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Abstract

During the COVID-19 pandemic, lockdowns were a widely used strategy to
reduce disease transmission. However, there was much debate about the
optimal level of strictness and duration of lockdowns. This study considers
how lockdowns impact public health opinions, which in turn influence
adherence to and effectiveness of these measures. We developed an
agent-based simulation model to study the impact of health-related
opinions on the effectiveness of lockdowns in controlling disease spread.
The model simulates infection spread and health opinion dynamics among
individuals connected through a network of contacts and incorporates
feedback loops between epidemic variables and opinion dynamics. We
simulated different scenarios of lockdown implementation by varying a
threshold value of prevalence when a lockdown is initiated and the
stringency of the lockdown. We found that quickly imposing a lockdown
with high stringency is the most effective at reducing infection spread,
provided that there is a certain degree of adherence to the lockdown
among the population. Furthermore, stricter lockdowns minimize fatigue
with respect to the imposed measures, since the duration of a lockdown is
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shorter on average in this scenario. Such lockdown policies can therefore
be a beneficial, high-impact tool in containing epidemic spread, especially
when supplemented by information interventions maintaining the
adherence to lockdown measures.

Author summary

Lockdowns were a widely used strategy to curb disease transmission during
the COVID-19 pandemic. However, the effectiveness of such measures
depends on the population’s adherence to the regulations. Long and strict
lockdowns may lower this adherence as the population experiences ‘fatigue’
with the regulations. In our study, we model the interplay between
lockdowns, disease transmission, and health-related opinions in a
population network.

We tested various lockdown scenarios by altering strictness of measures
on the one hand, and lockdown initiation times based on disease
prevalence rates on the other hand. Our findings show that swift, stringent
lockdowns are the most effective in reducing infections, particularly with
strong public compliance. Additionally, stricter lockdowns tend to reduce
fatigue as they are generally shorter.

These results highlight that prompt, rigorous lockdown policies,
supported by strategies to maintain public adherence, are most efficient in
controlling epidemics. Furthermore, effective communication to ensure
community cooperation may enhance the success of these measures.

Introduction

During the SARS-CoV2 pandemic, which emerged at the end of 2019 and
quickly spread worldwide, combinations of non-pharmaceutical
interventions (NPIs), including government-imposed lockdowns, were used
to mitigate the spread of the virus. Before vaccines became available at the
end of 2020, NPIs were the only public health intervention available to
curb the pandemic. Since then, many studies have been published in which
the effectiveness of NPIs has been investigated (e.g. [1}-4]). However, it is
difficult to extract information about the effectiveness of specific measures,
as they were usually implemented as a part of a larger set of measures.
Lockdowns were the most stringent type of NPIs used. Aiming to reduce
the contact rates as much as possible, the mobility of the population was
significantly restricted and large gatherings were not allowed [5].
Lockdowns were imposed by governments and usually had precise start
and end dates, chosen according to the pandemic situation at the time.
The exact realization of lockdowns in different countries varied in terms of
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chosen measures and their implementation. Thus, to facilitate comparison,
an index quantifying the stringency of measures on the population level
was developed [6]. This stringency index is computed as the mean score of
nine different ordinal metrics that indicate the extent to which a certain
lockdown policy has been imposed. Examples of such policies are school
closures, cancellation of public events, and stay-at-home requirements.

Policymakers must consider several critical aspects when developing a
strategic plan for implementing a lockdown. These considerations include
determining the optimal timing for initiating the lockdown based on the
prevalence or incidence of new cases, deciding the level of stringency for
the lockdown measures, and establishing the appropriate duration. These
factors not only affect the epidemiological outcomes of the lockdown but
also have significant implications for the economic burden, mental health
impacts, and potential social unrest within the population. While early
implementation and prolonged duration of lockdowns can significantly
reduce case numbers, these benefits might be offset by negative
consequences, such as diminished adherence to the lockdown
measures [7-10]. While many studies have attempted to quantify the
epidemiological effects of NPIs and lockdowns, few have considered the
impact of adherence of the population on the effectiveness and duration of
lockdowns [11].

