MRI-T2 Relaxometry is Increased in Sports-Related Mild Traumatic Brain Injury: A Potential Marker of Brain Inflammation

Authors:
Mayan J. Bedggood¹ (mayan.bedggood@aut.ac.nz), Christi A. Essex¹ (christi.essex@autuni.ac.nz), Alice Theadom¹ (alice.theadom@aut.ac.nz), Patria Hume¹,² (patria.hume@aut.ac.nz), Samantha J. Holdsworth²,³ (s.holdsworth@auckland.ac.nz), Richard L.M. Faull² (rlm.faull@auckland.ac.nz), and Mangor Pedersen¹ (mangor.pedersen@aut.ac.nz)

Institutions:
1. Auckland University of Technology
2. The University of Auckland
3. Mātaia Medical Research Institute

Data Availability:
Data can be made available by request to the corresponding author.

Funding:
This project was funded by a grant from the Health Research Council of New Zealand (HRC), grant #21/622.

Competing Interests:
None to declare.

Ethics Approval:
Ethics approval was obtained from the Health and Disability Ethics Committee (HDEC – 2022 EXP 11078), New Zealand as well as receiving institutional approval (AUTEC reference 22/12).

Consent:
All participants were provided with a participant information sheet and given a chance to ask questions before providing informed, written consent to be part of the study.

Acknowledgements:
Thank you to Amabelle Voice-Powell, Cassandra Mcgregor and Aria Courtney for their contribution to the data collection process, and Tania Ka’ai for her contribution to the concept and design of the study. In addition, we would like to thank Axis Sports Concussion Clinic for their assistance with mTBI recruitment and the Centre for Advanced Magnetic Resonance Imaging (CAMRI) for their assistance with MRI data collection.

Key words:
mTBI, concussion, magnetic resonance imaging, MRI, neuroimaging, neuroinflammation, inflammation
Abstract

Intro: Mild traumatic brain injury (mTBI) is a common condition, particularly pervasive in contact sports environments. A range of symptoms can accompany this type of injury and negatively impact people’s lives. As mTBI diagnosis and recovery largely rely on subjective reports, more objective injury markers are needed. Methods: The current study compared structural brain MRI-T2 relaxometry between a group of 40 athletes with mTBI within 14 days of injury and 40 age and sex-matched controls. Results: Whole-brain average T2 relaxometry increased for the mTBI group compared to controls (p < 0.001), with increased T2 relaxometry particularly prominent in superior cortical regions (e.g. somatomotor and dorsal attention areas). Conclusion: We hypothesise that this finding indicates subtle brain inflammation acutely following mTBI and could represent an objective injury marker to diagnose and monitor mTBI. Future research should validate this potential injury marker with other data types, such as blood biomarkers or histological samples.

Introduction

Mild traumatic brain injury (mTBI), or concussion, is one of the most common and disabling brain conditions (McInnes et al., 2017; Oris et al., 2023; Verboon et al., 2021). An mTBI occurs due to a force to the head caused by a sudden impact, rotational force, rapid deceleration or acceleration. This force leads to brain movement within the skull and subsequent focal and diffuse damage (Alam et al., 2020; Verboon et al., 2021). Referring to an mTBI as ‘mild’ may not correspond to the personal experience of many people, as many experience long-lasting symptoms that persist beyond the standard recovery time and can burden the individual for weeks, months or even years (Kara et al., 2020; Slavoaca et al., 2020). Common symptoms of mTBIs include headaches, difficulty concentrating, sleep difficulties, disturbed balance, confusion, slowed reaction times, nausea and sensitivity to light or noise (Di Battista et al., 2020; Markovic et al., 2021; Verboon et al., 2021). Therefore, mTBI can impact patients’ lives in diverse ways and can be associated with reduced work productivity and increased risk of psychiatric and neurodegenerative diseases (Theadom et al., 2017; Wang et al., 2021).

Following this primary mechanical injury, a cascade of secondary injuries can occur. Inflammation is a key component of the secondary injuries associated with brain injuries (Markovic et al., 2021; Piao et al., 2013). The initial tissue damage triggers activation and recruitment of immune cells by facilitating production of cytokines and chemokines (Kim et al., 2023). The effect of this inflammatory response is to limit spread of injury in the brain and to
restore homeostasis (Alam et al., 2020). Microglia play a crucial role in responding to inflammatory events as they survey the brain, look for structural abnormalities and work to isolate damaged regions to prevent spread of injury.

