1 2 1 ³	Cut Microbiomo Multi Omico and Cognitivo Eurotion in the Hispania Community Hoalth Study/Study of
$\begin{array}{c}1&4\\2&5\\3\end{array}$	Latinos- Investigation of Neurocognitive Aging
5 6 4 7 5 8 6 9 7 ¹⁰ 11	Natalia Palacios ^{1,2,3,} , Scott Gordon ¹ , Tao Wang ⁴ , Robert Burk ⁴ , Qibin Qi ⁴ , Curtis Huttenhower ^{3,5,6,7,} , Hector M. Gonzalez ⁸ , Robert Knight ^{9,10,11} , Charles De Carli ¹² , Marta Daviglus ¹³ , Melissa Lamar ¹⁴ , Gregory Telavera ¹⁵ , Wassim Tarraf ¹⁶ , Tomasz Kosciolek ¹⁷ , Jianwen Cai ¹⁸ , Robert C. Kaplan ⁴
8^{12}_{13}	¹ Department of Public Health, University of Massachusetts Lowell, Lowell, MA, 01850.
9_{15}^{14}	² Bedford VA Healthcare System, Geriatric Research and Education Clinical Center, Bedford, Massachusetts,
16 1017	USA, 01730.
1119 20	³ Harvard Chan Microbiome in Public Health Center (HCMPH), Boston, MA, 02115.
12^{21}_{22}	⁴ Albert Einstein College of Medicine, Bronx, NY, 10461.
13_{24}^{23}	⁵ Broad Institute of MIT and Harvard, Cambridge, MA, 02142.
25 1426	⁶ Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA,
1528 29	02115
16^{30}_{31}	⁷ Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115
17^{32}_{33}	⁸ University of California, San Diego Department of Neurosciences, San Diego, CA, USA 97037.
34 18 ₃₅	⁹ Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA, 97037.
36 1937 38	¹⁰ Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA, 97037.
20 ³⁹ 40	¹¹ Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA, 97037.
21_{42}^{41}	¹² University of California, Davis, CA, USA, 95616.
22 ₄₄	¹³ University of Illinois College of Medicine Institute for Minority Health Research, Chicago, IL, 60612
45 2346 47	¹⁴ Rush University Alzheimer's Disease Center, Rush University, Chicago, IL, 60612
24 ⁴⁸ 49	¹⁵ South Bay Latino Research Center, San Diego State University, Chula Vista, CA, 92182.
25^{50}_{51}	¹⁶ Wayne State University, Detroit, MI, 48202
26 ⁵² 2653	¹⁷ Sano Centre for Computational Precision Medicine, Krakow, Poland
54 2755	¹⁸ Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599.
28 ⁵⁷ 29 ⁵⁸	Corresponding author:
30^{59}	Natalia Palacios
31_{61}^{61} 32_{62}^{61}	University of Massachusetts, Lowell
63 64 65	NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

natalia_palacios@uml.edu

4 7 5 8 STRUCTURED ABSTRACT 6 9

 7_{12}^{11} **INTRODUCTION:** We conducted a study within the Hispanic Community Health

 8_{13}^{12} Study/Study of Latinos- Investigation of Neurocognitive Aging (HCHS/SOL-INCA) cohort to examine 914 the association between gut microbiome and cognitive function.

 $\begin{array}{c}1&4\\2&5\\3&6\end{array}$

10¹⁶₁₇
 METHODS: We analyzed the fecal metagenomes of 2,471 HCHS/SOL-INCA participants to, cross-sectionally, identify microbial taxonomic and functional features associated with global cognitive function. Omnibus (PERMANOVA) and feature-wise analyses (MaAsLin2) were conducted to identify microbiome-cognition associations, and specific microbial species and pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG modules) associated with cognition.

15²³₂₄ **RESULTS:** *Eubacterium* species(*E. siraeum* and *E. eligens*), were associated with better 1625 cognition. Several KEGG modules, most strongly Ornithine, Serine biosynthesis and Urea Cycle, 17²⁶₂₇ were associated with worse cognition.

 18_{29}^{28} **DISCUSSION:** In a large Hispanic/Latino cohort, we identified several microbial taxa and KEGG 19₃₀ pathways associated with cognition.

 $31 \\ 20^{32} \\ 33$

3 BACKGROUND 4

1 2

1

2

3

4

5

5 The human gut microbiome comprises trillions of bacteria, more microorganisms than the number of cells in a 6 7 human body and 150 times as many genes as the human genome[1]. The microbiome plays key roles in absorption and metabolism of nutrients, breakdown of lipids and polysaccharides, detoxification of xenobiotics, 8 6 9 waste particles and pathogenic organisms[2, 3], control of gut motility and homeostasis of the intestinal 710 barrier[4, 5]. It is key to the development and function of the human immune system, with 70% of the body's 811 lymphocytes located in the gut[6, 7]. The intestinal environment is intimately connected to the central nervous $\tilde{9}^{12}$ system (CNS) through bi-directional communication pathways regulated, in part, by the gut microbiome via 13 1014 production of bioactive metabolites[8, 9]: the brain-gut-microbiome axis. This communication system is just beginning to be appreciated and includes neural, immune,[10] endocrine, and metabolic pathways[9]. 11_{15} 1216

1317 US Hispanics/Latinos are at an increased risk of AD/ADRD and accelerated cognitive decline compared to 1418 non-Hispanic/Latino whites[11-14]. Hispanics/Latinos are also one of the fastest growing segments of the US 1519 elderly population[15, 16], and are impacted by cognitive decline at younger ages[17-19] compared to non-16²⁰ Hispanic Whites. This elevated risk has been suggested to be due to attributed to higher prevalence of key 1721 AD/ADRD risk factors in Hispanics/Latinos, such as poor diet, higher prevalence of diabetes, metabolic $17_{18_{23}}^{22}_{18_{23}}_{19_{24}}$ syndrome, obesity and cardiovascular disease, and higher blood pressure, which have been documented in HCHS/SOL-INCA [11, 20-27]. A distinct microbial profile in Hispanics/Latinos may also contribute to increased 20₂₅ risk[28].

2126 2227 Gut inflammation has been associated with AD/ADRD risk[29], suggesting that the gut microbiome may 2328 contribute to 'inflammaging' in AD/ADRD. Prior studies focusing on microbiome and AD/ADRD have reported 2429 reduction in diversity[30], and lower abundance of beneficial anti-inflammatory taxa, such as Eubacterium 25³⁰ spp.[31] and Feacalibacterium spp.[32, 33] in AD/ADRD. Several species of gut bacteria, such as 26^{31}_{32} Bifidobacterium, are capable of production of neuroactive metabolites, such as serotonin and GABA.[34-36] 27³² Several bacteria including the Klebsiella, Escherichia, Streptococcus, and Salmonella, Pseudomonas, species 2834 secrete functional amyloid proteins with demonstrated capacity to cross-seed and trigger a cascade of amyloid 2935 protein misfolding[37, 38] that can propagate from the gastrointestinal tract to the brain. These amyloid-3036 producing taxa have been reported elevated in AD/ADRD in prior studies[39-41]. Furthermore, secretion of 3137 lipopolysaccharide (LPS), a cell wall component of gram negative bacteria[42], can lead to microglial priming, 3238 increased production of proinflammatory cytokines, neuroinflammation and neurodegeneration[43]. 33³⁹ Pathogens, such as K. pneumoniae and E. lenta [44, 45], and pro-inflammatory taxa, such as the sulfate-34⁴⁰ producing Desulfovibriohave been noted in patients with AD/ADRD. $34_{41}_{35_{42}}$

3643 Functional work on the microbiome and AD has implicated both inflammatory and metabolic processes in AD. 3744 For example, finding of dysregulation of the P-glycoprotein microbial pathway[46] in AD, suggests a 3845 contribution of intestinal inflammation and gastrointestinal infections. Other studies reported dysregulation in 3946 pathways related to glucose metabolism and mitochondrial disfunction[47]. 4047

4148 Animal studies have supported this epidemiological evidence in humans, reporting altered microbial 42⁴⁹ composition in transgenic AD mouse models[48], and absence of amyloid plaque build-up in germ free 43⁵⁰₅₁ mice [49]. Transgenic mice treated with an antibiotic cocktail had fewer insoluble amyloid β plagues and less 44_{52} microglia and astrocyte accumulation around existing amyloid plagues[50]. In a recent report based on a fecal 4553 microbiome transfer (FMT) from AD patients to microbiota-depleted healthy young adult rats. FMT resulted in 4654 AD symptoms in the AD-colonized rats, as well as changes in the rat cecal and hippocampal metabolomes[51]. 4755 The abundance of the pathobiont, pro-inflammatory *Desulfovibrio* was elevated in AD patients compared to 48⁵⁶ healthy controls, inversely correlated to MMSE scores and was the taxa most elevated in the AD-colonized rats 49⁵⁷ after FMT[51]. Desulfovibrio has been reported enriched in AD patients by several other studies[46, 52] and 50⁵⁸ has been associated with reduced cecal SCFA levels[53].

50 51⁵⁹ 52⁶⁰

52₆₁ To knowledge, no work on the gut microbiome and AD risk has been done in Hispanics/Latinos. We 5362 conducted the first study of the gut microbiome in relation to cognitive function in a Hispanics/Latinos cohort.

- 63
- 64 65

4 **METHODS** 5

2

3 6 4

7

The study was approved by the institutional review boards at Albert Einstein College of Medicine and the 5 8 University of Massachusetts at Lowell.

