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Abstract 

Machine learning and artificial intelligence (AI/ML) models in healthcare may exacerbate health 

biases. Regulatory oversight is critical in evaluating the safety and effectiveness of AI/ML 

devices in clinical settings. We conducted a scoping review on the 692 FDA 510k-approved 

AI/ML-enabled medical devices to examine transparency, safety reporting, and 

sociodemographic representation. Only 3.6% of approvals reported race/ethnicity, 99.1% 

provided no socioeconomic data. 81.6% did not report the age of study subjects. Only 46.1% 

provided comprehensive detailed results of performance studies; only 1.9% included a link to a 

scientific publication with safety and efficacy data. Only 9.0% contained a prospective study for 

post-market surveillance. Despite the growing number of market-approved medical devices, our 

data shows that FDA reporting data remains inconsistent. Demographic and socioeconomic 

characteristics are underreported, exacerbating the risk of algorithmic bias and health disparity.  
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Introduction  

To date, the FDA has approved 692 medical devices driven by artificial intelligence and machine 

learning (AI/ML) for potential use in clinical settings. (1) Most recently, the FDA has launched 

the Medical Device Development Tools (MDDT) program, which aims to “facilitate device 

development, timely evaluation of medical devices and promote innovation”, with the Apple 

Watch being the first approved device for this regulatory process (2,3). As AI/ML studies begin 

to translate to clinical environments, it is crucial that end users can evaluate the applicability of 

devices to their unique clinical settings and assess sources of bias and risk. 

One definition of algorithmic bias in the context of AI/ML health systems is instances when an 

algorithm amplifies inequities and results in poor healthcare outcomes. (4) Some defined sub-

categories of algorithmic bias are listed below. (5) 

 

Representation bias  Data underrepresents or misrepresents subsets 

of the population measurement bias - data 

inaccurately reflects the variables. 

 

Omitted variable bias Omitted data. For example, the ‘Black-box’ 

nature of many algorithms makes it difficult 

to figure out which variables were used and 

omitted. 

 

Aggregation bias  Conclusions are drawn about individuals 

based on observations about a larger group. 

Linking bias  Correlations that AI draws about particular 

users based on the characteristics of other 

users that may not be accurate in a 

heterogeneous population. 
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Despite the rise in awareness of algorithmic bias and its potential implications on the 

generalizability of AI/ML models (6), there is a paucity of standardized data reporting by 

regulatory bodies including the FDA that provide reliable and consistent information on the 

development, testing, and training of algorithms for clinical use. This limits accurate analysis and 

evaluation of algorithmic performance, particularly in the context of under-represented research 

groups such as ethnic minorities, children, maternal health patients, patients with rare diseases, 

and those from lower socioeconomic strata. Deploying devices that cannot be transparently 

evaluated by end users may increase health disparity and is particularly relevant in the context of 

emerging clinical trials and real-world deployment. (7)  

Here, we investigate AI-as-medical-device Food and Drug Administration (FDA) approvals to 

examine the contents, consistency, and transparency in FDA reporting of market-approved 

devices with a focus on bias.  

Methods 

We conducted a scoping review of AI-as-a-medical-device approved by the FDA between 1995 

and 2023, using FDA Summary of Safety and Effectiveness Data (SSED). (8) SSED is a public 

document made available following approval of a device by the FDA. FDA approval is 

conditioned upon the determination that probable benefits outweigh probable risks as well as 

reasonable evidence of safety and effectiveness. (9)  

All SSEDs of FDA-approved AI/ML-enabled medical devices between 1995 and 2023 made 

available at the FDA Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical 

Devices page were included. (1) Each SSED was reviewed by an expert in computer science, 

medicine, or academic clinical research who identified, extracted, and entered relevant variables 

of interest (Supplementary Table 1). Data was then computed into a Microsoft Excel spreadsheet 

(Supplementary Table 2).  

Variables of interest were determined per the Consolidated Standards of Reporting Trials - 

Artificial Intelligence (CONSORT-AI) extension checklist which is a guideline developed by 

international stakeholders to promote transparency and completeness in reporting AI clinical 

trials. (10) Equivocal or unclear information identified in each SSED was then evaluated in 

consensus.  

Primary outcome measures included frequency of race/ethnicity reporting, age reporting, and 

availability of sociodemographic data of the algorithmic testing population provided in each 

approval document.  Secondary outcomes evaluated the representation of various medical 
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specialties, organ systems, and specific patient populations such as pediatric and geriatric in 

approved devices.  