Neuroinflammation can be beneficial in the acute phase following brain injury, promoting repair of damaged tissue, possibly inducing neurogenesis and reducing risk of infection (Monsour et al., 2022). However, when inflammation occurs in excess, it can contribute to loss of neurons and death of brain tissue, which, in some cases, represents a preventable secondary injury cascade (Corps et al., 2015; da Luz Scheffer & Latini, 2020; Kim et al., 2023; Markovic et al., 2021; Mee-Inta et al., 2019). Therefore, a balanced inflammatory response (mediated by pro- and anti-inflammatory cytokines) may be necessary for optimal recovery from brain injury (Edwards et al., 2020).

MRI-T2 relaxometry examines the transverse relaxation time of the decay of the magnetization that was excited by a radiofrequency pulse during an MRI scan. Quantifying T2 relaxation involves MRI scans with long repetition times and multiple echo times (Liu et al., 2018). T2 relaxometry assesses microstructural tissue alterations and provides a marker of cellular injury (Pell et al., 2004). The key component that impacts T2 relaxation time is the tissue water content. Water bound with larger macromolecules has a spin frequency comparable to the Larmour frequency and is linked with shorter relaxation times. In contrast, free water molecules are smaller, with a faster spin frequency and a longer T2 relaxometry time (Cheng et al., 2012; Ghugre et al., 2011; Liu et al., 2018). In healthy tissue, these types of water exist in equilibrium. However, bound water is released in some pathological conditions, increasing the free-water molecule ratio. This creates a medium inefficient for T2 relaxation, subsequently increasing T2 relaxation time as the tissue water content increases (Cheng et al., 2012; Ghugre et al., 2011; Liu et al., 2018). For mTBI patients, increased T2 relaxometry times may reflect possible brain inflammation due to the secondary injury cascades associated with these injuries.

MRI-T2 relaxation has been effective in epilepsy and hippocampal sclerosis research (Adel et al., 2022; Bartlett et al., 2007; Jackson et al., 1993; Winston et al., 2017), which has illustrated the method’s utility in objectively assessing signal abnormality in patients. However, only two previous case series have used this technique in mTBI. Pedersen et al. (2020) identified potential markers of brain inflammation in a professional Australian Rules football player who had incurred multiple mTBIs. The abnormally elevated T2 relaxometry persisted throughout
each symptomatic MRI scan and normalised as the patient recovered. However, T2 relaxometry remained elevated compared to baseline on the last ‘recovery’ scan, suggesting that there may also have been a chronic increase of T2 relaxometry after repetitive mTBIs. Our previous case series analysis (Bedggood et al., 2024) compared T2 relaxometry for 20 individual mTBI participants with the average T2 relaxometry for 44 healthy controls. The T2 relaxometry increased in 19/20 (95%) mTBI participants in at least one cluster of voxels. In five of the mTBI participants, the areas of increased T2 relaxometry were at least partially resolved on recovery re-scans (an average of 106 days from injury). The aforementioned studies demonstrate potential utility of the MRI method in deepening our understanding of brain pathology following acute mTBI, while highlighting a need for larger and statistically robust group analyses.

Objective markers of brain injury are required to improve mTBI diagnosis and aid in recovery predictions. Given that hospital-based neuroimaging post-mTBI often shows no findings (Mayer et al., 2015), objective measures such as T2 relaxometry may enable clinical decision support with additional objective evidence complementing subjective self-reporting and clinical symptomatology. For the current study, we hypothesised that the mTBI group would have significantly increased brain T2 relaxometry compared to the control group, potentially indicating acute neuroinflammation following mTBI.

Methods

Ethics approval was obtained from the Health and Disability Ethics Committee, New Zealand (HDEC – 2022 EXP 11078), New Zealand. Institutional approval was also obtained (AUTEC reference 22/12).

