must start with '{' and end with '}'. 332 
 333 
User prompt: 334 
Identify the causal gene. 335 
GWAS phenotype: {Morning person} 336 
Genes in locus: {A},{B},{C},{D} 337 
 338 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.30.24308179doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.30.24308179
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

LLMs evaluated 339 

 340 
For our experiments, we evaluated LLMs from OpenAI, GPT-3.5 and GPT-4. For GPT-3.5, we 341 
used the model version “gpt-3.5-turbo-0125”, which has been trained on data up to September 342 
2021. For GPT-4, we tested the model version “gpt-4-1106-preview”, which has been trained on 343 
data up to April 2023, and model version “gpt-4-0613”, which has been trained on data up to 344 
September 2021. We found that the “gpt-4-0613” model performed comparably or better than 345 
the “gpt-4-1106-preview” model and had fewer obvious hallucinations (Supplementary Table 7), 346 
hence we report the results for “gpt-4-0613” as GPT-4 in the main text.  347 
 348 
To make outputs reproducible, we queried all LLMs with temperature set to 0.  349 
 350 

Post-processing of LLM results 351 

 352 
We consider an LLM prediction to be an obvious hallucination if the predicted gene was not in 353 
the list of genes at the locus provided to the LLM. These are easily detectable, and we set such 354 
predictions to NA, excluding them from downstream evaluation. 355 
 356 

Comparison to other methods 357 

 358 
We compared our results to several state-of-the-art methods for each dataset. First, we 359 
evaluated the “nearest gene” method for all datasets. We evaluated text-mining on the 360 
OpenTargets and Pharmaprojects dataset, where there was sufficient overlap between the 361 
phenotypes in the dataset and phenotypes included in the text-mining scores. We also added 362 
prediction based on “locus-to-gene” (L2G) scores to the OpenTargets gold-standard dataset, 363 
and prediction based on polygenic priority score (PoPS) to the Weeks et al. evaluation dataset. 364 
Both these methods were previously evaluated to have good performance on their respective 365 
datasets.  366 
 367 
To obtain the nearest gene prediction, we computed the distance between the genes in each 368 
locus and the lead variant (using GENCODE release 43 and reference genome hg38 for the 369 
OpenTargets, Pharmaprojects, and GWAS catalog datasets), and defined the nearest gene as 370 
the gene with the least distance from the lead variant based on gene body. For the Weeks et al. 371 
data, we directly used the nearest gene predictions provided by the authors (downloaded from 372 
https://www.finucanelab.org/data, file: 373 
https://www.dropbox.com/sh/o6t5jprvxb8b500/AACqCux_jJbF9F56ozhzzkpia/results/UKB_AllM374 
ethods_GenePrioritization.txt.gz?dl=0). In the Weeks et al. data, we found that “nearest gene” 375 
nominated multiple genes at about 4% of loci (51 of 1348) due to the lead variant position being 376 
within multiple gene bodies. To simplify evaluation, we randomly chose a single gene out of all 377 
nominated genes as the prediction at such loci. We found that this had a minor impact on 378 
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precision and recall compared to that reported in the original publication (precision = 0.47 vs 379 
previously reported 0.46, recall = 0.47 vs previously reported 0.48). 380 
 381 
To get the text mining prediction, we first downloaded (gene,disease) co-occurrence information 382 
and scores (Supplementary Note) from OpenTargets. We aggregated the scores of each 383 
gene/disease pair by summing over all scores for the pair from all publications. We defined the 384 
predicted causal gene from text mining at a locus as the gene with the largest aggregated score 385 
in each locus for the GWAS phenotype.  386 
 387 
The L2G score is a machine learning approach trained using fine-mapped genetics and 388 
functional genomics data on 445 gold-standard curated GWAS loci (Mountjoy et al. 2021). The 389 
predicted causal gene based on L2G score was defined as the gene with maximal L2G score in 390 
each locus (indexed by the phenotype and the lead variant). We downloaded the L2G scores 391 
from https://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/latest/l2g/ (download date: 392 
03/26/2024). 393 
 394 
PoPS is a similarity-based gene prioritization method that leverages gene-level summary 395 
statistics and incorporates data about genes from a variety of sources to produce a phenotype-396 
gene level prioritization score. We obtained PoPS scores for the 1348 evaluation loci by 397 
emailing the authors of the original publication (Weeks et al. 2023). The predicted causal gene 398 
based on the PoPS score was defined as the gene with the highest PoPS score in the locus. 399 
 400 