Results 

Distribution of device approval across clinical specialties  

 

692 SSEDs of FDA-approved AI-enabled medical devices/software were analyzed. There was a 

steady increase in annual FDA approvals for AI-enabled medical devices with a mean of 7 

between 1995 and 2015, increasing to 139 approvals in 2022 (Figure 1). The regulatory class of 

each device included in the study was determined and categorized according to the United States 

Food and Drug Administration (FDA) classification system. Only 2 (0.3%) of the devices 

belonged to the regulatory Class III, while the vast majority (99.7%) of the devices belonged to 

Class II. 

 

Table 1 shows the distribution of 408 approved devices across organ systems. The top three 

organ systems represented amongst approved medical devices are the circulatory (20.8%), 

nervous (13.6%), and reproductive (7.2%). The least represented are the urinary (1.2%) and 

endocrine (0.7%) systems (Table 1). Each device in the FDA database is classified under a 

particular medical specialty (Figure 2). The FDA classification shows that the most represented 

medical specialty is Radiology (532 approvals; 76.9%) with the fewest approvals in 

Immunology, Orthopedics, Dental Health, Obstetrics, and Gynecology (Figure 2, Table 2). A 

total of 284 (40.1%) approved devices could not be categorized to an organ system either 

because (I) the clinical indication was not specific to one system or because (II) the function of 

the device cuts across multiple organ systems (e.g. whole-body imaging system/software). As 

such, there are some differences between the categories of organ system and medical specialty. 

For instance, 70 (10.1%) of the devices are classified by the FDA under the cardiovascular field 

despite 144 (20.8%) approvals specific to the circulatory system (Table 1, Table 2).  
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Figure 1: Trends in FDA Licensing of AI/ML-enabled Medical Devices  
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Table 1: Distribution of FDA-approved AI-enabled medical devices by organ system 

System Number of approvals (%) 

Circulatory 144 (20.8) 

Nervous 94 (13.6) 

Respiratory 48 (6.9) 

Reproductive 47 (6.8) 

Musculoskeletal 33 (4.8) 

Gastrointestinal 24 (3.5) 

Urinary 8 (1.2) 

Hematologic 5 (0.7) 

Endocrine 5 (0.7) 

 

Figure 2: FDA-assigned medical specialty
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Table 2: Primary medical specialty associated with FDA approval 

Medical Specialty Number of Approval (%) 

Radiology 532 (76.9) 

Cardiovascular 70 (10.1) 

Neurology 20 (2.9) 

Hematology 15 (2.2) 

Gastroenterology/Urology 11 (1.6) 

Ophthalmology 9 (1.3) 

Anesthesiology 6 (0.9) 

Clinical Chemistry 6 (0.9) 

General And Plastic Surgery 5 (0.7) 

Microbiology 5 (0.7) 

General Hospital 3 (0.4) 

Ear Nose & Throat 2 (0.3) 

Pathology 4 (0.6) 

Dental 1 (0.1) 

Immunology 1 (0.1) 

Obstetrics And Gynecology 1 (0.1) 

Orthopedic 1 (0.1) 

 

 

Reporting data on statistical parameters and post-market surveillance  

Indication for use of the device was reported in most (678; 98.0%) SSEDs (Figure 3a) and 487 

(70.4%) SSEDs contained a pre-approval performance study. However, 435 (62.8%) provided no 

data on the sample size of the subjects. Although 319 (46.1%) provided comprehensive detailed 

results of performance studies including statistical analysis, only 13 (1.9%) of them included a 

link to a scientific publication with further information on the safety and efficacy of the device 

(Figure 4). Only 219 (31.6%) SSEDs provided data on the underlying machine-learning 

technique. Only 62 device documents (9.0%) contained a prospective study for post-market 

surveillance. 14 (2.0%) SSEDs addressed reporting of potential adverse effects of medical 

devices on users.  
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Figure 3: Reported Information on Intended Subjects 

Figure 4: Accessibility to publications supporting safety, efficacy, and transparency 
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Race, ethnicity, and socioeconomic diversity 

Patient demographics in algorithmic testing data were only specified in 153 (22.1%) SSEDs, 

with 539 (77.9%) not providing any demographic data (Figure 3b). Only 25 (3.6%) provided 

information on the race and/or ethnicity of tested or intended users. Socioeconomic data on 

tested or intended users were provided for only 6 (0.9%) of devices (Figure 3c). 

 

 

Age Diversity 

 

There were 134 (19.4%) SEEDs with available information on the age of the intended subjects. 

