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Abstract 

Purpose: Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer. Patient 

survival prediction using machine learning and radiomics analysis proved to provide promising 

outcomes. However, most studies reported in the literature focused on information extracted from 

malignant lesions. This study aims to explore the relevance and additional value of information 

extracted from healthy organs in addition to tumoral tissue using machine learning algorithms. 

Methods: This study included PET/CT images of 154 patients collected from available online 

databases. The gross tumour volume (GTV) and 33 volumes of interest defined on healthy organs 

were segmented using nnU-Net deep learning-based segmentation. Subsequently, 107 radiomic 

features were extracted from PET and CT images (Organomics). Clinical information was combined 

with PET and CT radiomics from organs and GTVs considering 19 different combinations of inputs. 

Finally, different feature selection (FS, 5 methods) and machine learning (ML, 6 algorithms) 

algorithms were tested in a three-fold data split cross-validation scheme. The performance of the 

models was quantified in terms of the concordance index (C-index) metric. 

Results: For an input combination of all radiomics information, most of the selected features 

belonged to PET Organomics and CT Organomics. The highest C-Index (0.68) was achieved using 

univariate C-Index FS method and random survival forest ML model using CT Organomics + PET 

Organomics as input as well as minimum depth FS method and CoxPH ML model using PET 

Organomics as input. Considering all 17 combinations with C-Index higher than 0.65, Organomics 

from PET or CT images were used as input in 16 of them. 

Conclusion: The selected features and C-Indices demonstrated that the additional information 

extracted from healthy organs of both PET and CT imaging modalities improved the machine learning 

performance. Organomics could be a step toward exploiting the whole information available from 

multimodality medical images, contributing to the emerging field of digital twins in healthcare. 
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Introduction 

Lung cancer is the second most common cancer in all genders, while the most common subtype of 
lung cancer is non-small cell lung cancer (NSCLSC), a leading cause of death among other 
malignancies [1]. Knowledge of prognosis prior to treatment and during the treatment can be useful to 
change or optimize the treatment strategy or prevent other post-treatment. Radiomics information 
coupled with machine learning algorithms showed potential to predict the prognosis for NSCLC 
patients after treatment [2; 3], while most of the available studies using artificial intelligence (AI) [3-
5] focused on radiomic features extracted from the tumoral region and used clinical information, such 
as age, gender, and blood tests as additional information. Amini et al. [5] developed machine learning 
models to predict survival using different image fusion strategies and radiomics extracted from the 
GTV on the same population [4]. Lee et al. [6] extracted peritumoral image features and reported gain 
in classification performance which depends on tumour size. Hosny et al. [7] showed that deep 
learning classification algorithms emphasized the importance of peritumoral tissue in patient risk 
estimation. Mattonen et al. [8] reported the importance of metabolic tumor volume penumbra 
extended by 1 cm in NSCLC recurrence. Guo et al. [9] evaluated the predictive value of dosiomics 
and CT radiomics of esophageal tumour GTV and whole oesophagus for predicting complications 
after radiotherapy. They reported combination of GTV and whole oesophagus as the best predictor 
using machine learning models. Lam et al. [10] used multi-omics data including radiomics and 
dosiomics extracted from eight volumes of interest irradiated around the nasopharyngeal GTV to 
predict the adaptive radiotherapy eligibility in nasopharyngeal cancer patients. They reported the best 
performance for radiomics plus dosiomics extracted from these eight regions plus the GTV. They did 
not compare the GTV only versus added value of the surrounding organs. Kibrom et al. [11] reported 
that the position of lesions relative to spleen has additional predictive value in lymphoma patients 
treated with radiopharmaceutical therapy. During the Covid-19 pandemic, few studies reported the 
importance of gastrointestinal finding in predicting patient prognosis [12; 13]. Szabo et al. [14] 
reported the importance of pericardiac fat in the prognostic prediction of patients with heart failure. 

We believe that overall patients’ health condition may play a role in prognosis. Besides we 
hypothesize that it may contain some information reflecting overall patients’ health in the radiomic 
features space from structural (CT) and metabolic (PET) images acquired from these regions. Deep 
learning-based segmentation enables fast and reliable delimitation of healthy organs and hence 
evaluation any organ separately [15; 16]. To the best of our knowledge, the contribution of healthy 
organs is always overlooked and studies exploring the importance of healthy organs to estimate 
overall patient characteristics in survival prediction in NSCLC patients are lacking. 

The aim of this study was to use as much as possible image information available from PET/CT 
images to predict the prognosis in terms of overall survival prediction in patients with NSCLC 
malignancies. We used radiomic features extracted from 33 organs and tumoral tissues and evaluated 
the added value of healthy organs radiomics in a comprehensive study using multiple feature selection 
and machine learning models. The primary question addressed was whether the incorporation of total 
body organ information could enhance the accuracy of AI-based predictions of overall survival. 

Materials and Methods 

Dataset 

This study used the Radiogenomics NSCLC dataset downloaded from the TCIA public database [17]. 
Cases where PET/CT imaging data are available were separated and the DICOM images converted to 
NIFTI format. From 211 cases, there were 166 cases with PET/CT and after preprocessing and 
excluding images with any kind of processing error or missing data, a total number of 154 PET/CT 
images was included for training/testing. A detailed description of the demographics, acquisition and 
reconstruction parameters is summarized in Table 1. We calculated the time difference between the 
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PET acquisition date and the date of the last follow up recorded on the dataset description. It should 
be mentioned that the PET/CT acquisition date was not available for a few cases in the metadata 
provided by TCIA. For these cases, the DICOM acquisition date information was used. PET images 
were converted to standard izeduptake value (SUV) prior to feature extraction.  