In this study, we use an agent-based model to explore how adherence to
lockdown measures affects epidemiological outcomes, such as the number
of new cases and the population’s attitude towards protective measures. In
our model, the decision to initiate or end a lockdown is based on specific
epidemic thresholds. The population in the model is connected through a
network of social contacts, allowing for the spread of both health-related
opinions and the infectious disease. Essentially, our model represents a
complex system where opinion dynamics and infection spread coexist in a
connected network. Our approach builds on earlier work [2}/12,/13], where
we investigated the interplay between opinion and epidemic dynamics. In
the present work, we studied the effect of different aspects of lockdown
implementation on epidemic outcomes, population health opinion
dynamics, as well as duration and number of lockdowns taking place
within the first year of an outbreak.

Materials and methods

General description of the model

We consider the emergence of an airborne infectious disease in a closed
population. Transmission of the disease requires close physical contact for
an extended amount of time (such as standing within 1.5 meters of each
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other for at least 15 minutes). In the context of the disease, members of
the population hold one of two mutually exclusive health-related opinions:
health-positive and health-neutral. These opinions affect the behavior,
which in turn changes the individual probability of contracting the
infection. Self-protective behaviour includes both self-applied measures
(such as hand washing) as well as the contact pattern of individuals (i.e.,
limiting contacts to avoid infection). The basic assumptions concerning the
interaction between epidemic and health opinions dynamics in our
agent-based model draw from the framework outlined in |12]. In this work,
the authors developed a deterministic model incorporating feedback
between epidemic dynamics and competing health opinions and used it to
study the impact of contact rates and assortativity by opinions on epidemic
dynamics. We extended the model by incorporating government-imposed
physical distancing measures and their effects on health opinion dynamics.
In the model, individual health-related opinions change over time,
driven by several factors. Switching of opinions occurs as a result of
exchanging information with peers, such that the higher the prevalence of
an opinion in the population, the higher the switch rate to this opinion.
The presence of the disease is not required for both opinions to persist.
During an outbreak, the adoption of a health-positive opinion leading to
self-protective behavior is positively correlated with the prevalence of the
disease, thus creating a feedback loop between the health opinion dynamics
and disease dynamics. When an outbreak ends, the switch rate to the
health-positive opinion is reduced to the pre-pandemic level. Finally, we
consider the possibility of a temporary large-scale societal lockdown when
the disease prevalence rises above a certain predefined threshold. For the
duration of a lockdown, the average rates of close physical interactions
experienced per individuals are reduced for the entire population. In
addition to impacting the transmission of the disease, a lockdown
influences health-related opinion dynamics by inducing lockdown
fatigue [7-9], which may increase the adoption of the health-neutral
opinion and subsequently the overall decrease in adoption of self-protective
measures [10]. Lockdowns are lifted when the disease prevalence drops
below a second predefined threshold. For simplicity, following the lifting of
the lockdown, the switch rate to the health-neutral opinion is immediately
re-set to the pre-lockdown level.

Model description

We summarize the key features of the model here, and refer the reader to

the for the technical formulations. The model that we use is

a stochastic agent-based network model, where nodes of the network
correspond to individuals and edges indicate that the individuals linked by
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an edge engage in regular contact with one another. These contacts can be
of a physical nature, meaning any type of (social) interaction within close
proximity for a minimal extended duration of time, or of an informational
nature, where only information is exchanged by e.g. text messages, email,
or phone calls. We call two individuals peers if they are connected by an
edge. Disease transmission can occur exclusively through physical
interactions, whereas opinion switches are driven by the informational
interactions.

At the start of the simulation, we generate a small-world population
network by use of the Watts-Strogatz algorithm |14], and all edges of the
resulting network are considered to be both of a physical and informational
nature. Small-world networks, as discussed by Watts and Strogatz, can be
observed in many large networks found in biological applications, and are
characterized by high clustering frequently observed in social networks [15].
For more details about the properties of the networks in the simulations,
we refer to

The network is static in all scenarios, but the nature of the contact
edges can change when a lockdown is initiated: for the duration of a
lockdown, the physical interaction along certain edges in the network is
temporarily disabled, preventing the transmission of disease through these
contacts. We elaborate on the exact implementation of this lockdown
mechanism later in this section.

Disease dynamics

The model population has fixed size N, and we omit considerations of
birth and death due to the relatively short time horizon of our study,
approximately one year. The disease dynamics are modeled using an SIR
framework, where individuals in the population are categorized into three
states: susceptible (S), infected (1), or recovered (R). A susceptible
individual can get infected through a physical contact (symbolized by a
network edge) with an infected individual. The likelihood for an individual
to get infected at any moment in time depends on

1. the physical contact rate cynys of the edge,
2. the number n; of the individual’s infected peers, and

3. the infection probability per contact e.