Upon examining age diversity in approved devices, the first FDA approval for a device licensed 

for children was in 2015. Between 2015 and 2022, the annual FDA approvals for the pediatric 

age group steadily increased from 1 to 24 in total. Despite this rise, the proportion of pediatric-

specific approvals relative to the total approvals (for adults and pediatrics combined) has 

remained low, fluctuating between 0.0% and 20.0% (Figure 1, Table 3). Although 4 (0.6%) 

devices were exclusively developed for children, we found sixty-five more devices that have 

been approved for use in both adult and pediatric populations, thus bringing the total number of 

approvals for the pediatric population to 69 (10.0%). Testing and validation of devices in 

children and adults was reported in only 134 (19.4%) SSEDs (Figures 5a, 5b).  The distribution 

of devices for children (n = 69) across medical specialties falls under just 5 categories, following 

a similar pattern as earlier observed for the entire population with lead representation in the 

fields of  Radiology (72.5%; n = 69), Cardiovascular health (14.4%; n = 69) and Neurology 

(10.1%; n = 69) (Figure 5c). There were only three (0.4%) approved devices that focused 

exclusively on geriatric health. 
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Table 3: Annual trends in FDA approvals for AI-enabled medical devices and software for 

children (2015 - 2023) 

Year 

Number of FDA approvals for 

AI/ML-enabled medical devices 

Licensed for children (percentage 

relative to total FDA approvals %) 

2015 5 1 (20.0) 

2016 19 0 (0.0) 

2017 26 1 (3.8) 

2018 63 7 (11.1) 

2019 76 4 (5.3) 

2020 108 13 (12.0) 

2021 123 10 (8.1) 

2022 139 24 (17.3) 

2023 108 9 (8.3) 
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Figure 5: FDA Approvals for Pediatric-Licensed Devices 

 
 

Gender Diversity  

 

When examining gender reporting transparency, there were a total of 39 (5.6%) approvals 

exclusively for women’s health, 36 of them focusing on the detection of breast pathology. The 

remaining three were designed to aid cervical cytology; determine the number and sizes of 

ovarian follicles; and perform fetal/obstetrics ultrasound. Of the 10 (1.5%) devices that were 

exclusively for men, eight of them were indicated in diagnostic and/or therapeutic procedures 

involving the prostate, while the remaining two were for seminal fluid analysis.  
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Discussion 

 

Our study highlights a lack of consistency and data transparency in published FDA AI/ML 

approval documents which may exacerbate health disparities. In a similar study examining 130 

FDA-approved AI medical devices between January 2015 and December 2020, 97% reported 

only retrospective evaluations; prospective studies did not evaluate high-risk devices; 72% did 

not publicly report whether the algorithm was tested on more than one site; and 45% did not 

report basic descriptive data such as sample size. (11,12) A lack of consistent reporting prevents 

objective analysis of the fairness, validity, generalizability, and applicability of devices for end 

users. As our results describe, only 37% of device approval documents contained information on 

sample size. As the clinical utility of algorithmic data is limited by data quantity and quality (13), 

a lack of transparency in sample size reporting significantly limits the accurate assessment of the 

validity of performance studies, and device effectiveness. (14) 

 

Only 14.5% of devices provided race or ethnicity data. Recent literature strongly emphasizes the 

risks of increasing racial health disparity through the propagation of algorithmic bias. (15–17) A 

lack of racial and ethnic profiling in publicly available regulatory documents risks further 

exacerbating this important health issue. (18,19) The FDA has recognized the potential for bias 

in AI/ML-based medical devices and has initiated action plans (“Artificial Intelligence/Machine 

Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan”) in January 2021 

(20,21) to address these concerns. However, despite these efforts, our study highlights reporting 

inconsistencies that may continue to propagate racial health disparities. (22) In light of these 

results, there is a pressing need for transparent and standardized regulatory frameworks that 

explicitly consider racial diversity in the evaluation and reporting of AI/ML medical devices. 