6 9 710 Study Population: The study was conducted within Hispanic Community Health Study/Study of 811 Latinos (HCHS/SOL) a large population-based, multisite, prospective cohort study cohort of US Hispanic adults $\tilde{9}^{12}$ supported by the National Heart Lung and Blood Institute (NHLBI) and other National Institutes of Health (NIH) 13 10_{14}^{--} institutes. Participants (N=16,415) were enrolled during 2008-2011 at four Field Centers located in US cities 1115 with large Hispanic/Latino populations: Bronx, NY; Chicago, IL; Miami, FL; and San Diego, CA. Participants 1216 are of Cuban, Dominican, Puerto Rican, Mexican, Central and South American backgrounds. Middle-aged and older Hispanics/Latinos (ages 45-74 years) were oversampled (n=9.652). At study baseline, participants 1317 1418 participated in in-clinic visits with bilingual technicians that included anthropometric measures, blood pressure 1519 readings, pulmonary testing, diet assessment as well as a blood draw (with blood frozen and stored) [54, 55]. 16²⁰

17²¹ Neurocognitive assessment: At the second HCHS/SOL visit (V2), neurocognitive testing was conducted $17_{18_{23}}^{17}$ among 6,377 participants, at the 2nd HCHS/SOL study visit completed during 2011-2014. All cognitive 1924 assessments were performed in-clinic by trained bilingual/bicultural technicians with oversight of a 2025 Neurocognitive Reading Center. All three waves included Six-Item Screener[56] (SIS; mental status), (2) Brief-21₂₆ Spanish English Verbal Learning Test (BSEVLT; verbal episodic learning and memory),[57] (3) Verbal 2227 Fluency[58] and (4) Digit Symbol Subtest (DSS; processing speed).[59] At v2 and v3, additional testing 2328 included the Trail Making Test (TMT; A&B; a test of cognitive function), the NIH Toolbox Picture Vocabulary 2429 Test (PVT; test of general cognitive ability/crystalized knowledge[60] and the 12-item Everyday Cognition 25³⁰ (eCoq-12) scale of (memory, language, visuospatial, planning, organization, and divided attention)[61]. In this 26³¹ study, our cognitive outcome variable was global cognition scores (GSC), derived from confirmatory factor 26 27³² 33 analyses based on the cognitive measures above[62]. 2834

2935 Stool Sample Collection and Storage: During HCHS/SOL V2, participants were provided with a stool 3036 collection kit for self-sampling using a disposable paper inverted hat (Protocult collection device, ABC Medical 3137 Enterprises, Inc., Rochester, MN). CHS/SOL collected and sequenced over 3,035 stool samples during the V2 32³⁸ phase, placed in RNAlater[28]. Of these 2,470, were part of HCHS/SOL-INCA and had GCS, stool 33^{39}_{40} metagenomic and were included in this study.

34]1 3542 Fecal sample processing and sequencing: Shotgun sequencing was performed in the laboratory of Dr. 3643 Knight, using previously described procedures[63]. Briefly, DNA was extracted from fecal samples on FTA 3744 cards, following the Earth Microbiome Project protocol[64, 65]. Input DNA was quantified, and thereafter DNA 3845 fragmentation is performed, followed by end-repair and A-tailing. Adapters and barcode indices are added 3946 following the iTru adapter protocol[66]. Each plate of 384 libraries is generated without repeating barcodes, 40^{47} eliminating the problem of sequence misassignment due to barcode swapping[67]. The libraries were purified, 4148 guantified and normalized for sequencing on Illumina NovaSeg. Sequencing depth ranged from 500K-8,945K 42₅₀ reads/sample, with average 955K reads/sample.

43₅₁ 44_{52}^{-} Bioinformatic profiling of fecal samples: FASTQ sequence reads were demultiplexed, filtered to remove 4553 reads mapping to the human genome, and trimmed to remove low guality bases. The reads are then aligned 4654 against the NCBI RefSeq representative prokaryotic genome collection (release 82)[68] using Bowtie2.[69] and 4755 per strain coverage calculated using default SHOGUN[63] settings. The α -diversity indices (Shannon) and β -4856 diversity (Bray-Curtis dissimilarity) were calculated using R vegan packages[70, 71]. Functional profiles were 49⁵⁷ obtained using SHOGUN via sequence alignment to a nucleotide gene database derived from NCBI RefSeq 50⁵⁸ 51⁵⁹ (release 82) and annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology[72, 73].

52₆₁ **Metabolomic Profiling:** Metabolomics data, capturing >600 metabolites within eight defined classes, was 5362 obtained using fasting plasma specimens collected at HCHS/SOL V2. Metabolomics profiling was conducted

- 63
- 64
- 65

3 via Metabolon HD4Discovery platform (Metabolon Inc., Durham, NC) (Morrisville, NC) using liquid 4 chromatography-MS/MS methods with positive ion and negative ion modes (Waters ACQUITY ultra-5 performance liquid chromatography, as previously described [74]. Of the 2,471 participants with metagenomic 6 and cognitive data at V2, 480 had concurrent serum metabolome data. Data on these 2 participants were 4 7 5 8 used in multi-omic analyses below. 6 9

7¹⁰ Assessment of Covariates: Comprehensive covariate data were collected during in-person examinations, as 8¹¹ well as annual telephone interviews and ongoing ascertainment of major incident health events. Our model 9^{12}_{13} was adjusted for factors previously associated with AD, such as age, biological sex, education, AHEI2010 1014 dietary index, metformin use, Hispanic background (Central American, South American, Dominican, Mexican, 1115 Cuban, Puerto Rican), age moved to US, fiber intake and diabetes status. Age, education, metformin use[75], 1216 Hispanic background and years living in the US[28] were collected as part of in-person interview at V2. 1317 Definition of diabetes and prediabetes are based on contemporaneous ADA criteria by a combination of 14¹⁸ diagnosis and measured levels of fasting and 2hr glucose and hemoglobin A1c tests.[76] Long-term diet is 15^{19} one of the primary factors driving human microbiome composition and function[77], including among 16^{20} immigrants[78, 79]. In HCHS/SOL, all participants completed, at baseline, two 24h dietary recalls at ~6 week $17^{21}_{22}\\18^{23}_{23}$ intervals, to capture usual intake of foods and nutrients[80], from which fiber use and Alternative Healthy Eating/AHEI score were derived. We adjusted our analyses for use of Metformin use, as it is used by ~12% of 19_{24}^{-2} our participants, is the most common diabetes medication, has been shown to lead to alterations in gut 2025 microbiome composition and function. [81] We adjusted for Hispanic background and, in sensitivity analyses, 2126 for years living in the US as these factors were strongly related to the microbiome of HCHS/SOL participants in 2227 our prior studies. 2328

 24^{29} Statistical Analysis: All analyses were conducted on 2,471 HCHS/SOL-INCA participants who had 25³⁰ concurrent GCS and stool metagenomic data (Figure 1A). Analyses involving the metabolome, were 31 26³¹ conducted in the 480 participants who also had serum metabolomic data. Our initial dataset contained 3.314 2733 microbial species after quality control and removal of host 'contaminant' sequences, and of these, 198 were 2834 retained after filtering (as detailed above) and used in our statistical analyses. Likewise, of 445 KEGG 2935 Modules, 216 were retained after filtering (Figure 1B). 36

30³⁷ Global Cognitive Function Variable and Categories: GCS was treated as a continuous outcome variable in 31³⁸ MaAsLin2 and univariate PERMANOVA analyses. For analyses requiring categorical outcomes, including $31_{39}_{32_{40}}$ pCoA visualization, GCS was re-categorized into an ordinal variable with the following values: better (>=1SD 3341 above mean GCS; N = 413), medium (between 1SD above and 1SD below mean GCS; N = 1621) and worse 34_{42}^{-1} (>=1SD below mean GCS; N = 429).

43 3544 **Overall community patterns of microbial variation:** The Bray-Curtis dissimilarity metric was used for all 36^{45} beta-diversity analyses, both of taxonomic composition and functional potential. We performed ordination via 37⁴⁶ the Principal Coordinates Analyses (PCoA), to visualize Beta-diversity relationships across the three GCS 38⁴⁷ categories (better, medium, worse cognition). We performed omnibus testing with permutational multivariate 39₄₉ analysis of variance (PERMANOVA) of Bray-Curtis dissimilarities to quantify the percent variance explained by 4050 GCS (continuous) and study covariates.

4151 4252 *Feature-wise analyses*: To identify microbial features and functions associated with GCS, we used 4353 Multivariate Association with Linear Models version 2 (MaAsLin2), Version 2.1.16.0,

4454 (https://huttenhower.sph.harvard.edu/maaslin2)[82]) a modified general linear model for feature-wise 4555 multivariate testing in microbial community profiles. MaAsLin2 was run in R Version 4.3.1. Model specification 46^{56} 47^{57} 48^{58} 48^{59} and covariates were as follows:

microbial feature ~ global cognitive score (continuous) + age + biological sex + education + AHEI2010 diet index + metformin use + Hispanic background + age moved to US + fiber intake + diabetes status 49₆₀

61 62

1 2

1

2

- 63
- 64 65

3 We conducted sensitivity analyses MaAsLin2 including 1) univariate models, 2) additional adjustment for pack 4 years smoking, chronic stress, depression (CESD10), hypertension, waist-hip ratio, alcohol intake, whether 5 participant was US born, and the Multi-Ethnic Study of Atherosclerosis MESA acculturation score[83], a score 6 4 7 representing extent of acculturation to the US.

5 9 For features (taxa and KEGG modules) most strongly associated with cognition (FDR <= 0.2), we examined 6^{10} the Spearman correlation of these cognition-associated taxa with cognition-associated KEGG modules. To 7¹¹ understand the relationship between the identified taxa and KEGG modules to key serum microbial metabolites 8¹² 8¹³ in serum, we examined the Spearman correlation of these cognition-associated taxa and KEGG modules with 9_{14} serum metabolites from the HCHS/SOL V2 collection. We performed these correlation analyses for serum 1015 metabolites within the Short Chain Fatty Acid (SCFA), Branched Chain Amino Acid (BCAA) and tryptophan 1116 metabolism networks.