We set the physical contact rate cppys of all edges to the same value for
simplicity. Once individuals are infected, they naturally recover, on
average, after 1/v weeks (with an exponential distribution of duration of
infectiousness). Following the recovery, individuals are immune to
re-infection. At the start of an outbreak, all individuals in the population
are susceptible.
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Each individual in the population holds one of two mutually exclusive
health-related opinions. The individuals with health-positive opinion
(denoted ) modify their behavior with the effect of reducing the
probability of contracting an infectious disease, whereas the individuals of
health-neutral opinion (denoted &)) do not modify their behavior and
hence are more susceptible to infection. Therefore, the infection
probability € can depend on opinion status, and we denote these
probabilities by eqy and €g. We make the simplifying assumption that
these behavioral differences affect only susceptibility and do not influence
the infectivity of the infected individual.

Lockdowns

The central element of our simulation setup is the lockdown mechanism. A
lockdown is immediately implemented when the disease prevalence exceeds
a threshold initiation value f,. As briefly mentioned before, lockdowns are
effectuated by cutting the physical interaction along certain edges in the
network (the informational interaction of those edges remains in place).
This cutting of physical edges occurs in a probabilistic manner, where the
probability for any edge to be cut is chosen as follows.

When at least one of the individuals connected by an edge is of a
health-positive opinion, the cut probability is equal to ¢, where 0 < g < 1.
This model parameter ¢ is called the lockdown stringency, with ¢ = 1
corresponding maximal stringency and ¢ = 0 being equivalent to a
no-lockdown scenario. When an edge connects two health-neutral
individuals, the cut probability is ¢ - o, where 0 < o < 1 is the lockdown
adherence parameter. Therefore, when adherence is maximal (o = 1) the
cut probability is equal for any edge in the network. However, when the
adherence is below 1, physical interaction edges between two
health-neutral individuals are less likely to be cut than edges involving at
least one health-positive individual.

This models the assumption that health-neutral individuals are more
likely to be non-adherent to health-related measures, including lockdown
regulations. Since meeting up in person during a lockdown requires
non-adherence from both parties involved, we opted to invoke the reduced
cut probability ¢ - a only when both individuals connected by an edge are
of health-neutral opinion.

Opinion dynamics

We distinguish three distinct processes that contribute to opinion
switching in the model.

Firstly, switching of opinion occurs through communication with peers
holding the opposite opinion, and the likelihood for this switch to occur
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depends on
1. the informational contact rate ¢,y between individuals,
2. the number of peers n,;, of opposing opinion, and
3. the opinion switch probability per contact p.

Similar to our approach for physical contacts, we take the informational
contact rate ¢, to be identical for all edges.

Secondly, switching from a health-neutral to a health-positive opinion (a
Q) — P switch) is amplified by an increase in disease prevalence in the
population. This is implemented in the model via a dependence of the
switch rate on the global prevalence P.

Thirdly, and finally, lockdown-fatigue can amplify an opinion switch
P — Q) with the likelihood of this switch depending on

1. the time 7 since the start of the current lockdown and

2. lockdown stringency as captured by parameter q.

We summarize the model parameters in Table [I} and refer to
for a description of choice of model parameters and model
calibration. Here we selected the values for epidemiological parameters to
model an acute immunity-inducing disease similar to COVID-19 or
influenza. To bring the interplay between the epidemic dynamics, opinion
dynamics and public health intervention measures to the forefront, we did
not consider a possibility of waning immunity or disease-induced mortality.

We initialized the population with equal proportions of health-positive
and health-neutral opinions, randomly distributed over the network. This
was followed by an “opinion burn-in” phase, where opinions circulate in
the network in the absence of disease in order to settle their distribution to
the quasi-steady state emerging from the definition of the model. To
exhaustively explore the impact of the feedback between epidemiological
variables, opinion dynamics and NPIs, we have considered various
scenarios which were captured by varying key parameters across plausible
intervals. Stringency parameter ranged so that restrictions varied from
minimal to complete, effectively eliminating all contacts. The thresholds
for initiating lockdown based on infection prevalence, varied from 0.5% to
5%. Finally, we considered three levels of adherence among individuals
with health-neutral opinions: high (1), medium (0.5), and low (0). For
each combination of parameter values, we performed 500 distinct
simulation runs with a runtime of 50 weeks. We chose this time frame so
the assumption of the permanence of the state of the population, such as
turn around and availability or lack of biomedical interventions, remains
plausible.
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Table 1. Model parameters