(23) Other strategies to mitigate racial bias may include adopting adversarial training 

frameworks and implementing post-authorization monitoring to ensure AI/ML devices perform 

equitably across all patient demographics. (24,25)  

 

While AI/ML presents potential opportunities to reduce socioeconomic disparity in health, a lack 

of representation of target users across varied economic strata risks the propagation of health 

disparity in higher and lower-income groups. (26) As with other clinical research domains, a lack 

of representation of lower socioeconomic groups including those in remote and rural areas, risks 

neglect of those most likely to benefit from improved access to healthcare. (27,28) Our data 

shows that only 0.6% of approved devices contained specific data detailing the socioeconomic 

striate of users in testing and/or algorithmic training datasets. This data renders it difficult to 

predict the potential clinical and financial impacts of approved medical devices on economic 

population subsets. Furthermore, a lack of socioeconomic data prevents accurate and robust cost-

effectiveness analyses that may significantly impact the availability and impact of medical 

algorithms or devices. (29,30). Studies have underscored disparities rooted in socioeconomic 

factors, impacting the performance of AI/ML technologies. (4,31,32) Initiatives promoting 
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diversity in data collection and consideration of model performance across socioeconomic 

groups are paramount and must be incorporated in the assessment of market approval for 

emerging technologies. (33) 

 

With only 19.4% of devices providing information on the age of intended device users, our study 

suggests that the evaluation and approval process of medical AI devices by the FDA lacks 

comprehensive data on age diversity. Recent literature across specialties demonstrates 

differential performances in algorithms trained on adult or pediatric data. (34,35) As an example, 

a study exploring echocardiogram image analysis suggested that adult images could not be 

appropriately generalized to pediatric patients and vice versa. (36) A lack of transparent age 

reporting, therefore, risks propagating age-related algorithmic bias, with potential clinical, 

ethical, and societal implications on the target population. (34,37) Mitigating age bias requires a 

concerted effort to ensure that training and testing datasets appropriately match intended users. 

Further, with only 0.6% of devices approved specifically for the pediatric age group, our findings 

identify equity gaps in the representation of children in AI/ML market-approved devices. (38,39) 

 

With our findings showing that only 0.4% of approved devices cater specifically to geriatric 

health needs, specific considerations should be considered for the older adult population. Despite 

having the highest proportion of healthcare utilization, geriatric patients are traditionally 

underrepresented in clinical research. (34,40,41) A recent WHO ethical guidance document 

outlines the potential societal, clinical, and ethical implications of ageism in medical research, 

and describes the lack of geriatric representation as a health hazard in light of aging populations. 

(42,43) Initiatives such as the NIH's Inclusion Across the Lifespan policy aim to promote the 

participation of older adults in research studies, which may help equitize the potential impacts of 

algorithmic development for this population, considering unique ethical and clinical 

considerations. (44,45) Similar to considerations for children, we propose that regulatory bodies 

encourage market approval documents to make clear intentions to test and train on a geriatric 

population and ensure that appropriate validation methods are in place to ensure the appropriate 

generalization of model outputs to specific geriatric health needs. (46,47) 

 

Our study also examined variations in the representation of different medical specialties among 

approved medical devices. Specialties most commonly represented include Radiology, 

Cardiology, and Neurology. (1) Promoting clinical equity requires a more balanced 

representation of specialties and disease systems in digital innovation. Whilst we appreciate that 

AI/ML research is limited by data availability and data quality, industry, academia, and 

clinicians must advocate for equality of innovation amongst specialties, to include a broad range 

of conditions and patient populations in medical device development and testing that may 

potentially benefit. (48) As the FDA is a US-based regulator, our review does not examine the 

representation of specialties or conditions outside the US, and in particular in Low- and Middle-

Income Countries (LMICs) which contain over 80% of the global burden of disease. (49–51) 
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Many countries do not have the regulatory capacity to release approval documentation, and thus 

future studies must incorporate international data availability, collaboration, and cohesion. (52) 

Regulatory bodies both within and outside the USA must attempt to align technological 

development with key priorities in national and global disease burden to promote global equity. 

(53) 

 

Our results showed that transparency in study enrollment, study design methodology, statistical 

data, and model performance data were significantly inconsistent amongst approved devices. 

While 70.4% of studies provided some detail on performance studies before market approval, 

only 46.1% provided detailed results of the performance studies. In 62.9% of devices, there was 

no information provided on sample size. Transparency is crucial in addressing the challenges of 

interpretability and explainability in AI/ML systems, and our current findings suggest that 

evaluation cannot be comprehensively conducted across approved FDA devices. (54) Models 

that are transparent in their decision-making process (interpretability) or those that can be 

elucidated by secondary models (explainability) are essential for validating the clinical relevance 

of any outcomes and ensuring that devices that may be incorporated in clinical settings and thus 

enhanced transparency must be incorporated in future approvals. (23,55) Further ethical 

considerations encompass a range of issues, including patient privacy, consent, fairness, 

accountability, and algorithmic transparency. (56) Including ethics methods in both study 

protocols and future regulatory documents may minimize privacy concerns arising from the 

potential misuse, and increase end-user confidence. (57,58) 

 

Only 142 (20.5%) of the reviewed devices provide statements on potential risks to end users. 