1217 1318 RESULTS

1419 15²⁰ 16^{21}_{22}

1 2

1

2

3

8

Table 1 outlines the characteristics of the study participants with cognitive measures and metagenomic profiles at HCHS/SOL V2 who were included in this study. The average age of study participants was 60.83 years, 17_{23}^{-1} 10% were US born. The highest proportion of participants (38.46%) were of Mexican heritage, followed by 1824 Puerto Rican (18.30%), Cuban (13.85%), Dominican (10.28%), Central American (9.88%), South American 1925 (7.04%) and mixed (2.02%) heritage. Most participants were either had pre-diabetes (47%) or diabetes (34%), 2026 12% reported metformin use, and 54.04 had hypertension. 2127

22²⁸ **Overall patterns of microbial community variation in relation to GCS:** Applying univariate PERMANOVA 23²⁹ of Bray-Curtis dissimilarities, we observed variables such as the MESA Acculturation Scale, Sex, Puerto Rican 24³⁰ descent and age moved to the US explained the greatest amount of variation in gut microbiome composition 24 25₃₂ (Figure 2A, Taxa), while metformin use, age and diabetes explained the largest amount of variation in 2633 functional potential (Figure 2A, KEGG Modules), consistent with our prior publications[28]. Diet (AHEI dietary 27₃₄ score), fiber intake, diabetes, and several other lifestyle variables, also explained significant amount of 2835 variation in microbiome composition (Figure 2A, Taxa) and function (Figure 2A, KEGG Modules). In 2936 multivariate PERMANOVA analyses, global cognitive function did not explain a significant amount of variation 3037 in microbial taxa ($R^2 = 0.07\%$; p = 0.22;), or functions ($R^2 = 0.07\%$; p = 0.24) (**Figure 2B**). 31³⁸

32³⁹ *Microbial species associated with GCS:* The most abundant species in stool included *Bacteroides vulgatus*, 33^{40}_{41} 34^{41}_{42} Prevotella copri, Bacteroides uniformis and Eubacterium rectale (Figure 2C, Taxa). The most abundant KEGG modules included Ribosome bacteria M00178, Ribosome archaea M00179, Aminoacyl-tRNA 3543 biosynthesis prokaryotes M00360, Aminoacyl-tRNA biosynthesis eukaryotes M00359 and ABC-2 type 3644 transport system (BR:ko02000) M00254 (Figure 2C, KEGG Modules). 3745

3846 In feature-wise, MaAsLin2 [84] models, after adjustment for age, biological sex, education, AHEI2010 diet 3947 index, metformin use, Hispanic background, age moved to US, fiber intake and diabetes status, we observed 40^{48} an inverse association between several bacterial species, including Prevotella sp P4.76, Bifidobacterium 41⁴⁹ longum Prevotella bryantii, Desulfovibrio piger Ruminococcus faecis, and GCS. Abundance of several 41_{50} 42_{51} bacterial species, most strongly Clostridium phoceensis, Eubacterium eligens, and also Eubacterium siraeum, 43₅₂ Holdemania massiliensis, Intestimonas massiliensis, Bacteroides barnesiae, and others was positively 44_{53} associated with global cognitive function (**Figure 3A**). In sensitivity analyses, after additional adjustment for 4554 pack years smoking, chronic stress, depression (CESD10), hypertension, waist-hip ratio, alcohol intake, 4655 whether participant was US born, and the MESA acculturation score, abundance of Prevotella sp P4.76 and 4756 Ruminococcus faecis remained inversely and abundance of Intestinimonas massiliensis and Eubacterium 4857 eligens remained positively associated with GCS (**Supplemental Figure 1**). 49⁵⁸

50⁵⁹ Microbial functions associated with GCS: MaAsLin2 identified 14 KEGG Modules significantly associated 5161 with GCS (Figure 3B). Of these, Ornithine biosynthesis modules (M00536), Urea cycle (M00029), Serine 52₆₂ biosynthesis glycerate 3P serine (M00020), Triacylglycerol biosynthesis (M00089), and Putative ABC

- 64
- 65

3 transport system (M000258), were most strongly associated with worse global cognitive function, with an FDR 4 p<0.05. Abundance of the Iron complex transport system (M003645), Ascorbate biosynthesis plant glucose 6P 5 ascorbate (M00114), nucleotide sugar biosynthesis prokaryotes (M003620, and Leucine degradation leucine 6 7 acetoacetate acetyl CoA (M00036), among others, modules was positively associated with GCS (Figure 3B). 5 8 In sensitivity analyses, after additional adjustment for pack years smoking, chronic stress, depression 6 9 (CESD10), hypertension, waist-hip ratio, alcohol intake, whether participant was US born, and the Multi-Ethnic 710 Study of Atherosclerosis MESA acculturation score the KEGG modules that remained inversely associated 811 with GCS at FDR P<0.2) included ornithine biosynthesis glutamate (M00028), serine biosynthesis glycerate $\tilde{9}^{12}$ 3P serine (M0020), Urea Cycle (M00029) and Putative ABC transport system BR Ko02000 (M00258), no 9_{13} 10_{14}^{13} modules were positivily associated with GCS in these sensitivity analyses. (Supplemental Figure 2). 11_{15}^{-}

1216 As expected, taxa associated with better cognition were, for the most part, correlated with each other (Supplemental Figure 2A). This was also true for taxa associated with worse cognition, with the exception of 1317 1418 *B. longum*, the association of which with worse cognition is surprising as it is generally recognized as a 1519 beneficial taxon. Thus it's consistent with prior work that *B.longum* might correlate with beneficial taxa. 16²⁰ Similarly, KEGG modules associated with better cognition were positively correlated with each other and 17^{21} negatively correlated with modules associated with rose cognition (Supplemental Figure 2B). We observed a $17_{18_{23}}^{22}_{19_{24}}^{17}_{24}$ modest correlation between, the top taxa and KEGG modules positively associated with cognition, and analogously a correlation between taxa and pathways negatively associated with cognition (Figure 4A). 2025 Alistripes shahii was most strongly correlated to various cognition-associated KEGG modules in this study 21_{26} (Figure 6), with strong correlations with the chondroitin degradation (r = 0.88, FDR P<0.05), sulfate deradation 2227 (r = 0.88, FDR P < 0.05) and the pectin degradation (r = 0.87, FDR P < 0.05) KEGG modules among others. 2328 Other strong correlations included the positive correlation between abundance of Bacteroides plebeius and 2429 HydH HydG metal tolerance two component regulatory system (r=0.45, FDR P < 0.05) and the Formaldehyde 25³⁰ assimilation ribulose monophosphate module (r = 0.35, FDR P,0.05). 26³¹

26 27³² 33 Several cognition-associated taxa identified in this study were correlated with concurrently collected 28_{34} (HCHS/SOL V2) serum metabolites within SCFA, BCAA and tryptophan metabolic networks. Consistent with results previously published by our group[85], B. longum, a beneficial taxa surprisingly associated with worse 29_{35} 30₃₆ cognition in our study, was negatively correlated to most metabolites in the BCAA pathway, and strongly 3137 positively correlated with indole propionate (r = 0.19, FDR P<0.05). B. longum was also inversely correlated 3238 with most BCAA metabolites. We also observed, a positive correlation between indolepriopionate and many of 3339 taxa positively associated with cognition, including *E. eligens* (r = 0.28, FDR P,0.05) and *E. siraeum* (r = 0.1, 34⁴⁰ FDR P<0.05), and *I. massiliensis* (r=0.1, FDR p<0.05), *A.obesi* (r = 0.12, FDR P<0.05) and *A. shahii* (r = 0.13, 35_{42}^{41} FDR P <0.05) (Figure 4B). Indole propionate was also correlated with several modules associated with 3643 cognition, such as eq. Pheynylalanine biosynthesis chorismate phenylalanine (r = 0.17, p<0.05), (Figure 4C). 3744

3845 **3946 DISCUSSION**

4047

1 2

1

2

3

4

4148 To our knowledge, this is the first, largest, and most comprehensive multi-omic study of the gut microbiome in 4249 a Hispanic/Latino cohort to date. Overall, our findings are consistent with prior reports of a pro-inflammatory, 43⁵⁰ pathogen-enriched microbiome in cognitive decline and AD/ADRD[32, 33, 41, 45, 86]. In our MaAsLin2 44₅₂ regression models, abundance of anti-inflammatory, strictly anaerobic taxa, such as Eubacterium, e.g.: E.eligens, E. siraeum, and E. ventriosum was associated with better cognition. We noted an inverse 45₅₃ 46₅₄ association between the abundance of the sulfate-producing pathobiont *Desulfovibrio* and cognitive function, 4755 this association has been seen in prior animal and human studies[51]. Notable also, is the relationship 4856 between the identified taxa, and KEGG modules to serum metabolites, particularly BCAA and tryptophan. 4957 58

5059 In this study, higher abundance of Alistripes obesi and Alistripes shahii were associated with better cognitive 5160 function. Several Alistipes spp., including Alistipes shahii can hydrolyze tryptophan to indole[87]. Tryptophan 52⁶¹ 62 is an essential amino acid, metabolized via host/kynurenine pathway (kynurenate, xanthurenate and

- 63
- 64
- 65

3 quinolinate), and by gut bacteria into indole derivatives (indoleacetate, indolelactate, and indolepropionate). In 1 4 2 prior work within HCHS/SOL-INCA, metabolites in the tryptophan pathway, notably guinolinate and kynurenine 5 3 6 were associated with better cognitive function [88]. Clostridium species, including C. phoceensis, C. bacterium 7 4 UC511D1 and Clostridium sp KLE 1755 were also associated with better cognitive function in our study. 8 5 Clostridia are known to possess genetic capacity to metabolize tryptophan[89]. Indolepropionate, a beneficial 9 6₁₀ microbial tryptophan metabolite, was among the strongest correlated with several cognition-associated taxa 711 and KEGG modules identified in this study, potentially implicating microbial tryptophan metabolism and indoles 812 in cognition and AD/ADRD. Indolepropionate has previously been proposed to have neuroprotective 913 properties[90] and to be of benefit as a potential therapeutic for neurodegenerative disease.[91] 14