Participants

We recruited 40 males (mean age 21.4 ± 5.0 years) with acute (≤ 14 days) sports-related mTBI and 40 male controls who had not suffered an mTBI in the last 12 months (mean age 22.1 ± 3.8 years). An independent-sample t-test showed no significant age difference between the groups (p > 0.05). mTBI participants were predominantly recruited at the Axis Sports Concussion Clinics in Auckland, New Zealand and via community links (e.g. physiotherapists, word of mouth, digital and print advertisements). Participants comprised 27 rugby players, 5 football players, 2 hockey players, 2 martial artists, 1 futsal player, 1 gymnast, 1 surfer and 1 swimmer. Participants were scanned, on average, 10.7 ± 2.9 days following their injury. Control
participants were recruited via print advertisements at the Auckland University of Technology and The University of Auckland and social media advertisements.

Magnetic Resonance Imaging Procedure

Magnetic resonance images were acquired using a 3T Siemens MAGNETOM Vida fit scanner (Siemens Healthcare, Erlangen, Germany) at the Centre for Advanced Magnetic Resonance Imaging at The University of Auckland, New Zealand. A T2 mapping sequence was collected using an 8-echo Carr-Purcell-Meiboom-Gill (CPMG) sequence. The total T2-mapping scan time was 12:02 minutes. All T2 maps were quality-checked for visual artifacts by two investigators (MJB and MP). A radiologist reviewed each participant's MRI images, and no clinically significant brain abnormalities pertaining to acute TBI were found.

Data Processing and Statistical Analysis

MRI images were formatted according to the *Brain Imaging Data Structure (BIDS)* (Boré et al., 2023) before preprocessing (coregistration and normalisation) was conducted on the T2 maps using *PyCharm* version 2022.2.3. In *qMRLAb* in *Matlab R2022B* (Karakuzu et al., 2020) we removed the first volume, using the offset as a fitting parameter to the T2 relaxation data (Milford et al., 2015). A monoexponential function was fitted at each voxel across all eight echo-times to calculate the T2 relaxometry for each participant (Pedersen et al., 2020). An in-house script in Matlab was used to convert the files back to *nifti* format and apply a smoothing of 6mm FWHM. Each participant's average brain T2 relaxation was then calculated by removing T2-relaxometry voxels with >160ms (i.e. artifactual relaxation times) and applying a grey matter mask to all voxels. A second grey matter mask was included to ensure that any voxels smoothed beyond the grey matter were excluded from the final statistical analysis. A two-tailed independent-samples t-test was conducted in *Jamovi* version 2.3.19.0 (The Jamovi Project, 2024) to quantify whole-brain averaged differences in T2 relaxometry between mTBI and control groups. Voxel-wise permutation testing with Threshold Free Cluster Enhancement (TFCE) was conducted in the *DPABI Toolbox* (Yan et al., 2016) with 20,000 permutations to reduce the probability of type 1 errors and it is insensitive to smoothing parameters (Smith & Nochols, 2009).

A complete description of the MRI protocol and processing steps is available in our case series (Bedggood et al., 2024) and the Supplementary Materials.
Results

Analysis 1: Average Whole-Brain T2 relaxometry between mTBI and Controls

A two-tailed independent t-test was conducted to determine if there was a difference in mean total brain T2 relaxometry between the mTBI and control groups. The mTBI group (70.3 ± 1.55 ms) had significantly higher average total brain T2 relaxometry compared to the control group (69.1 ± 1.48 ms), \(t(78) = 3.56, p < 0.001 \) (see Figure 1).

Figure 1
Increased Whole-Brain T2 Relaxometry (in ms) for mTBI Versus Controls

Analysis 2: Significant Voxels Compared between mTBI and Controls

There were significant differences between mTBI and controls, using a TFCE permutation testing correction for multiple comparisons (see Figure 2). These differences were driven by elevated T2 relaxometry in superior cortical brain regions of mTBI participants, with fewer statistical differences observed in the inferior regions.

To verify this finding, the commonly used Yeo 7 network parcellation mask (Yeo et al., 2011) was used to quantify the proportion of TFCE voxels within each of the 7 networks in the brain (see Figure 3) that were significantly different between mTBI and controls. The highest proportion of voxels that were significantly increased for mTBI compared to controls were
significant in cortical networks, including the somatomotor network (11% of voxels), dorsal attention network (9% of voxels), and ventral attention areas (7% of voxels). Less significant voxels were seen in the fronto-parietal network (4% of voxels), visual network (2% of voxels), default mode network (1% of voxels), and limbic network (0.5% of voxels).