Evaluation of predictions 401 

 402 
For evaluation of predictions, we computed precision (proportion of predicted causal genes that 403 
were annotated as causal in the dataset), recall (proportion of annotated causal genes identified 404 
among predictions), and F-score (harmonic mean of precision and recall). Some methods 405 
(nearest gene, PoPS, LLM-based approaches) made a single causal gene prediction for each 406 
example, while others (text mining, L2G score) only made predictions at a subset of all 407 
examples. To compute these metrics, the predictions from each method were converted to 408 
0/1/NA, with 1 assigned if the method made a prediction and it matched the annotated causal 409 
gene, 0 assigned if the method made a prediction but it did not match the annotated causal 410 
gene, and NA assigned if the method did not make a prediction for an example. For all methods 411 
except text mining, we found that NAs were only a small proportion of the predictions 412 
(Supplementary Table 4). 413 
 414 
Precision = (Number of predictions scored 1) / (Number of non-NA predictions) 415 
 416 
Recall = (Number of predictions scored 1) / (Number of examples in dataset) 417 
 418 
F-score = 2 * Recall * Precision / (Recall + Precision) 419 
 420 
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For each metric, we computed 95% confidence intervals using the bootstrap with 1,000 421 
samples. 422 
 423 
To compare the performance of GPT-4 to the best non-LLM approach, we used a Wilcoxon 424 
signed rank test with continuity correction, and we report p-values for the alternative hypothesis 425 
that the GPT-4 performance is higher than the highest non-LLM approach performance. We 426 
also report a p-value from a McNemar test for the same comparison with the alternative 427 
hypothesis of a difference between performance for the two methods. 428 
 429 

Factors affecting prediction accuracy 430 

 431 
To assess the impact of locus complexity, we used the number of genes in the locus as a 432 
measure of its complexity, and computed the Pearson correlation between the number of genes 433 
in the locus and whether the prediction was correct. 434 
 435 
To assess the impact of publication count, we used publication counts for causal genes to 436 
evaluate correlations with prediction performance. We downloaded the “gene2pubmed” file from 437 
https://ftp.ncbi.nlm.nih.gov/gene/DATA/ (download date: January 26, 2024). We subset the file 438 
to only include human genes (tax_id = 9606), and count the number of publications per gene. 439 
Since many examples might share the same causal gene, for each causal gene, we computed 440 
the proportion of loci predicted correctly. To account for the heavy-tailed distribution of 441 
publication count by gene, we computed the Spearman correlation between the number of 442 
publications for the causal gene and the proportion of correct predictions at loci with the 443 
specified causal gene. 444 
 445 
We used the bootstrap with 1,000 samples to compute 95% confidence intervals for both 446 
correlations. We used the same resampled dataset for confidence interval calculations for 447 
precision, recall, F-score and both correlations. 448 

Calibration analysis 449 

 450 
To assess calibration, we used the confidence scores provided by the LLM. We computed 451 
precision for all predictions at a given confidence score, for any confidence score with at least 5 452 
predictions. Supplementary Table 4 shows all unique confidence scores predicted by the LLMs, 453 
with their counts and precision estimates. We computed a standard error for each precision by 454 
assuming it to be the mean of a binomial distribution with size given by the number of 455 
predictions with that score. 95% confidence intervals were calculated as precision +/- 1.96*se. 456 
 457 

Summarizing reasons provided by the LLM for correct predictions 458 

 459 
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Across all 4 datasets, the LLMs make thousands of correct predictions. To summarize these for 460 
easy inspection, we concatenated all reason strings provided by GPT-4 for predictions 461 
evaluated to be correct. We then identified trigrams in the concatenated string using the ngram 462 
package in R, and sorted them in decreasing order of frequency of occurrence to identify the 463 
most common ones. We report the top 200 most frequent trigrams in Supplementary Table 9. 464 
 465 

Sensitivity analysis for prompt structure 466 

 467 
To examine how the prompt affects the prediction accuracy of the LLMs, we experimented with 468 
replacing the prompt by a minimal alternative containing only the output format, task description, 469 
and the locus information. We conducted these experiments with GPT-3.5 (model version “gpt-470 
3.5-turbo-0125”). The detailed prompt is described below, using the same example locus as 471 
earlier. 472 
 473 
 474 
 475 
System prompt:  476 
From the list, provide the likely causal gene (matching one of the given genes), confidence (0: 477 
very unsure to 1: very confident), and a brief reason (50 words or less) for your choice. 478 
Return your response in JSON format, excluding the GWAS phenotype name and gene list in 479 
the locus. JSON keys should be 'causal_gene','confidence','reason'.  480 
Your response must start with '{' and end with '}'. 481 
 482 
User prompt: 483 
Identify the causal gene. 484 
GWAS phenotype: {Morning person} 485 
Genes in locus: {A},{B},{C},{D} 486 
 487 

Embeddings for genes and phenotypes 488 

 489 
We generated descriptions for genes and phenotypes using GPT-3.5 (model version “gpt-3.5-490 
turbo-0125”) by using the prompt below. 491 
 492 
"You are an expert in biology and genetics. 493 
Your task is to provide biologically relevant information about the query below in 300 words or 494 
less. 495 
 496 
Query: {text}." 497 
 498 
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The “text” value was generated by adding the entity type (gene/phenotype) to the beginning of 499 
the entity. So the value of text for the BRCA1 gene would be “gene BRCA1”, and that for the 500 
breast cancer phenotype would be “phenotype breast cancer”.  501 
 502 
We provided the generated descriptions as input text to get embeddings using the OpenAI text 503 
embedding model “text-embedding-3-large”. This produced embeddings with 3,072 dimensions. 504 
 505 