Symbol Description Value(s), unit
ol Recovery rate 1.0, week™
Cphys(7,7') | Physical contact rate between individuals j, j/ 7.0, week!
cint(7,7") Information contact rate between individuals 7,5’ | 10.0, week™
D Opinion switch probability per information contact | 4 x 1072
event
€p, € Infection probability for opinion @, Q) individuals | €5 = 2.0 x 1072
per physical contact event with infected peer (of | g = 3.5 x 1072
arbitrary opinion)
Chat Weight factor of lockdown fatigue contribution to | 5.0 x 1072
opinion switch propensity
Chs Weight factor of prevalence-related contribution to | 3.5 x 1072
opinion switch propensity
fs Threshold prevalence for lockdown initiation (0.5,1.0,2.0,3.5,5.0) x
1072
fe Threshold prevalence for lockdown lift 1.5 x 1073
q Lockdown stringency 0.00, 0.25, (0.375), 0.5,
(0.625), 0.75, 1.00
« Lockdown adherence for opinion ) individuals | 1.0, 0.5, 0.0

(high, medium, low)

Each simulation run started in a state without a lockdown in a fully
susceptible population, with 3 index infection cases at randomly selected
nodes in the network. As a consequence of this small number of index
cases, in a small number of simulation runs, the disease stochastically goes
extinct. These runs were also included in the aggregated results. We
compared scenarios with lockdowns to a baseline scenario, where a
lockdown is not imposed, corresponding to the stringency parameter set to
q = 0. We summarized the runs by calculating mean values of the
following outcomes at the end of each simulation, i.e., at 50-week mark:

e Relative final outbreak size (RFOS). The ratio of the final outbreak
size and the mean final outbreak size for the lockdown-free scenario
(¢ = 0). If the relative final outbreak size is smaller than 1, lockdown
measures have led to an overall reduction in disease spread, whereas
a relative final outbreak size larger than 1 indicates that, due to the
lack of adherence to lockdown measures, the final number of
infections was higher than in the baseline scenario.
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e Final proportion of health-neutral () individuals (FPHN).
e Cumulative duration and frequency of lockdowns.

The final outbreak size is defined as the proportion of the population that
has contracted the disease — that is, the proportion of the total
population who are either infected or recovered when the simulation ends.

Finally, to illustrate a range of features of the time course of a pandemic
in different scenarios, we present the time series of several individual
simulation runs .

The simulation code was written in MATLAB (R2023a) [16], and is
publicly available on GitHub [17]. Wolfram Mathematica 13.0 [1§] was
used for data analysis and generating figures.

Results

Disease and opinion outcomes
Low lockdown stringency

For low lockdown stringency (e.g., ¢ = 0.25), we find that the final
outbreak size is comparable to or worse than that of a lockdown-free
scenario (¢ = 0), regardless of the lockdown initiation threshold prevalence
fs or the adherence to lockdown regulations by health-neutral individuals
o (Fig. [la-c). Additionally, most individuals have adopted a
health-neutral (@) opinion by the end of the year (Fig. [Ijd-f), making the
population more susceptible and therefore more vulnerable overall to
future epidemic outbreaks.

Medium lockdown stringency

For lockdowns with medium stringency (e.g., ¢ = 0.5), the outcome
depends on the threshold prevalence fy and the adherence to lockdown
measures «. If the adherence to lockdown measures is high (e.g., a = 1.0),
we observe that the final outbreak size can be significantly reduced by
imposing lockdown measures (Fig. [lh). This effect increases when the
lockdown initiation threshold prevalence is reduced — corresponding to
lockdowns initiated early in the outbreak. On the other hand, this policy
causes a large proportion of the population to adopt a health-neutral
opinion (Fig. [1d).

When the adherence to lockdown measures is low or medium
(v =0.0,0.5), lockdown measures have a net detrimental effect on both the
final outbreak size and the proportion of health-neutral individuals at the
50-week mark (Fig. , b, c, e, f). Furthermore, this effect grows stronger
as the prevalence threshold f, is reduced.
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High lockdown stringency

The dynamics for scenarios with strict lockdowns (¢ > 0.5) exhibit a strong
dependence on both the initiation prevalence threshold f, and the
adherence a. When adherence is medium or high (a = 0.5, 1.0), we find
that lockdown measures can be very effective at reducing the final size of
infection numbers over the initial 50 weeks. Furthermore, the results show
that in this scenario it is possible to ensure that a large proportion of the
population holds a health-positive (@) opinion at the 50-week mark: on
the one hand by imposing strict lockdowns, and on the other hand by
initiating lockdowns at a higher critical prevalence. However, this latter
strategy comes at the cost of a comparatively higher final outbreak size.