10¹⁵₁₆ Abundance of Bacteroides cellulosilyticus, Bacteroides plebeius and Bacteroides barnesiae were associated with better cognitive function in this study. Several Bacteroides species are involved in microbiota-derived y- 11_{17} 1218 aminobutyric acid GABA[92], due to carriage a key enzyme a pyridoxal-5'-phosphate- dependent GAD (gadB) 1319 for converting glutamate to GABA in Bacteroides genomes. Prior work reported mixed associations between 1420 Bacteroides abundance and AD, with some studies reporting increased abundance in AD[45] and MCI[93], and 1521 others decreased abundance[94]. Bacteroides are gram-negative bacteria, that produce Lipopolysaccharide 16^{22} (LPS) as part of their cell wall[42]. LPS has been shown to lead to microglial priming, increased production of 17²³ proinflammatory cytokines, neuroinflammation and neurodegeneration[43]. Bacteroides have been reported as $17_{24} \\ 18_{25}^{24}$ elevated in persons with diabetes[95]. Thus, this study adds to the mixed evidence regarding Bacteroides and cognition that should be examined in future work. Two Prevotella species, Prevotella sp P476 and Prevotella 19_{26}^{20} 20_{27} bryantii were associated with worse cognitive function in our study. Prior work on Prevotella in AD have been 2128 mixed. Lower Prevotella abundance has been reported in patients with MCI[96] in one study, while another study reported enrichment of Prevotella in AD[97]. Prevotella abundance has been associated with risk of 2229 2330 Parkinson's disease, another neurodegenerative disease[98]. Interestingly, in HCHS/SOL, a higher Prevotella 24^{31} to Bacteroides ratio was associated with obesity [28], while the opposite association had been reported in other 25³² populations[79]. 33

26₃₅³⁴ Bifidobacterium longum was associated with worse cognitive function in our study. This result is somewhat 2736 surprising, given that *Bifidobacteria* are generally considered to be anti-inflammatory and beneficial to health, 2837 promoting gut epithelium integrity[99] and that B. longum wsa negatively correlated to most metabolites in the 29³⁸ BCAA pathway, and strongly positively correlated with indole propionate, a beneficial microbial metabolite, that 30^{39}_{40} has also been associated with reduced diabetes risk[85]. Other taxa associated with worse cognition in SOL, 31₄₁ exhibited the opposite pattern vis. a vis these metabolites. Most, but not all prior studies have noted reduced 3242 Bifidobacterium abundance in AD.[45] However, increased abundance of Bifidobacterium[100-108] has been 3343 observed in Parkinson's disease, including in recent work by out group[109]. Furthermore, Bifidobacteria 3444 abundance has been associated with aging and have been shown to be elevated in centenarians[110]. 34 35₄₆ Interestingly, and more consistent with a protective role for *Bifidobacterium*, another *Bifidobacterium* species, 3647 B. dentium was the top species contributing to the discrimination between participants with better vs. worse 3748 cognition, with a positive (beneficial) variable importance. Bifidobacteria are in involved in GABA, and acetate 3849 production, and *B. dentium* is thought to be most prolific GABA producer among *Bifidobacteria*[111]. These 39⁵⁰ mixed results highlight the need to further examine the role of *Bifidobacteriua* in AD/ADRD. Similarly, 40_{52}^{51} abundance of R. faecalis was associated with worse cognitive function in our study. Ruminococcus are 41₅₃ generally beneficial bacteria[112], so the inverse association with cognition is surprising.

⁵⁴ We noted dysregulation in KEGG pathways involving metabolism of neuroactive molecules (eg. GABA,
ornithine), sugars (eg. ribose and glucose) and BCAA with global cognition. The GMB has a known capacity to
produce as well as metabolize neurotransmitters, influencing neurotransmitter levels in the brain.[113] Several
bacterial species, including members of *Bifidobacterium Bacteroides and Lactobacillus* are capable of GABA
production.[114] The GABAergic system has been proposed as a potential therapeutic target for AD.[115, 116]
Ornithine, derived from L-arginine and glutamate, has been implicated in the pathogenesis of AD.[117, 118]
Shikimate, a tryptophan metabolism pathway, was identified as one of the pathways associated with cognition

63 64

1 2

3 in our study, and has been linked with neurodegeneration and Alzheimer's disease.[119-121]. This KEGG 1 2 5 module correlated positively with tryptophan metabolite concentration in our sample. Serum tryptophan was 3 6 correlated with many of the KEGG modules identified in this study, positively with modules associated with 4 7 better cognition and negatively with KEGG modules associated with worse cognition. We observed 8 5 correlations between other metabolites involved in tryptophan metabolism, such as the B. longum and 9 6₁₀ indolepropionate as well as B. cellulosityticus and kyturenate and 3-indoxyl sulfate, suggests a potential role 7₁₁ for microbial tryptophan metabolism in AD/ADRD. 12

813 Our study has several notable strengths. To our knowledge this is the largest and the first multi-omic study of 9^{14} the microbiome in Hispanics/Latinos to date. HCHS/SOL contained a culturally appropriate, comprehensive 10¹⁵ assessment of cognitive function, incorporating multiple cognitive domains. Simultaneously collected data on 10_{16} 11_{17}^{16} GMB composition, function (KEGG modules) and serum metabolites in HCHS/SOL, allowed us to conduct our multi-omic analyses, examining the inter-relationships between these features. The study also has several 12_{18}^{-1} 13_{19} limitations. Because the microbiome and cognition were, at the time of writing, were only concurrently 1420 available at visit 2 in HCHS/SOL, our study was limited to a cross sectional design. Future work will consider 1521 the longitudinal relationship between GMB and cognitive decline and AD/ADRD risk. While the stool samples 1622 in this study were self-collected by the participants and based on a single collection, extensive work has shown 17²³ that that self-collection is effective the microbiome is very stable with between-person variability greatly 18^{24} exceeding within-person differences over time.[122-124]. HCHS/SOL-INCA participants are relatively young $10^{10}_{19^{25}}_{20^{26}}_{27^{27}}$ (mean age = 60.83),. however they also have a high burden of AD-related comorbidities, such as a prevalence of diabetes or prediabetes over 80%, increasing their AD/ADRD risk beyond that appropriate for 2128 their calendar age.

29

1 2

In summary, our work in this large, well characterized Hispanic/Latino cohort points to a subtle, but noticeable dysregulation of the gut microbiome associated with cognitive function. We confirmed prior reports of a positive association between anti-inflammatory taxa, and negative association with pathogenic taxa and cognitive function. We also identified several KEGG pathways, with global cognitive function, which correlated strongly with serum tryptophan levels.

36 27₃₇

64 65

3 REFERENCES 4

1 2

1

- 5 3 1. Round, J.L. and S.K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and б 4 7 disease. Nat Rev Immunol, 2009. 9(5): p. 313-23.
- 5 8 2. Hooper, L.V., T. Midtvedt, and J.I. Gordon, How host-microbial interactions shape the nutrient environment of 9 6 the mammalian intestine. Annu Rev Nutr, 2002. 22: p. 283-307.
- 10 7 3. Sansonetti, P.J. and R. Medzhitov, *Learning tolerance while fighting ignorance*. Cell, 2009. **138**(3): p. 416-20. 11
- 812 Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U 4. 913 S A, 2004. 101(44): p. 15718-23.
- 1014 5. Bercik, P., S.M. Collins, and E.F. Verdu, Microbes and the gut-brain axis. Neurogastroenterol Motil, 2012. 24(5): 1115 p. 405-13.
- 1216 6. Wiertsema, S.P., et al., The Interplay between the Gut Microbiome and the Immune System in the Context of 17 $13_{18}^{1'}$ Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients, 1419 2021. 13(3).
- 1520 7. Vighi, G., et al., Allergy and the gastrointestinal system. Clin Exp Immunol, 2008. 153 Suppl 1(Suppl 1): p. 3-6.
- 16²¹ 8. Ghaisas, S., J. Maher, and A. Kanthasamy, Gut microbiome in health and disease: Linking the microbiome-gut- 17^{22} brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol 18^{23}_{24} Ther, 2016. 158: p. 52-62.
- 19₂₅ 9. Tremlett, H., et al., The gut microbiome in human neurological disease: A review. Ann Neurol, 2017. 81(3): p. 2026 369-382.
- 2127 10. Macpherson, A.J. and N.L. Harris, Interactions between commensal intestinal bacteria and the immune system. 22^{28} Nat Rev Immunol, 2004. 4(6): p. 478-85.
- 23²⁹ 23³⁰ 11. Gonzalez, H.M., et al., Neurocognitive function among middle-aged and older Hispanic/Latinos: results from the 24₃₁ Hispanic Community Health Study/Study of Latinos. Arch Clin Neuropsychol, 2015. 30(1): p. 68-77.
- 2532 12. Tang, M.X., et al., The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, 2633 and Hispanics. Jama, 1998. 279(10): p. 751-5.
- 27³⁴ 13. Mehta, K.M. and G.W. Yeo, Systematic review of dementia prevalence and incidence in United States race/ethnic 28^{35} populations. Alzheimers Dement, 2017. 13(1): p. 72-83.
- 29^{36}_{37} 14. Vega, I.E., et al., Alzheimer's Disease in the Latino Community: Intersection of Genetics and Social Determinants 3038 of Health. J Alzheimers Dis, 2017. 58(4): p. 979-992.
- 3139 15. Dominguez, K., et al., Vital signs: leading causes of death, prevalence of diseases and risk factors, and use of 3240 health services among Hispanics in the United States - 2009-2013. MMWR Morb Mortal Wkly Rep, 2015. 64(17): 33⁴¹ p. 469-78.
- 34_{43}^{42} 16. Colby SL, O.J., Population Estimates and Projections. Current Population Reports. 2015, US Census Bureau. p. 25-3544 1143.
- 3645 17. Chin, A.L., S. Negash, and R. Hamilton, Diversity and disparity in dementia: the impact of ethnoracial differences 3746 in Alzheimer disease. Alzheimer Dis Assoc Disord, 2011. 25(3): p. 187-95.
- 3847 18. Luo, H., G. Yu, and B. Wu, Self-Reported Cognitive Impairment Across Racial/Ethnic Groups in the United States, 39⁴⁸ National Health Interview Survey, 1997-2015. Prev Chronic Dis, 2018. 15: p. E06.
- 40_{50}^{49} 19. Fitzpatrick, A.L., et al., Sociodemographic Correlates of Cognition in the Multi-Ethnic Study of Atherosclerosis 4151 (MESA). Am J Geriatr Psychiatry, 2015. 23(7): p. 684-97.
- 4252 20. Gonzalez, H.M., et al., Life's Simple 7's Cardiovascular Health Metrics are Associated with Hispanic/Latino 4353 Neurocognitive Function: HCHS/SOL Results. J Alzheimers Dis, 2016. 53(3): p. 955-65.
- 4454 21. Almahmoud, M.F., et al., Association of Cardiac Structure and Function With Neurocognition in 44 45₅₆ Hispanics/Latinos: The Echocardiographic Study of Latinos. Mayo Clin Proc Innov Qual Outcomes, 2018. 2(2): p. 4657 165-175.
- 4758 22. Tarraf, W., et al., Blood Pressure and Hispanic/Latino Cognitive Function: Hispanic Community Health 4859 Study/Study of Latinos Results. J Alzheimers Dis, 2017. 59(1): p. 31-42.
- 49⁶⁰ 23. Lamar, M., et al., Cognitive Associates of Current and More Intensive Control of Hypertension: Findings From the 50₆₂⁶¹ Hispanic Community Health Study/Study of Latinos. Am J Hypertens, 2017. 30(6): p. 624-631.
 - 63
 - 64 65