Figure 2
Voxels with Significantly Increased T2 Relaxometry in mTBI Compared to Controls (in t-values)

Figure 3
Proportion of Voxels within Brain Networks that are Significantly Increased for mTBI compared to Controls (%)

Discussion
For our study cohorts, brain MRI-T2 relaxometry was increased acutely following sports-related mTBI compared to healthy controls (Figure 1), which supports our study’s hypothesis. As
T2 relaxation times are influenced by the water content of tissue, with longer relaxation times observed in tissue with a higher ratio of free water molecules compared to bound water molecules, we hypothesise that increased T2 relaxometry in those with acute mTBI may indicate possible brain inflammation. This finding may be due to the inflammatory response that is a part of the secondary injury cascade following mTBI, as our study timeframe (within 14 days post-injury) is associated with microglial-related inflammation (Simon et al., 2017). Our results were consistent with previous research that found increased T2 relaxometry in a sports player with an acute mTBI (Pedersen et al., 2020) and our case series (Bedggood et al., 2024) that also demonstrated increased T2 relaxometry in individuals with acute mTBI compared to controls.

We observed that increased T2 relaxometry was widespread in the superior cortices of the brain, including the somatomotor network, the dorsal attention network, and the ventral attention areas, with increased T2 relaxometry being less prominent in the inferior regions. The superior cortical location of increased T2 relaxometry could represent areas of increased vulnerability following mTBI. Although previous research has shown that T2 relaxometry decreased after clinical recovery, it remains unknown what the longer-term implications are, especially as cortical regions are known to be an early marker for cumulative damage and chronic injury, including neurodegenerative disease (Bieniek et al., 2021; Ghajari et al., 2017; McKee et al., 2016; McKee et al., 2018).

One of the multi-faceted challenges that accompany mTBI is that whilst some people recover quickly with no intervention, many experience chronic symptoms and functional deficits. Therefore, there is a need to identify those at risk of slowed recovery so clinicians can provide individualised treatment where necessary. Although FDA approved blood biomarkers (ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein) are promising from an acute clinical perspective, there are currently no reliable biomarkers of mTBI that could be utilised a week or two after injury, when many patients present to clinics (Diaz-Arrastia et al., 2014; Kobeissy et al., 2024). Furthermore, the process of recovery relies on subjective symptom reporting. Enhancing our understanding of neurological changes that take place post-mTBI may identify those who are at a greater risk of poor recovery trajectories. For example, if increased T2 relaxation, and therefore possible inflammation, is found within a patient's brain, more focus could be placed on anti-inflammatory techniques (e.g., medications or physical activity).
Ultimately, having an objective marker of injury and/or recovery from mTBI has the potential to contribute to a safer and more efficient return to play, education or employment.

The current study has limitations that should be considered when evaluating the findings. While our eligibility criteria were intentional to test feasibility of imaging markers in a homogenous sample, future research, with a larger sample, could include both sexes and analyse how they compare to controls and to each other (e.g., looking at the influence of estrogen and progesterone hormones for females during the acute phase of injury). This would enable results to be more transferable to the broader mTBI population. While we made efforts to recruit participants as soon after their injury as possible, the MRI scans varied within a 14-day time frame. Future research should endeavour to scan participants within a shorter time frame to increase the homogeneity in time between injury and scan, reducing possible timing confounds.

Further research is needed to support the potential of T2 relaxometry as an imaging marker of mTBI injury. Validating the MRI-T2 relaxometry findings with blood biomarkers or histological measures of inflammation would be beneficial in strengthening the clinical utility of this potential injury marker. In addition, re-scanning all participants upon clinical recovery to see if elevated T2 relaxometry resolves with symptom resolution and whether it could be used to predict recovery, would be beneficial. Doing so could strengthen the link between this objective marker and subjective reports and help decipher the transient versus chronic nature of the inflammatory response instigated by an mTBI. Research with participants who have suffered mTBIs months previously could also contribute to our understanding of transient versus chronic brain changes and the role of brain inflammation.