In the scenario where adherence is low (e.g., a = 0.0), lockdowns are
detrimental with respect to every metric shown in Fig. [T} regardless of the
lockdown initiation threshold fs. At the mark of 50-weeks, the population
is in a state where almost every individual holds a health-neutral opinion,
and the mean final outbreak size can exceed the lockdown-free level by as
much as 20%.
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Lockdown adherence
Medium (o = 0.5)

a 0.05;
0.04}
o2
= 0.03}
—
o
=
% 0.02}
o
<
hat 0.01¢
d o0.05;
0.04f
o2
= 0.03}
—
o
=
2 0.02}
—
<
hat 0.01¢

0 0.25

stringency q stringency ¢ stringency q

Fig 1. Effects of the lockdown on the outbreak size and
distribution of opinions one year after outbreak starts. Mean final
outbreak size relative to mean outbreak size for scenarios without
lockdowns (RFOS, a-c) and mean final proportion of health-neutral
individuals (FPHN, e-f) at 50-week time mark. All outcomes are shown in
relation to lockdown stringency ¢ and lockdown initiation threshold f, for
varying degrees of lockdown adherence a.

RFOS

FPHN
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Duration and frequency of lockdowns

In addition to outcomes pertaining to epidemic and opinion dynamics, we
investigated emerging duration and frequency of lockdown measures that
are imposed on the population in each scenario. We present the results in

Fig.

Low and medium lockdown stringency

With a low or medium lockdown stringency of 0.25 < g < 0.5, regardless of
lockdown adherence, we find that on average the measures fail to reduce
the prevalence below the lockdown-lifting threshold f. within the simulated
50-week period. As a result, the population will spend the majority of this
period in a single, long lockdown, starting from the moment when the
disease prevalence initially increases to the lockdown-initiation threshold
fs. Interestingly, the population tends to spend more time in lockdown
when lockdown adherence is high (o = 1.0) than when it is low (a = 0.0).

High lockdown stringency

When lockdown measures are strict (¢ > 0.5), in a setting with medium to
high adherence to the lockdown (a = 0.5, 1, Fig. [k, [2b, [2d, 2e), the
outcomes exhibit a strong dependence on the lockdown initiation threshold
fs. More specifically, as the initiation threshold decreases the duration and
the number of lockdown increases. One possible explanation for this is that
for a low threshold, such as f; = 0.005, a strict lockdown drives infection
rates down quickly, causing the prevalence to drop below the
lockdown-lifting threshold f.. As a result, the lockdown ends while the
majority of the population is still susceptible, and the duration of the
lockdown is too brief to promote a shift towards a health-neutral opinion.
Subsequently, if the disease does not go extinct, infection numbers may
start rising again, soon leading to a new lockdown. As a result, the mean
number of lockdowns and their total duration over the full 50-week period
are high. If the lockdown adherence is low (e.g., @ = 0.0, Fig. e and 2f),
the level of lockdown stringency and adherence of individuals to the
lockdown do not have an effect on the duration of the lockdown or the
number of times it is initiated. In this scenario, the population will
experience a single lockdown with a long duration of approximately 30
weeks or more. This lockdown does decrease infection transmission, but
due to the lack of adherence by a part of the population, the transmission
is still ongoing, keeping prevalence above the lockdown termination
threshold.
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Fig 2. Dependence of the overall lockdown duration and the
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Duration of lockdown versus final outbreak size

To show the relationship between the total time spent in lockdown (7}4)
and the relative final outbreak size across various scenarios, we plotted
these quantities against each other for all parameter combinations and all
simulation runs in Fig. 3] This plot also shows the stochastic variability in
outcomes per parameter combination, color-grouped by the lockdown
stringency parameter q. The three distinct graphs correspond to three
settings of adherence to lockdown, high, medium, and low with

a = 1.0,0.5,0.0, respectively. The points in the lockdown-free scenario

(¢ = 0) cluster around a relative final outbreak size of 1, and all have

Tia = 0. When the relative final outbreak size exceeds 1, lockdowns have
led to a higher final outbreak size than could have been expected in the
absence of lockdown measures. In this analysis, we have fixed the
lockdown initiation prevalence at fs = 0.005 in all simulation runs. For
analogous figures showing the final proportion of health-neutral
individuals, we refer to [S3 Appendix]

The outcomes in the low-stringency lockdown scenario (¢ = 0.25, green
squares) always cluster in the top right of the graph, regardless of the
adherence a. The outcomes of this scenario exhibit long lockdowns with
high final outbreak sizes.