1		
1 3	24	
$\frac{1}{2}$	24.	Lamar, M., et al., Cardiovascular disease risk factor burden and cognition: Implications of ethnic diversity within
25	25	the Hispanic Community Health Study/Study of Latinos. PLoS One, 2019. 14 (4): p. e0215378.
36	25.	Munoz, E., et al., Stress Is Associated With Neurocognitive Function in Hispanic/Latino Adults: Results From
4 7		HCHS/SOL Socio-Cultural Ancillary Study. J Gerontol B Psychol Sci Soc Sci, 2021. 76 (4): p. e122-e128.
5 °	26.	González, H.M., et al., Diabetes, Cognitive Decline, and Mild Cognitive Impairment Among Diverse
6_{10}		Hispanics/Latinos: Study of Latinos-Investigation of Neurocognitive Aging Results (HCHS/SOL). Diabetes Care,
7 ₁₁		2020. 43 (5): p. 1111-1117.
812	27.	González, H.M., et al., Metabolic Syndrome and Neurocognition Among Diverse Middle-Aged and Older
913		Hispanics/Latinos: HCHS/SOL Results. Diabetes Care, 2018. 41(7): p. 1501-1509.
1014	28.	Kaplan, R.C., et al., Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is
11^{15}_{16}		shaped by geographic relocation, environmental factors, and obesity. Genome Biol, 2019. 20(1): p. 219.
12_{17}^{10}	29.	Heston, M.B., et al., Gut inflammation associated with age and Alzheimer's disease pathology: a human cohort
1318		<i>study.</i> Sci Rep, 2023. 13 (1): p. 18924.
1419	30.	Verdi, S., et al., An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health.
1520		Front Aging Neurosci, 2018. 10: p. 398.
16^{21}_{22}	31.	Cattaneo, A., et al., Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral
17^{22}_{22}		inflammation markers in cognitively impaired elderly. Neurobiol Aging, 2017. 49 : p. 60-68.
18^{23}_{24}	32.	Sheng, C., et al., Combination of gut microbiota and plasma amyloid-& as a potential index for identifying
1925		preclinical Alzheimer's disease: a cross-sectional analysis from the SILCODE study. Alzheimers Res Ther, 2022.
2026		14 (1): p. 35.
21^{27}	33.	Sheng, C., et al., Altered Gut Microbiota in Adults with Subjective Cognitive Decline: The SILCODE Study. J
22^{28}_{22}		Alzheimers Dis, 2021. 82 (2): p. 513-526.
23_{20}^{29}	34.	Miri, S., et al., Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome? Front Microbiol,
2431		2023. 14 : p. 1098412.
2532	35.	Cox, L.M. and H.L. Weiner, <i>Microbiota Signaling Pathways that Influence Neurologic Disease</i> . Neurotherapeutics,
2633		2018. 15 (1): p. 135-145.
27^{34}	36.	Wiley, N.C., et al., <i>Production of Psychoactive Metabolites by Gut Bacteria</i> , Mod Trends Psychiatry, 2021, 32 : p.
28^{35}_{26}		74-99.
29_{37}^{36}	37.	Friedland, R.P., Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers
3038		Dis. 2015. 45 (2): p. 349-62.
3139	38.	Friedland, R.P. and M.R. Chapman. <i>The role of microbial amyloid in neurodegeneration</i> . PLoS Pathog, 2017.
3240		13 (12): p. e1006654.
33^{41}_{12}	39.	Zhao, Y., et al., Lipopolysaccharides (LPSs) as Potent Neurotoxic Glycolipids in Alzheimer's Disease (AD). Int J Mol
34_{12}		Sci. 2022. 23 (20).
3544	40.	Zhao, Y. and W.J. Lukiw. <i>Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration</i> . Mol Neurobiol. 2018.
3645		55 (12): p. 9100-9107.
3746	41.	Cattaneo, A., et al., Association of brain amyloidosis with pro-inflammatory aut bacterial taxa and peripheral
38 ⁴⁷		inflammation markers in coanitively impaired elderly. Neurobiol Aging, 2017, 49 : p. 60-68.
3948	42	Bateman, R.L. et al., Clinical and hiomarker changes in dominantly inherited Alzheimer's disease. N Engl I Med.
40_{50}		2012 367 (9): n 795-804
4151	43	Perry V H and C Holmes Microalial priming in neurodegenerative disease Nat Rev Neurol 2014 10 (4): p 217-
4252		24
4353	44	Manderino L et al Preliminary Evidence for an Association Between the Composition of the Gut Microbiome
44 ⁵⁴		and Cognitive Function in Neurologically Healthy Older Adults 1 Int Neuropsychol Soc 2017: n 1-6
45-55	45	Vogt NM et al. Gut microhiome alterations in Alzheimer's disease Sci Ren 2017 7(1): n 13537
4657	46	Haran I.P. et al. Alzheimer's Disease Microhiome Is Associated with Dusreaulation of the Anti-Inflammatory P-
4758	т О .	Glyconrotein Pathway mBio 2019 10 (3)
4859	47	liang X et al. Gut microhiome cognitive function and brain structure: a multi-omics integration analysis Transl
4960	т /.	Neurodegener 2022 11(1): n 49
61		neurouegener, 2022. ±±(±). p. +3.
62		
ъз 64		11
U 1		

1 2			
1^{3}	48	7hang L. et al. Altered Gut Microbiota in a Mouse Model of Alzheimer's Disease Alzheimers Dis. 2017 60(4):	
2 5	10.	p. 1241-1257.	
3 6	49.	Harach, T., et al., Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut	
47	-	<i>microbiota</i> . Sci Rep, 2017. 7 : p. 41802.	
58	50.	Minter, M.R., et al., Antibiotic-induced perturbations in microbial diversity during post-natal development alters	
6.9		amvloid patholoav in an aged APP(SWE)/PS1(Δ E9) murine model of Alzheimer's disease. Sci Rep. 2017. 7 (1): p.	
7^{10}_{11}		10411.	
8_{12}^{11}	51.	Grabrucker, S., et al., Microbiota from Alzheimer's patients induce deficits in cognition and hippocampal	
913		neurogenesis. Brain, 2023.	
1014	52.	Ling, Z., et al., Structural and Functional Dysbiosis of Fecal Microbiota in Chinese Patients With Alzheimer's	
11^{15}_{10}		<i>Disease.</i> Front Cell Dev Biol, 2020. 8 : p. 634069.	
12^{10}_{17}	53.	Sawin, E.A., et al., <i>Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-</i>	
1318		<i>chain fatty acids, and is anti-inflammatory in mice</i> . Am J Physiol Gastrointest Liver Physiol, 2015. 309 (7): p.	
1419		G590-601.	
1520	54.	Lavange, L.M., et al., Sample design and cohort selection in the Hispanic Community Health Study/Study of	
16^{21}_{22}		<i>Latinos.</i> Ann Epidemiol, 2010. 20 (8): p. 642-9.	
17_{23}^{44}	55.	Sorlie, P.D., et al., Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann	
1824		Epidemiol, 2010. 20 (8): p. 629-41.	
1925	56.	Callahan, C.M., et al., Six-item screener to identify cognitive impairment among potential subjects for clinical	
2026		<i>research.</i> Med Care, 2002. 40 (9): p. 771-81.	
21^{27}_{20}	57.	González, H.M., et al., A new verbal learning and memory test for English- and Spanish-speaking older people. J	
22_{29}^{20}		Int Neuropsychol Soc, 2001. 7 (5): p. 544-55.	
23_{30}^{-1}	58.	Lezak, M.D., et al., Neuropsychological assessment. 2004: Oxford University Press, USA.	
2431	59.	Wechsler, D., WAIS-R manual: Wechsler adult intelligence scale-revised. 1981: Psychological Corporation.	
2532	60.	Horn, J.L. and R.B. Cattell, Refinement and test of the theory of fluid and crystallized general intelligences. J Educ	С
26^{33}		Psychol, 1966. 57 (5): p. 253-70.	
27^{3-}_{35}	61.	Farias, S.T., et al., The measurement of everyday cognition (ECog): scale development and psychometric	
2836		properties. Neuropsychology, 2008. 22(4): p. 531-44.	
29 ₃₇	62.	González, H.M., et al., A research framework for cognitive aging and Alzheimer's disease among diverse US	
3038		Latinos: Design and implementation of the Hispanic Community Health Study/Study of Latinos-Investigation of	
3139	~~	Neurocognitive Aging (SOL-INCA). Alzheimers Dement, 2019. 15(12): p. 1624-1632.	
32^{10}	63.	Hillmann, B., et al., Evaluating the Information Content of Shallow Shotgun Metagenomics. mSystems, 2018.	
³³ ₄₂	C A	3 (6).	
34 ₄₃	64.	Inompson, L.R., et al., A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017.	
264E	CE	551 (7081): p. 457-403.	
2746	05.	Niarotz, C., et al., DNA extraction for streamined metagenomics of diverse environmental samples.	
3847	66	Bioleciniques, 2017. 62 (0): p. 290-293.	
30 ⁴⁸	00.	combinatorially indexed Illuming libraries (iTru & iNext) Reart 2019 7: p. e7755	
$\frac{37_{49}}{40_{50}}$	67	Costello M et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on	,
4151	07.	massively narallel sequencing platforms BMC Genomics 2018 19 (1): p. 332	
4252	68	Ω' learn N Λ et al. Reference sequence (RefSea) database at NCRI: current status taxonomic expansion and	
4353	00.	functional annotation Nucleic Acids Res 2016 44 (D1): n D733-45	
44^{54}	69.	Langmead, B. and S.L. Salzberg, East ganned-read glignment with Bowtie 2. Nat Methods, 2012, 9(4): p. 357-9	
45_{-6}^{-55}	70.	McMurdie P L and S. Holmes, phylosea: an R package for reproducible interactive analysis and araphics of	
4657		microbiome census data. PLoS One, 2013. 8 (4): p. e61217.	
4758	71.	Oksanen J. B.F., Kindt R. Legendre P. O'Hara R. Simpson GL. Solvmos P. Stevens H. Wagner HH., <i>Multivariate</i>	
48 ⁵⁹	-	analysis of ecological communities in R: vegan tutorial. R packaae version 1.7 2013.	
49^{60}_{51}	72.	Kanehisa, M., et al., <i>KEGG as a reference resource for gene and protein annotation</i> . Nucleic Acids Res. 2016.	
50_{62}^{61}		44 (D1): p. D457-62.	
63			
64		1	.2