Conclusion

MRI-T2 relaxometry increased in athletes with mTBI compared to healthy controls. Increased T2 relaxometry was widespread, particularly in the superior cortices of the brain. Our results indicated subtle brain inflammation acutely following mTBI and could represent an objective injury marker for diagnostic and prognostic purposes. Future research should replicate this finding and validate whether advanced MRI methods, alongside other biomarkers, have clinical utility.
References

Supplementary Materials

Complete Magnetic Resonance Imaging Procedure

All magnetic resonance images were acquired using a 3T Siemens MAGNETOM Vida fit scanner (Siemens Healthcare, Erlangen, Germany) located at the Centre for Advanced Magnetic Resonance Imaging (CAMRI) at The University of Auckland, New Zealand, using a 20-channel head coil. A T2 mapping sequence was collected to investigate anatomical T2 relaxometry. T2 maps were acquired using an 8 echo Carr-Purcell-Meiboom-Gill (CPMG) sequence (TEs = 28.9, 57.8, 86.7, 115.6, 144.5, 173.4, 202.3 and 231.2 ms; TR = 6s; slice thickness = 2.0mm; voxel size = 2.0 x 2.0 x 2.0mm; matrix size = 112 x 128 x 63; flip angle (FA) = 180°; base resolution = 128; phase resolution = 100%; phase field of view (FOV) = 87.5%). Total T2 mapping acquisition time was 12:02 min. T1-weighted anatomical images were collected for quality control purposes. T1 weighted images were acquired using a magnetisation-prepared rapid gradient echo (MPRAGE) sequence (TR = 1.9s; TE = 2.5ms; TI = 979ms; FA = 9°; slice thickness = 0.9mm; voxel size = 0.4 x 0.4 x 0.9 mm; matrix size = 192 x 512 x 512; phase FOV = 100%). Total T1-weighted acquisition time was 4:31 min. A radiologist reviewed clinically relevant MRI images from each participant to check for clinically significant abnormalities that might require further attention.

Complete Data Processing and Statistical Analysis

All MRI images were received in DICOM format, converted to NIfTI format, and arranged according to the Brain Imaging Data Structure (BIDS) (Boré et al., 2023). Image quality assurance checking was conducted in the MR View toolbox of MRtrix3 (Tournier et al., 2019) by two investigators in the study (MJB, MP) using the participants’ T1 weighted image as the underlay and their T2 map as the overlay to check for artifacts or abnormalities caused by scanning or processing. Then, preprocessing was conducted on the T2 maps using PyCharm version 2022.2.3. This preprocessing step included brain extraction (skull stripping) using the bet function in FSL (Smith, 2002) before normalising each image to the MNI standard space by registering them to a MNI152 2.0 x 2.0 x 2.0mm template image using FSL FLIRT (Jenkinson et al., 2002). For each participant, the third T2 echo volume (86.7 ms) was extracted to generate a group average brain image and binary grey matter, white matter, and cerebrospinal fluid masks. Lastly, we removed the first volume, using the offset as a fitting parameter to the T2 relaxation data (Milford et al., 2015) and a monoexponential function at each voxel was fitted across all
eight echo-times using qMRLab in Matlab R2022B (Karakuzu et al., 2020) to calculate the T2 relaxation time for each participant (Pedersen et al., 2020).

An in-house script in Matlab was used to convert files back to nifti format and apply a smoothing of 6mm FWHM. Each participant’s average brain T2 relaxation was then calculated by removing T2-relaxometry voxels with >160ms (i.e. artifactual relaxation times) and applying a grey matter mask to all voxels. Using the DPABI Statistics Tool (Yan et al., 2016), a two-sample t-test was conducted with a two-tailed hypothesis. A second grey matter mask was included at this stage to ensure that any voxels that were smoothed beyond the grey matter were excluded from the final statistical analysis. An independent-sample t-test was conducted in Jamovi version 2.3.19.0 (The Jamovi Project, 2024) to quantify whole-brain averaged differences in T2 relaxometry between mTBI and controls. Voxel-wise permutation testing with Threshold Free Cluster Enhancement (TFCE) was conducted in the DPABI Toolbox (Yan et al., 2016) with 20,000 permutations to reduce the type 1 error rate and was insensitive to smoothing parameters (Smith & Nochols, 2009).