For a medium lockdown stringency (¢ = 0.5, red diamonds), depending
on the level of adherence «, spread of both the relative final outbreak size
and the total time spent in lockdown can range over a wider region. When
adherence is high (a = 1.0, Fig. )7 the relative final size is dispersed over
a large interval, varying from nearly 1, indicating minimal reduction, to
substantial reductions in the final size. Notably, even when the final size is
small, the duration spent in the lockdown can still be significant (20 or
more weeks). When the relative final outbreak size is close to 1, the total
duration of lockdown spans approximately 40 weeks or more. A small
number of points are found in the bottom left, where the total lockdown
duration and relative final outbreak size are low. This corresponds to
stochastic extinction following the first lockdown. Most outcomes, however,
are characterized by longer total lockdown duration 7i3. When adherence
is lower (o = 0.0, 0.5, Fig. [3b and [Bc) all points for medium-stringency
lockdown scenarios are located at the top right corner, signifying that
while a large amount of time was spent in lockdown, the epidemiological
outcomes are equal or worse compared to a lockdown-free scenario.

This pattern continues as the stringency of the lockdown, ¢, increases.
The higher the value of ¢, the more points remain in the region where the
duration of lockdown is short and relative final outbreak size is low, but a
lower adherence (o = 0) almost always has the effect of leading to long
lockdown duration and higher relative final outbreak size.

May 24, 2024

1424



High lockdown adherence (o = 1.0)

QL

RFOS

op

1.5¢

RFOS

Low lockdown adherence (a = 0.0)

(g

1.5¢

1.0' ﬁ

0.5

RFOS

0.087%" , . . .
0 10 20 30 40 50
Total lockdown duration (weeks)

Lockdown stringency @ 0 [l 025 € 05 A 075 V 1

Fig 3. Spread of outbreak sizes and lockdown duration. The
panels show relative final outbreak size (RFOS) versus the total lockdown
duration, across various levels of lockdown adherence parameter

a = 1.0,0.5,0.0. The outbreak size is reported relative to the mean final
outbreak size in the scenario where no lockdown is implemented (¢ = 0).
Each marker corresponds to a single simulation run. The threshold
prevalence for lockdown initiation is fixed at fs = 0.005.
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Representative simulation trajectories

The results we have shown so far captured the state of the population at
the end of the simulation run, i.e. the state of the population after ¢ = 50
weeks. Studying the time evolution of individual simulation runs provides
insight into the mechanisms that lead to the final outcomes we presented
above. In Fig. 4 we show time series of the prevalence (left column) and
proportion of individuals with a health-neutral (§)) opinion (right
column), for several combinations of the simulation parameters (g, «, f5).

For each parameter set, we plot the results of four distinct simulation
runs. Note that the initial behavior of the trajectories is independent of
the choice of (g, a, fs), since the population always starts in a state
without lockdowns. These three parameters start to affect infection
transmission dynamics once the prevalence has risen above the threshold
fs for the first time, and a lockdown is initiated.

In order to simplify the comparison between the different parameter
choices, we used colors to indicate simulation runs that have identical
initial behavior. That is, each color corresponds to a specific choice of seed
for the pseudo-random number generator used by the simulation. As
pointed out above, all simulations are equivalent before the first lockdown
has started, so equal seeds will produce identical initial trajectories in the
rows of Fig. [4]

Lockdown-free scenario

The baseline scenario is the situation where a lockdown will not be imposed
(refer to Fig. ), which is equivalent to a scenario with lockdown with
stringency ¢ = 0. We observe typical SIR epidemic dynamics: prevalence
rises quickly after the infectious disease is introduced at ¢ = 0. As more
people recover from the disease and the number of susceptible individuals
decreases, infection rates decrease and the prevalence eventually drops to
zero. Furthermore, the high prevalence induces increased switching to a
health-positive opinion causing reduction in the proportion of individuals
holding a health-neutral opinion for an extended period of time.

In one of the trajectories (in orange), the epidemic does not take place
since the infection goes extinct within a few weeks. In this scenario,
prevalence levels do not become high enough to promote increased
switching from health-neutral to health-positive opinion, and as a result
the distribution of health-related opinions remains close to its initial value
of 0.5.