2		
$\begin{pmatrix} 1 & 3 \\ 4 & 2 & 5 \end{pmatrix}$	73.	Hillmann, B., et al., <i>SHOGUN: a modular, accurate and scalable framework for microbiome quantification.</i> Bioinformatics, 2020. 36 (13): p. 4088-4090.
36 47	74.	Evans, A., et al., High Resolution Mass Spectrometry Improves Data Quantity and Quality as Compared to Unit Mass Resolution Mass Spectrometry in High-Throughput Profiling Metabolomics. Metabolomics, 2004. 4 (132).
5^{8}_{-9}	75.	Pernicova, I. and M. Korbonits, <i>Metforminmode of action and clinical implications for diabetes and cancer</i> . Nat Rev Endocrinol, 2014. 10 (3): p. 143-56.
$7^{10}_{11}\\ 8_{12}$	76.	Association, A.D., <i>Diagnosis and classification of diabetes mellitus</i> . Diabetes Care, 2013. 36 Suppl 1 (Suppl 1): p. S67-74.
913 10 ¹⁴	77.	Zhernakova, A., et al., <i>Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity</i> . Science, 2016. 352 (6285): p. 565-9.
11^{15}_{1217} 12^{16}_{177}	78.	Peters, B.A., et al., US nativity and dietary acculturation impact the gut microbiome in a diverse US population. Isme j, 2020. 14 (7): p. 1639-1650.
13_{18}^{17}	79.	Vangay, P., et al., US Immigration Westernizes the Human Gut Microbiome. Cell, 2018. 175(4): p. 962-972.e10.
1419 1520	80.	Siega-Riz, A.M., et al., Food-group and nutrient-density intakes by Hispanic and Latino backgrounds in the Hispanic Community Health Study/Study of Latinos. Am J Clin Nutr. 2014. 99 (6): p. 1487-98.
16^{21} 17^{22}	81.	Forslund, K., et al., <i>Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota</i> . Nature, 2015. 528 (7581): p. 262-266.
18^{23}_{24}	82.	Mallick H., R.A., McIver L., Ma S., Zhang Y., Nguyen LH., Tickle TL., Ren B., Schawager E.H., Chatteriee S.,
1925		Thompson KN., Wilkinson J.E., Subramanian Y., Lu Y., Waldron L., Paulson J.N., Franzosa EA., Bravo HC.,
2026		Huttenhower C, Miltivariable Association Discovery in Population-scale Meta-omics Studies. PLos Comp Bio,
2127		2021. In Press.
22^{28}	83.	Kandula, N.R., et al., Association of acculturation levels and prevalence of diabetes in the multi-ethnic study of
23_{20}^{29}		<i>atherosclerosis (MESA).</i> Diabetes Care, 2008. 31 (8): p. 1621-8.
2431	84.	Mallick H, M.L., Rahnavard A, MA S, Zhang Y, Nguyen LH, et al., <i>Multivariable association discovery in</i>
2532		population-sclae meta-omics studies. 2020.
2633	85.	Qi, Q., et al., Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host
27^{34}		genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut, 2022. 71 (6): p. 1095-1105.
28_{26}^{35}	86.	Manderino, L., et al., Preliminary Evidence for an Association Between the Composition of the Gut Microbiome
2937		and Cognitive Function in Neurologically Healthy Older Adults. J Int Neuropsychol Soc, 2017. 23(8): p. 700-705.
3038	87.	Parker, B.J., et al., The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and
3139		Mental Health. Front Immunol, 2020. 11 : p. 906.
3240	88.	He, S., et al., Blood metabolites predicting mild cognitive impairment in the study of Latinos-investigation of
33^{41}_{42}		neurocognitive aging (HCHS/SOL). Alzheimers Dement (Amst), 2022. 14 (1): p. e12259.
34_{43}^{42}	89.	Merino, E., R.A. Jensen, and C. Yanofsky, <i>Evolution of bacterial trp operons and their regulation</i> . Curr Opin
3544		Microbiol, 2008. 11 (2): p. 78-86.
3645	90.	Serger, E., et al., The aut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature, 2022.
3746		607 (7919): p. 585-592.
38 ⁴⁷	91.	Zhou, Y., et al., The role of the indoles in microbiota-qut-brain axis and potential therapeutic targets: A focus on
39^{48}_{40}		human neurological and neuropsychiatric diseases. Neuropharmacology, 2023. 239 : p. 109690.
4050	92.	Otaru, N., et al., GABA Production by Human Intestinal Bacteroides spp.: Prevalence, Regulation, and Role in Acid
4151		Stress Tolerance. Front Microbiol, 2021. 12: p. 656895.
4252	93.	Saji, N., et al., The relationship between the aut microbiome and mild cognitive impairment in patients without
43 ⁵³		dementia: a cross-sectional study conducted in Japan. Sci Rep. 2019. 9 (1): p. 19227.
44_{55}^{54}	94.	Saji, N., et al., Analysis of the relationship between the aut microbiome and dementia: a cross-sectional study
45 ⁵⁵ ₅₆		<i>conducted in Japan.</i> Sci Rep, 2019. 9 (1): p. 1008.
4657	95.	Larsen, N., et al., Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS
4758		One, 2010. 5 (2): p. e9085.
4859	96.	Kim, E.J., et al., Association between Mild Cognitive Impairment and Gut Microbiota in Elderly Korean Patients. J
49_{61}^{00}		Microbiol Biotechnol, 2023. 33 (10): p. 1376-1383.
62		
63		10
64		13

medRxiv preprint doi: https://doi.org/10.1101/2024.05.17.24307533; this version posted May 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

2		
$1 \frac{3}{4}$	97.	Kaiyrlykyzy, A., et al., Study of gut microbiota alterations in Alzheimer's dementia patients from Kazakhstan. Sci
2 5		Rep, 2022. 12 (1): p. 15115.
36 47	98.	Li, Z., et al., <i>Gut bacterial profiles in Parkinson's disease: A systematic review</i> . CNS Neurosci Ther, 2023. 29 (1): p. 140-157.
5 ⁸ 6 ⁹	99.	Wang, Z., et al., <i>The role of bifidobacteria in gut barrier function after thermal injury in rats</i> . J Trauma, 2006. 61 (3): p. 650-7.
7^{10}_{11} 812	100.	Aho, V.T.E., et al., <i>Gut microbiota in Parkinson's disease: Temporal stability and relations to disease progression.</i> EBioMedicine, 2019, 44 : p. 691-707
913	101.	Bolliri, C., et al., <i>Gut Microbiota in Monozygotic Twins Discordant for Parkinson's Disease.</i> Ann Neurol, 2022.
10^{-4}		92 (4): p. 631-636.
11^{10} 12^{16} 12^{17}	102.	Wallen, Z.D., et al., <i>Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms</i> . Nat Commun, 2022. 13 (1): p. 6958.
13 ₁₈ 1/10	103.	Lin, A., et al., Gut microbiota in patients with Parkinson's disease in southern China. Parkinsonism Relat Disord,
1520	104	2010. 33. p. 62-66.
16^{21}_{22}	104.	2020. 100 (13): p. 1017-1022.
$17^{22}_{23}_{18}$	105.	Unger, M.M., et al., Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease
1024	100	Derichalla M. et al. Upravaling aut microbiota in Darkingan's disease and atunical parkinganism. May Disord
2026	100.	2019. 34 (3): p. 396-405.
21^{27}_{22}	107.	Hill-Burns, E.M., et al., Parkinson's disease and Parkinson's disease medications have distinct signatures of the
22_{29}^{28}		<i>gut microbiome</i> . Mov Disord, 2017. 32 (5): p. 739-749.
23_{30}^{23} 24_{21}^{23}	108.	Petrov, V.A., et al., <i>Analysis of Gut Microbiota in Patients with Parkinson's Disease</i> . Bull Exp Biol Med, 2017. 162 (6): p. 734-737
$2 - 3 \pm 2$	109	Palacios N et al Metagenomics of the Gut Microhiome in Parkinson's Disease: Prodromal Changes Ann
2633	105.	Neurol. 2023. 94 (3): p. 486-501.
27^{34}_{35}	110.	Palmas, V., et al., Gut Microbiota Markers and Dietary Habits Associated with Extreme Longevity in Healthy
2836		Sardinian Centenarians. Nutrients, 2022. 14(12).
29 ₃₇ 3038	111.	Barrett, E., et al., γ -Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012. 113 (2): p. 411-7.
3139	112.	La Reau, A.J. and G. Suen, The Ruminococci: key symbionts of the aut ecosystem. Microbiol. 2018. 56(3): p. 199-
32 ⁴⁰		208.
33_{42}^{41}	113.	Olson, C.A., et al., The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell, 2018. 173(7):
3443		p. 1728-1741.e13.
3544	114.	Bravo, J.A., et al., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor
3645		expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A, 2011. 108 (38): p. 16050-5.
$\frac{3}{10}$	115.	Calvo-Flores Guzman, B., et al., The GABAergic system as a therapeutic target for Alzheimer's disease. J
38_{48}^{-1}		Neurochem, 2018. 146 (6): p. 649-669.
39 ₄₉	116.	Govindpani, K., et al., Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol
4050		Sci, 2017. 18 (8).
4151 42 ⁵²	117.	Liu, P., et al., <i>Altered arginine metabolism in Alzheimer's disease brains</i> . Neurobiol Aging, 2014. 35 (9): p. 1992-2003.
4353	118.	Liu, P., Y. Jing, and H. Zhang, Age-related changes in arginine and its metabolites in memory-associated brain
44_{55}^{54}		<i>structures</i> . Neuroscience, 2009. 164 (2): p. 611-28.
45 ₅₆	119.	Paley, E.L., Diet-Related Metabolic Perturbations of Gut Microbial Shikimate Pathway-Tryptamine-tRNA
4657		Aminoacylation-Protein Synthesis in Human Health and Disease. Int J Tryptophan Res, 2019. 12: p.
4758		1178646919834550.
4859	120.	Paley, E.L., et al., Geographical Distribution and Diversity of Gut Microbial NADH:Ubiquinone Oxidoreductase
49_{61}^{00}		Sequence Associated with Alzheimer's Disease. J Alzheimers Dis, 2018. 61(4): p. 1531-1540.
62		
63		11
64		T4
65		