Further, only 13 (1.9%) approval documents included a corresponding published scientific 

validation study, providing evidence of their safety and effectiveness. Underreporting of safety 

data in approved devices limits the ability of end users to determine generalizability, 

effectiveness, cost-effectiveness, and medico-legal complexities that may occur from device 

incorporation. (59) It is therefore paramount that regulatory bodies such as the FDA advocate for 

a mandatory release of safety data and considerations of potential adverse events. One example 

of an approved device reporting adverse effects is the Brainomix 360 e-ASPECTS, a computer-

aided diagnosis (CADx) software device used to assist the clinician in the characterization of 

brain tissue abnormalities using CT image data. (60) Its safety report highlights some of the 

potential risks of incorrect scoring of the algorithm, the potential misuse of the device to analyze 

images from an unintended patient population, and device failure.  

Here, we detail some recommendations that may be adopted by the FDA and similar regulatory 

bodies internationally to reduce the risk of bias and health disparity in AI/ML. 
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Recommendations for regulatory reporting of AI/ML devices  

 

Explicit Representation Standards The FDA should explicitly mandate 

that AI/ML medical device 

submissions provide comprehensive 

demographic information, including 

race, ethnicity, age, gender, and 

socioeconomic status of the studied 

populations. This ensures that the 

algorithms are developed and 

validated on diverse datasets, 

minimizing the risk of biased 

outcomes and ensuring equitable 

representation. 

 

Inclusive Validation Criteria Establish clear guidelines for 

validation studies to include diverse 

and representative populations. 

Manufacturers should be required to 

demonstrate the performance of their 

AI/ML algorithms across various 

demographic groups, ensuring that the 

technology is effective for minorities, 

marginalized, and underrepresented 

communities. 

 

Bias Mitigation Protocols Enforce the inclusion of explicit 

methodologies for identifying and 

mitigating biases in AI/ML 

algorithms. Manufacturers should be 

required to document their efforts to 

address algorithmic biases throughout 

the development process, ensuring that 

the final product minimizes disparities 

in health outcomes. 

 

Transparency Requirements Implement stringent transparency 

standards, mandating clear 
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documentation of the machine learning 

techniques used, the sources of 

training data, and the rationale behind 

algorithmic decisions. Transparency 

ensures that end-users, healthcare 

providers, and regulatory authorities 

have insight into the algorithm's 

decision-making processes. 

 

Post-Market Surveillance for Equity  Establish a robust post-market 

surveillance framework specifically 

focused on monitoring the 

performance of AI/ML devices in real-

world settings. This ongoing 

evaluation should include an analysis 

of outcomes across diverse patient 

populations, with a particular 

emphasis on detecting and addressing 

any emerging biases affecting 

minorities and under-represented 

groups. 

 

Interdisciplinary Review Panels 

 

Form interdisciplinary review panels 

within the FDA consisting of experts 

in data science, healthcare disparities, 

and ethics. This ensures a holistic 

evaluation of AI/ML submissions, 

incorporating perspectives that can 

identify and address potential biases 

and disparities in health outcomes.  

Incentives for Diversity and Equity Establish incentives, such as expedited 

review processes or regulatory 

benefits, for manufacturers who 

proactively address issues of 

representation, validation rigor, and 

bias mitigation in their AI/ML device 

submissions. This encourages 
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industry-wide commitment to fairness 

and equity. 

 

 

 

While the FDA's Artificial Intelligence/Machine Learning (AI/ML) Action Plan outlines steps to 

advance the development and oversight of AI/ML-based medical devices (21), including 

initiatives to improve transparency, post-market surveillance, and real-world performance 

monitoring, (61) our study highlights that there remain several clinically relevant inconsistencies 

in market approval data that may exacerbate algorithmic biases and health disparity.  

 

The ramifications of inadequate demographic, socioeconomic, and statistical information in the 

majority of 501(k) submissions to the FDA for AI/ML medical devices approved for clinical use 

are multifaceted and extend across societal, health, legal, and ethical dimensions (10,34,62). 

Addressing these informational gaps is imperative to ensure the responsible and equitable 

integration of AI/ML technologies into clinical settings and the appropriate evaluation of 

demographic metrics in clinical trials. Additional focus must be given to under-represented 

groups who are most vulnerable to health disparities as a consequence of algorithmic bias. 

(34,63) 
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