Medium stringency, high adherence, low initiation threshold

In the scenario where ¢ = 0.5, & = 1.0, and f; = 0.005 (row (b) in Fig. [4)),
lockdowns are initiated at very low prevalence levels; they have medium
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stringency and the adherence to them is strong. Since in such conditions
the disease does not spread easily, lockdowns are effective at keeping
prevalence at low levels. As a result, the prevalence soon decreases below
the lockdown-lifting threshold f. = 0.0015 and the lockdown ends.
However, the disease is still present in the population and most of the
population is susceptible to infection. Subsequently, the number of infected
individuals can start rising again, leading to a new lockdown. Each time a
new lockdown is initiated, the number of health-neutral individuals is seen
to increase. Even though adherence to the lockdown is high, health-neutral
individuals do not engage in self-protective measures and are therefore
more likely to get infected. In the green trajectory, it is clear that this
dynamic can have a detrimental effect on epidemic control in the long run:
after week 30, a substantial part of the population is of a health-neutral
opinion and the disease can spread even during a lockdown.

Medium stringency, high adherence, high lockdown initiation
threshold

In the scenario where ¢ = 0.5, a = 1.0, and f, = 0.05 (row (c) in Fig. ),
the lockdown is initiated at a higher prevalence and therefore, comes in
effect later. Once the lockdown is initiated, some time later prevalence
decreases until it drops to a point where the lockdown measures are lifted
again. The cycle then repeats, although the second prevalence peak is
lower than the first. The opinion distribution graphs in the right column
show that initially there is a tendency to switch from health-neutral to
health-positive opinion as disease prevalence increases, but this is
subsequently counteracted by lockdown fatigue and, as a result, individuals
start to switch to the health-neutral opinion. In this scenario, individual
lockdown periods can last longer compared to those expected with a lower
initiation threshold fs (refer to Fig. ), potentially causing a large
fraction of the population to adopt a health-neutral opinion as a result of
longer lockdowns. However, with more individuals holding the
health-neutral opinion, the overall population becomes more susceptible,
making a large second wave of infections possible. This secondary wave
may in turn prompt a reversal in health opinion dynamics with a large
fraction of the population adopting a health-positive opinion.

High stringency, high adherence, high threshold lockdown
initiation

In the scenario where ¢ = 1.0, a = 1.0, and f; = 0.05 (refer to Fig. [dc),
prevalence dynamics are expected to be qualitatively similar to those

shown in row (c), but the lockdowns, due to their increased stringency, are
much more effective at quickly stemming infection transmission and
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therefore, keeping the duration of the lockdowns short. In three of the four
plotted trajectories, the lockdowns are sufficiently effective to lead to the
disease’s extinction within the time horizon considered, such that no
second wave occurs. In this scenario, a small proportion of the population
adopts a health-neutral opinion during the lockdown, but its short
duration ensures lockdown fatigue remains low and subsequently the
opinion distribution returns to the pre-outbreak state. In fact, the only
trajectory (in red) where a second wave occurs has a higher proportion of
health-positive individuals at the 50-week mark. This happens since the
second wave does not reach the lockdown initiation threshold prevalence.
As a result, the proportion of the population engaging in self-protective
measures increases, and the prevalence slowly decreases without the need
for further lockdown measures.

Medium stringency, low adherence, high threshold lockdown
initiation

In the scenario where ¢ = 0.5, a = 0.0, and f; = 0.05 (refer to Fig. ),
lockdowns are imposed, but fail to quickly reduce the prevalence to a level
low enough for the restrictions to be lifted. Subsequently, long-lasting
lockdowns lead to lockdown fatigue causing a large proportion of the
population to switch to the health-neutral opinion. This shift results in
increased susceptibility of the overall population.

Discussion

Using an agent-based model, we found that stricter lockdowns could be
more effective for epidemic control than less strict ones. This is in line
with the findings of a data analysis from 8 European countries which has
shown the stringency of lockdowns to be one of the most important factors
affecting the spread of SARS-CoV-2 [19]. Similarly, in an analysis of data
from Queensland, Australia, Vogler et al. [20] concluded that there was a
statistically significant relationship between stringency of measures and
case numbers. However, adherence of the population to lockdown measures
is essential for the success of the lockdown in terms of preventing new
infections and for keeping lockdowns short. Our findings indicate that
insufficiently strict lockdowns not only can lead to higher numbers of
infections, but also can contribute to increase of lockdown fatigue.
Subsequently, this may influence individuals into adopting a health-neutral
opinion, wherein they may be less willing to take protective measures.
Jointly these dynamics can lead to prolonged cumulative lockdown
duration with possibly adverse economic consequences.

