Converting dose-area product to effective dose in dental cone-beam computed tomography using organ-specific deep learning
View ORCID ProfileRuben Pauwels
doi: https://doi.org/10.1101/2024.05.28.24308014
Ruben Pauwels
1Department of Dentistry and Oral Health, Aarhus University, Denmark
2Aarhus Institute of Advanced Studies, Aarhus University, Denmark
3Department of Radiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Data Availability
All data produced in the present study are available upon reasonable request to the authors.
Posted May 28, 2024.
Converting dose-area product to effective dose in dental cone-beam computed tomography using organ-specific deep learning
Ruben Pauwels
medRxiv 2024.05.28.24308014; doi: https://doi.org/10.1101/2024.05.28.24308014
Subject Area
Subject Areas
- Addiction Medicine (362)
- Allergy and Immunology (683)
- Anesthesia (183)
- Cardiovascular Medicine (2722)
- Dermatology (234)
- Emergency Medicine (411)
- Epidemiology (12370)
- Forensic Medicine (10)
- Gastroenterology (782)
- Genetic and Genomic Medicine (4223)
- Geriatric Medicine (394)
- Health Economics (697)
- Health Informatics (2725)
- Health Policy (1013)
- Hematology (369)
- HIV/AIDS (873)
- Medical Education (404)
- Medical Ethics (111)
- Nephrology (450)
- Neurology (4001)
- Nursing (216)
- Nutrition (592)
- Oncology (2110)
- Ophthalmology (602)
- Orthopedics (250)
- Otolaryngology (309)
- Pain Medicine (256)
- Palliative Medicine (77)
- Pathology (475)
- Pediatrics (1143)
- Primary Care Research (465)
- Public and Global Health (6626)
- Radiology and Imaging (1439)
- Respiratory Medicine (882)
- Rheumatology (418)
- Sports Medicine (350)
- Surgery (460)
- Toxicology (57)
- Transplantation (192)
- Urology (171)