 Paley, EL. and G. Perry, Towards on Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut Microbiom Interactions in Neurodegeneration. Nutrients, 2018. 10(4) Palth, J.J., et al., The long-term stability of the human gut microbiota. Science, 2013. 341(6141): p. 1237439. Patta, E.A., et al., Kentifying personal microbiome using metagenomic codes. Proc Natl Acad Sci U S A, 2015. 112(22): p. 1230-8. Mehta, R.S., et al., Stability of the human faccal microbiome in a cohort of adult men. Nat Microbiol, 2018. 3(3): p. 347-355. Micrayl, C., et al., Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med, 2021. 27(11): p. 1885-1892. 	2			
 Microbiome Interactions in Neurodegeneration. Nutrients, 2018. 10(4). 122. Faith, J.J., et al., <i>The long-term stability of the human gut microbiones.</i> Science, 2013. 341(6141): p. 1237439. 123. Francosa, E.A., et al., <i>identifying personal microbiones using metagenomic cades.</i> Proc Natl Acad Sci U S A. 2015. 112(22): p. E2330-8. 124. Whath, R.S., et al., <i>identifying personal microbione in a cohort of adult men.</i> Nat Microbiol, 2018. 3(3): p. 347-355. 125. Microbiote, et al., <i>Reporting guidelines for human microbiome research: the STORMS checklist.</i> Nat Med, 2021. 27(11): p. 1885-1892. 	1^{3}	121.	Paley, E.L. and G. Perry, Towards an Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut	
 122. Faith, JL, et al., The long-term stability of the human gut microbiotic. Science, 2013. 341(1614): p. 1237439. 123. Francosa, E.A., et al., Identifying personal microbiome using metagenomic codes. Proc Natl Acad Sci U S A, 2015. 112(22): p. 2230-0. 124. Mehta, R.S., et al., Stability of the human faccal microbiome in a cohort of adult men. Nat Microbiol, 2018. 3(3): p. 347-355. 125. Micrayl, C., et al., Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med, 2021. 27(11): p. 1885-1892. 	2 5		Microbiome Interactions in Neurodegeneration. Nutrients, 2018. 10 (4).	
4 123 Franzosa, EA, et al., identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A, 2015. 112(22): p. E2930-8. 112 Mehta, R.S., et al., Stability of the humon foecal microbiome in a cohort of adult men. Nat Microbiol, 2018. 3(3): p. 347-355. 112 Nitrayl, C., et al., Reporting guidelines for humon microbiome research: the STORMS checklist. Nat Med, 2021. 27(11): p. 1885-1892. 113 125. 114 127 115 114 116 128 117 115 118 128 119 1885-1892.	36	122.	Faith, J.J., et al., The long-term stability of the human gut microbiota. Science, 2013. 341 (6141): p. 1237439.	
 112(22): p. E2930.8. 122. Mehta, R.S., et al., Stebility of the human faccal microbiome in a cohort of adult men. Nat Microbiol, 2018. 3(3): p. 347-355. 125. Micrayl, C., et al., Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med, 2021. 27(11): p. 1885-1892. 121. 27(11): p. 1885-1892. 	47	123.	Franzosa, E.A., et al., Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 201	5.
6 1 24. Mehta, R.S., et al., Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol, 2018. 3(3): p. 347-355. 12125. Microbiol, et al., Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med, 2021. 27(11): p. 1885-1892. 1111 1217	5 8		112 (22): n E2930-8	
11 p. 347-355. 12 12.5 13 12.7 14 13.7 15 14.7 16 14.7 17 14.7 17 14.7 18 12.5 17 14.7 18 12.5 19 14.7 11 14.7 11 14.7 11 15.7 111 16.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 111 17.7 1111 17.7	6 ⁹	124	Mehta RS et al. Stability of the human faecal microhiome in a cohort of adult men. Nat Microhiol. 2018. 3(3):	
111 Mirzył, C. el., Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med, 2021. 121 ZY(11): p. 1885-1892. 111 111 1227 111 131 111 141 111 141 111 141 111 141 111 141 111 141 111 141 111 141 111 141 111 141 111 141 111 151 111 161 111 171 111 171 111 172 111 173 111 174 111 175 111 175 111 175 111 175 111 175 111 175 111 175 111 175 111 175 111 175 111 175	7^{10}_{11}	12	n 347-355	
1 27(11); p. 1885-1892. 101 1 111 1 <tr< td=""><td>$\frac{1}{812}$</td><td>125</td><td>Mirzavi C et al Reporting guidelines for human microbiome research: the STORMS checklist Nat Med 2021</td><td></td></tr<>	$\frac{1}{812}$	125	Mirzavi C et al Reporting guidelines for human microbiome research: the STORMS checklist Nat Med 2021	
Eriti, p. 100 101. 1015 1116 1217 13 12 22 23 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 55 55 55 55 55 55 55 55	9 13	125.	77 (11): n 1885-1897	
1015 1116 1217 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 35 35 37 38 39 40 41 41 42 43 44 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 59 60 61 62 63 64 65 65 75 75 75 75 75 75 75 75 75 7	14		2 , (11). p. 1005 1052.	
1116 1217 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 44 45 56 57 58 59 60 61 62 63 64 65 55 55 56 57 58 59 60 61 62 63 75 75 75 75 75 75 75 75 75 75	1015			
1217 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 45 46 47 48 49 50 51 52 53 54 55 55 55 55 55 55 55 55 55	1116			
13 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 56 57 58 59 61 62 64 <t< td=""><td>1217</td><td></td><td></td><td></td></t<>	1217			
20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 43 44 45 44 45 44 45 44 45 43 44 45 43 44 45 46 47 48 49 90 90 90 90 90 90 90 90 90 90 90 90 90	18 19			
1 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 55 56 57 58 59 61 62 63 64 77 58 56 57 58 59 61 62 63 64 77 78 79 71 71 72 73 74 75 75 76 76 75	20			
22 23 24 25 27 28 29 30 30 31 32 33 34 43 55 56 57 58 59 59 59 60 51 52 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55	21			
23 24 25 26 27 28 29 30 31 32 33 34 55 36 37 38 39 40 41 42 43 44 45 46 47 48 99 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 56 57 58 59 61 62 63 64 65	22			
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 66 47 48 49 50 51 52 53 54 56 57 58 59 61 62 63 64 65	23			
15 16 17 18 19 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15	24 25			
77 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 64 64 65	26			
28 29 30 31 32 33 34 35 56 57 58 59 50 51 52 53 54 55 55 55 55 55 55 55 55 55	27			
29 31 33 34 45 55 56 57 58 59 50 51 52 53 54 55 55 56 57 58 59 60 61 63 64 65 57 58 59 60 61 61 63 64 65 55 56 57 57 58 59 60 61 61 61 61 61 61 61 61 61 61	28			
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 77 48 49 95 55 55 55 55 55 55 55 55 55 55 55 55	29			
12 33 34 35 36 37 38 39 40 41 42 43 44 45 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 53 53 54 55 56 57 58 59 50 51 53 53 54 55 56 57 58 59 50 50 50 50 50 50 50 50 50 50	30 31			
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	32			
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	33			
35 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 51 52 53 53 54 55 56 57 58 59 60 61 61 62 63 64 64	34			
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	35			
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	30 37			
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	38			
40 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 56 56 57 58 59 60 61 62 63 64	39			
41 42 43 44 45 46 47 48 49 50 50 51 52 53 53 54 55 56 56 57 58 59 60 60 61 62 63 64	40			
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	41			
14 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	42 43			
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 45 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 60 61 62 63 63 63 65 55 55 55 56 57 58 59 60 61 62 63 63 63 65 55 55 55 55 56 57 58 59 50 50 51 52 55 56 57 58 59 60 61 62 63 63 65 55 55 55 56 57 58 59 50 50 50 50 50 50 50 50 50 50	44			
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 55 56 57 58 59 60 61 62 63 63 65 55 56 55 56 57 58 59 60 61 62 63 63 65 55 55 56 55 56 57 58 59 60 61 62 63 63 65 55 55 55 56 55 56 57 58 59 60 61 62 63 63 63 63 64 55 55 56 55 56 57 58 59 60 61 62 63 63 63 64 55 55 56 57 58 59 60 61 62 63 63 63 65 55 56 57 58 59 60 61 62 63 63 65 55 56 63 63 63 65 55 56 63 63 65 55 56 63 63 63 65 55 55 56 56 57 58 59 66 61 62 63 63 65 55 55 56 57 58 59 66 57 58 59 66 57 58 59 66 65 57 57 58 59 66 65 57 57 58 59 66 57 58 59 66 57 58 59 66 57 57 58 59 66 57 58 59 66 57 58 59 66 57 57 58 59 66 57 58 59 66 57 58 59 66 57 58 59 66 57 58 59 66 57 58 59 65 57 58 59 56 56 57 57 58 59 56 56 57 57 58 59 56 56 57 57 58 59 56 56 57 57 58 59 56 57 57 58 59 56 57 57 58 59 56 57 57 58 59 56 57 58 59 56 57 57 58 59 56 57 58 59 56 57 58 59 56 57 58 59 56 57 58 59 56 57 58 59 56 57 58 57 58 59 56 57 58 57 58 58 59 56 57 57 58 58 58 58 58 58 58 58 58 58	45			
47 48 49 50 51 52 53 54 55 56 56 57 58 59 60 61 62 63 64 65	46			
10 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 55	4/ / Q			
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 55	49			
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	50			
52 53 54 55 56 57 58 59 60 61 62 63 64 65	51			
53 54 55 56 57 58 59 60 61 62 63 64 65	52			
55 56 57 58 59 60 61 62 63 64 65	53 54			
56 57 58 59 60 61 62 63 64 65	55			
57 58 59 60 61 62 63 64 65	56			
58 59 60 61 62 63 64 65	57			
60 61 62 63 64 65	58 E0			
61 62 63 64 65	60			
62 63 64 65	61			
63 64 65	62			
65	63		1	15
	64 65			