The epidemic threshold for initiating a lockdown is another crucial
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Fig 4. Four individual simulation runs (distinguished by four colors) are
shown for five sets of parameter values (each set in one row). The left
column shows prevalence over time, and the right column shows the
proportion of health-neutral opinion (PHN) in the population. The nearly
constant orange trajectory is an example of a situation where the infectious
disease goes extinct shortly after it is introduced into the population.
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factor. For strict lockdowns, there is a negative association between the
prevalence threshold at which lockdown measures come into effect and the
duration of the lockdown. Initiating lockdowns at a lower prevalence
threshold is projected to extend the cumulative duration of lockdown
measures compared to initiating them at a higher threshold, although the
former approach prevents more infections. We conclude that the threshold
needs to be set where onward transmission is slowed down quickly, thus
minimizing the burdens on the health care system and work force, while
also ensuring that the time spent under a lockdown is kept short. The
optimal threshold varies depending on the specific characteristics of an
infection, e.g., generation time distribution, fraction of transmissions, that
occur before symptom onset, and morbidity and mortality case ratio.
Vogler et al. [20] when discussing the timeliness of measures, conclude that
many factors have to be taken into account to determine when a lockdown
should best be implemented.

Nevertheless, given a sufficiently strict lockdown, even at high initiation
threshold, a lockdown can be expected to decrease the number of new
infections compared to the baseline. From a public health perspective,
these results suggest that strict lockdown measures can be more effective
in controlling the epidemic than incremental, step-by-step
measures. Ultimately, strict measures will reduce public health burden (in
terms of infections, hospitalizations, and disease-induced mortality) and
will have lower economic impact than less strict measures. However, our
results suggest that lockdown measures should be accompanied by
information campaigns to maintain strong public support and by provision
of resources to the population enabling adherence. Communication that
promotes health-positive opinions and combats lockdown fatigue is
essential to the success of lockdowns as means to control an epidemic.

This study has several limitations. In the model, opinion dynamics are
simplified, reducing a continuous realm to two mutually exclusive opinions,
with modeling framework based on a previous study [12]. While the
network degree distribution and contact rates were derived from
literature [21,22], we did not formally calibrate our model to specific data
sets. In terms of infection transmission parameters, we used estimates
consistent with SARS-CoV-2 but did not aim to precisely replicate its
natural history. The model, despite its simplified approach to infection and
opinion dynamics, incorporates many parameters, some of which are not
easily derived from the existing literature. We conducted sensitivity
analyses on key parameters, while maintaining others constant, rather than
exhaustively explore all possible parameter variations.

The relative simplicity in modeling infection transmission and opinion
dynamics in our model was intentional, as our focus was on qualitative
rather than quantitative analysis. We sought to demonstrate how the
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interplay of lockdown measures, infection dynamics, and aspects such as
adherence and public fatigue can influence overall epidemic trends. Our
findings highlight that the interactions between these elements can explain
unexpected and, sometimes, undesirable results, underscoring the
challenges of identifying the most effective interventions. Excluding the
interplay between disease transmission, public health interventions, and
health attitudes can significantly alter predicted outcomes. For example,
Mellone et al. 23] employed a deterministic mathematical model to assess
how the severity and length of lockdowns affected epidemic trends in
Germany and Israel. Their model accounts for variations in social
interactions during lockdowns but does not capture a dynamic response of
public behavior adjusts to the intensity and extent of lockdown measures.
Consequently, the forecasts by Mellone et al. differ from ours, suggesting
that less stringent lockdowns with extended periods can also yield favorable
results. We demonstrated that even in a relatively simple model including
feedback between behaviour and epidemic dynamics makes the decision on
how best to implement public health measures extremely difficult.

Conclusion

Changes in a population’s attitude and adherence towards lockdown
measures may greatly influence their success in reducing case numbers.
More stringent, but shorter lockdowns may be more effective in preserving
a positive attitude of the population towards taking protective measures
and simultaneously reducing the economic burden of the measures.
Concerning the timeliness of measures, a balance has to be found between
early onset of measures preventing exponential growth and late onset which
may have more support in the population at the time of implementation.
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