Embedding-based causal gene prediction 506 

 507 
Using the computed embeddings, we provided the embedding-based causal gene prediction. 508 
We calculated the dot product (identical to cosine similarity since the embeddings are 509 
normalized to length 1) between the phenotype embedding and the gene embedding, and we 510 
defined the predicted causal gene as the gene with the largest dot product of phenotype and 511 
gene embeddings among all the genes in each loci. 512 
 513 
To create the t-SNE plot for the PCSK9 locus, we ran t-SNE on the 13 data points (1 phenotype 514 
+ 12 genes in the locus) using the Rtsne package with a perplexity of 4. 515 
 516 

Figures 517 

518 
 519 
Figure 1: Schematic illustrating the use of LLMs for identifying causal genes at GWAS loci, with 520 
an example of an association for LDL cholesterol near the PCSK9 gene. For a GWAS locus, a 521 
500 kbp window is extended on either side of the lead variant (indicated by the black dot), and 522 
all genes within this window are considered as candidates. The LLM is then provided with the 523 
phenotype name and the alphabetical list of genes and is instructed to predict the causal gene, 524 
its confidence, and the reason for its choice. The part of the input prompt colored in orange is 525 
the same for all loci, while the part in green is modified for each locus. For readability, output 526 
formatting instructions are excluded from the figure. 527 
 528 
 529 
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 530 
 531 
 532 
 533 
 534 

535 
 536 
Figure 2: Performance of LLMs and other methods on evaluation datasets, and the factors 537 
affecting performance 538 

a. Performance of all methods on evaluation datasets as measured by F-score (a 539 
combination of precision and recall) 540 

b. Precision-recall plot showing performance of all methods on each dataset 541 
c. Impact of locus complexity on performance for all methods, measured by correlation of 542 

prediction accuracy with number of genes at locus. All methods, including LLMs, perform 543 
worse at loci with more candidate genes. 544 

d. Impact of number of publications for the causal gene on performance for all methods, 545 
measured by correlation of prediction accuracy with number of publications for causal 546 
gene. Most methods show a positive correlation of performance with how well-studied 547 
the causal gene is, except the nearest gene and L2G score methods. 548 
 549 
 550 
 551 
 552 
 553 
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554 
 555 

Figure 3: Text embeddings of genes and phenotypes partially explain performance of LLMs 556 
a) T-SNE plot to visualize text embeddings of the genes and phenotype at a locus for LDL 557 

cholesterol in the Weeks et al. data. The causal gene PCSK9 is closest to the LDL 558 
cholesterol phenotype in the text embedding space as measured by cosine similarity. 559 

b) Proportion of examples in the evaluation datasets where the causal gene is most similar 560 
to the phenotype in the text embedding space as measured by cosine similarity. 561 
 562 

 563 

Supplementary Tables 564 

 565 
1 - Information about datasets 566 
2 - Performance metrics for all methods and datasets 567 
3 - Number of hallucinations per dataset for the LLM approaches 568 
4 - Confidence scores predicted by LLMs and precision estimates for each score value 569 
5 - Precision and recall stratified by phenotype for all methods and datasets 570 
6 - GPT-4 provided reasons for examples about the phenotype 'Total protein' from the Weeks et 571 
al. dataset 572 
7 - Comparison of two GPT-4 version in number of hallucinations and performance metrics 573 
8 - P-values from paired Wilcoxon’s signed rank test and McNemar test comparing performance 574 
of the LLM-based approach to the best non-LLM approach. 575 
9 - Trigrams from the reasons reported by GPT-4 for correct predictions, along with their counts, 576 
for the 200 most frequent trigrams 577 
10 - Performance of LLMs on datasets with scrambled phenotypes 578 
 579 
 580 
 581 
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Data availability 606 

We will share all processed datasets used in our analysis, as well as the prediction results from 607 
all methods on all datasets, intermediate outputs like gene and phenotype embeddings using 608 
Zenodo (doi: 10.5281/zenodo.11391053).  609 
 610 
All source data were openly available. Download links: 611 
1) OpenTargets - https://github.com/opentargets/genetics-gold-standards/  612 
2) Pharmaprojects - https://github.com/ericminikel/genetic_support 613 
3) Weeks et al. - https://www.finucanelab.org/data 614 
4) GWAS Catalog - https://www.ebi.ac.uk/gwas/docs/file-downloads  615 

Code availability 616 

We will share the scripts we used to query the LLM, as well as the scripts we use to compute 617 
our evaluation metrics using Zenodo (doi: 10.5281/zenodo.11391053). All prompts we used are 618 
included in the manuscript or supplementary materials. 619 
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