FIGURE LEGENDS:

1 2 3

1 4 2

3

4

5 Figure 1. Microbiome and cognition in HCHC/SOL-INCA study design. Figure 1A: Sequencing and profiling 6 of HCHC/SOL-INCA Visit 2 samples with microbiome and metabolomics data. Figure 1B: STORMS 7 5 8 flowchart[125] outlining enrollment, data collection, and processing for our study of human gut metagenomes 6 9 and metabolomes in relation to global cognitive function. 710

811 Figure 2. Overall microbiome structure in relation to GCS and other study covariates. Figure 2A: $\tilde{9}^{12}$

Univariate R2 (Bray-Curtis dissimilarities, PERMANOVA) explained by key covariates. Figure 2B: 10₁₄ Distributions of taxonomic Bray-Curtis dissimilarities by phenotype group show that overall microbiome 1115 structure does not vary significantly with global cognitive function. Multivariate PERMANOVA adjusted for 1216 adjusted for age, gender, education, diet (AHEI), metformin use, Hispanic background (list). Figure 2C: Most 1317 abundant Taxa and KEGG Modules in HCHC/SOL-INCA according to GCS.

1418 15¹⁹ Figure 3. Taxa and KEGG modules significantly associated with GCS. Volcano plots show beta 16^{20} coefficient (x-axis) and FDR-corrected log10(g value) (y-axis). The most significantly enriched and depleted 17²¹ taxa (Figure 3A) and KEGG modules (Figure 3B) associated with phenotype group identified via feature-wise $18^{22}_{23}\\19^{23}_{24}$ analyses (MaAsLin 2). All analyses consider global cognitive function as a continuous predictor and are adjusted for age, gender, education, diet (AHEI), metformin use, Hispanic background. All p-values are 20_{25}^{-1} presented with FDR correction for multiple comparisons. 21_{26}

2227 Figure 4. Multi-omic correlations, taxa, KEGG modules and metabolites. Correlation coefficients are 2328 partial Spearman correlations adjusted for age, gender, education, diet (AHEI), metformin use, Hispanic 24²⁹ background. Figure 4A: We observed modest, but consistent correlation between top cognition-associated 25^{30}_{31} taxa and KEGG modules (FDR <0.2). Cognition-positive taxa were generally correlated with cognition-positive 26_{32}^{-} pathways and, likewise, cognition-negative taxa were overall associated with cognition-negative pathways. 2733 Figure 4B: Correlation between top cognition-associated taxa (FDR <0.2) with and metabolites in the SCFA. 28³⁴ BCAA and tryptophan pathways in HCHS/SOL. Figure 4C: Correlation between top cognition-associated 29^{35}_{36} KEGG 30^{36}_{37} INCA. KEGG modules (FDR <0.2) with and metabolites in the SCFA, BCAA and tryptophan pathways in HCHS/SOL-

31³⁸ 39

SUPPLEMENTAL FIGURE LEGENDS:

1 2 3

 $1 \frac{3}{4}$

² 5
 ³ 6
 Supplemental Figure 1. Correlations within a. Taxa and b. KEGG modules associated with cognition in
 ⁴ 7 HCHC/SOL-INCA. Spearman (unadjusted correlations) within the top Supplemental Figure 1A: Taxa and
 Supplemental Figure 1B: KEGG modules associated with cognition are. Numbers in cells denote correlation
 ⁶ 9 coefficients, '*' represents correlation p<0.05.

⁸¹¹
 Supplemental Figure 2. Volcano Plot for MaAsLin2 model for taxa (Supplemental Figure 2A) and KEGG modules (Supplemental Figure 2B) and with additional adjustment for pack years smoking, chronic stress, depression (CESD10), hypertension, waist-hip ratio, alcohol intake, whether participant was US born, and the Multi-Ethnic Study of Atherosclerosis MESA acculturation score[83]ACKNOLEDGEMENTS: The authors thank the Hispanic Community Health Study/Study of Latinos- Participants for their participation in the study.

1418 **CONFLICTS:** Curtis Huttenhower serves on the Scientific Advisory Board for Seres Therapeutics and Empress 15^{19} Therapeutics. Tomasz Kosciolek serves as a scientific adviser to Human Biome Institute. 16^{20}_{20} Other co-authors have nothing to disclose.

FUNDING: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The Hispanic Community Health Study/Study of Latinos is a collaborative study supported by contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina (HHSN2682013000011 / N01-HC-65233), University of Miami
(HHSN2682013000041 / N01-HC-65234), Albert Einstein College of Medicine (HHSN2682013000021 / N01-2328 HC-65235), University of Illinois at Chicago (HHSN2682013000031 / N01- HC-65236 Northwestern Univ), and HC-65235), University of Illinois at Chicago (HHSN2682013000031 / N01- HC-65236 Northwestern Univ), and San Diego State University (HHSN2682013000051 / N01-HC-65237). The following Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities,
National Institute on Deafness and Other Communication Disorders, National Institute of Dental and

2733 National Institute on Deatness and Other Communication Disorders, National Institute of Dental and
 2834 Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of
 2935 Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements.

30₃₆ 31₃₇ This work was additionally supported by RF1AG075922, R01NS097723, 1R01MD011389, RF1AG054548, 32³⁸ 1R01DK119268, 1R01AG048642, 1R01DK134672, R01 AG075758. 33³⁹

DATA AVAILABILITY: HCHS/SOL data are archived in the dbGap and BIOLINCC managed by the National Institutes of Health. Members of the scientific community can apply to access participant data and materials at HCHS/SOL via an established process, such requests are reviewed by the project's Steering Committee, described at https://sites.cscc.unc.edu/hchs/ (accessioned February 20, 2024). Reasonable requests for data and specimen access can be sent to the corresponding author, which will be referred to the Steering Committee of HCHS/SOL.

4047 48

4149 **CONCENT STATEMENT:** all human subjects provided informed consent.

4251 **KEY WORDS:** Hispanic, Latino, Cognition, Microbiome, Metabolomics

- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65

Α

Enrollment and Data Collection

Figure3

Partial Spearman p

01 00 01 02

	All	Women	Men
	(N=2471)	(N=1625)	(N=846)
Age (mean, SD)	60.83 (7.11)	60.77 (7.06)	60.94 (7.19)
Hispanic/Latino Heritage			
Dominican	10.28 (254)	11.51 (187)	7.92 (67)
Central American	9.88 (244)	9.98 (162)	9.69 (82)
Cuban	13.85 (342)	12.25 (199)	16.90 (143)
Mexican	38.46 (950)	40.02 (650)	35.46 (300)
Puerto Rican	18.30 (452)	17.36 (282)	20.09 (170)
South American	7.04 (174)	68.97 (112)	7.33 (62)
2+ Heritage	2.02 (50)	1.72 (28)	2.60 (22)
Diabetes Status			
Without Diabetes	19%	20%	18%
With Pre-Diabetes	47%	47%	45%
With Diabetes	34%	33%	37%
MCI at V2	9%	10%	8%
Education:	33%	39%	34%
<8 grade			
8 grade - HS	20%	19%	20%
>HS	38%	36%	41%
Born in the US	10%	9%	12%
Depression (CESD score)	7%	7%	6%
Hypertension	54.05% (1335)	53.45% (868)	55.20% (467)
Waist/Hip Ratio	0.94 (0.085)	0.92 (0.07)	0.99 (0.069)
Diet/AHEI Score	51.1	50.6	52.3
Metformin Use	12%	13%	12%
Fiber Intake (g/day	19	17	21
CESD Depression	6.70 (6.09)	7.32 (6.30)	5.53 (5.49)

Table 1. Characteristics of 2471 HCHS/SOL-INCA participants with cognitive and microbiome measures at HCHS/SOL-INCA V2.

<u>Highlights</u>

- Largest metagenomic study in a Hispanic/Latino cohort to date.
- Eubacterium species (E. siraeum and E. eligens), were associated with better cognition.
- Several KEGG modules, most strongly Ornithine, Serine biosynthesis and Urea Cycle, were associated with worse cognition.

Research in Context:

- 1. <u>Systematic review</u>: The authors reviewed the literature using PubMed sources. According to the literature, US Hispanics/Latinos are at an increased risk of AD/ADRD and accelerated cognitive decline compared to non-Hispanic/Latino whites and have a distinct microbial profile. While the role of the microbiome in cognitive decline and AD/ADRD has not been fully studied, and no studies have been conducted in Hispanics/Latinos to date. The relevant citations are appropriately cited in the manuscript.
- 2. <u>Interpretation:</u> Our study identified several species and KEGG pathways associated with cognitive function, in the largest study on Hispanics/Latinos to date. We confirmed prior reports of a positive association between anti-inflammatory taxa, and negative association with pathogenic taxa and cognitive function. We identified several KEGG modules associated with global cognitive function. Many of the cognition-associated species and functions correlated with serum tryptophan levels.
- 3. <u>Future directions:</u> Future, prospective work is needed to identify microbiome alterations associated with cognitive decline and dementia. More work is needed in underserve populations, such as Hispanics/Latinos.