Table 1. Demographic description of the dataset included in this study summarizing patient 
information, PET and CT acquisition/reconstruction parameters. 

Demographics Age (years) 67.2 ± 11.29 
Height (meters) 1.69 ± 0.17 
Weight (Kg) 76.26 ± 18.51 
Gender Male (# 97), Female (#57) 
Affiliation Stanford (#87), VA (# 67) 

 Survival status Alive (#110), Deceased (#44) 

PET Manufacturer Siemens (#10), GE (#144) 
PET spacing (mm) 4.37 ± 0.84 
PET Injected Activity (MBq) 453.16 ± 90.46 
Time per bed (minutes) 2.33 ± 0.85 
Scatter correction method Model-Based, Convolution Subtraction 
PET Reconstruction Method OSEM, 3D IR, VPFX, OSEM PSF, VPHDS 

CT kVp 80, 100, 120, 130, 140 
Pitch Factor 1.08 ± 0.29 
Average Tube Current (mA) 267.58 ± 163.93 

 
Organs segmentation 

We used extended and upgraded versions of previously trained deep learning-based segmentation 
models in our department [15] to segment 28 volumes of interest in healthy organs on the CT images. 
Those models were trained using nnU-Net [18] segmentation pipeline using five-fold data split and 
ensembling all five-folds inferred on the RadioGenomics CT compartment of PET/CT dataset. The 
3Dfullress training model weas continued using 2000 epochs and initial learning rate of 3e-5 
decreased after each epoch. The segmented organs were visually checked searching for potential 
outliers presenting with significant errors. The list of segmented organs is provided in Table 2. 

GTV segmentation 

We used nnU-Net pipeline to train a 3Dfullres deep learning model to segment GTV on CT of 
PET/CT images. We used three online available datasets including LIDC [19] (dataset #1) and 
NSCLC (dataset #2) and manual segmentations available on Radiogenomics [17] (same patients as 
PET/CT images, dataset #3) datasets for model training using a five-fold data split. The 
Radiogenomics dataset had the same patients whom PET/CT images were used to train the survival 
ML models. It should be mentioned that the Radiogenomics diagnostic CTs with available manual 
segmentation (143 pair of CT and GTV segmentations) were used both as part of training set and 
testing set. We used datasets #1 and #2 to increase the number of training datasets and gain a robust 
model capable of segmenting CT of PET/CT images with a lower image quality. 

These three datasets were visually assessed and cases with presenting with errors were excluded 
from training. After exclusion, 384 cases from NSCLSC dataset, 143 cases from Radiogenomics 
dataset, and 787 cases from LIDC dataset (total of 1314 pairs of CT and GTV segmentation) were 
included. Similar to organ segmentation part, we ensembled the output from all five folds inferenced 
on CT images of PET/CT. The GTV segmentations were visually checked and compared with the 
available ground truth data provided on the diagnostic CT which was not co-registered with the 
PET/CT images in few cases. 
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Feature extraction 

Table 2. List of segmented organs for three subgroups of soft, lung, and bony tissues. LLL: left lower 
lobe, RLL: right lower lobe, RML: right middle lobe, LUL: left upper lobe, RUL: right upper lobe. 

Boney Structures 1 Clavicles 
2 Hips 
3 Sacrum 
4 Ribs 
5 Vertebrae 
6 Femoral Heads 

Soft Tissue 7 Adrenal Glands 
8 Aorta 
9 Brain 
10 Colon 
11 Esophagus 
12 Eyeballs 
13 Whole Cardiac 
14 Cardiac Right Atrium 
15 Cardiac Left Atrium 
16 Cardiac Left Ventricle Cavity 
17 Cardiac Right Ventricle 
18 Cardiac Left Myocardium 
19 Kidneys 
20 Liver 
21 Pancreas 
22 Rectum 
23 Rectus Lumborum Muscles 
24 Small Intestine 
25 Spleen 
26 Stomach 
27 Urinary Bladder 

Lung Tissue 28 Whole Lungs 
29 Lung LLL 
30 Lung RLL 
31 Lung RML 
32 Lung LUL 
33 Lung RUL 

 

We used Pyradiomics (version 3.1.0) [20] library to extract 107 radiomic features, including First-
order Statistics (19 features), Shape-based (3D) (16 features), Shape-based (2D) (10 features), Gray 
Level Co-occurrence Matrix (24 features), Gray Level Run Length Matrix (16 features), Gray Level 
Size Zone Matrix (16 features), Neighboring Gray Tone Difference Matrix (5 features), and Gray 
Level Dependence Matrix (14 features). We clipped the images prior to feature extraction depending 
on organ composition for organs and used a predefined clipping value for malignant lesions. We 
manually classified organs in one of three subgroups, namely lung, soft-tissue, and bony structures. 
Then, for each category, prior to extracting the radiomic features, the images were clipped between 
empirical minimum and maximum values to emphasis the image histogram on the heterogeneities 
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inside these tissues. The clipping values were -900 to 0, -300 to 300, and 0 to 800 HU for lung, soft-
tissue and bony structures, respectively. PET images were clipped between 0 and 40 SUV before 
feature extraction for all segmentation masks.  

We extracted features using bin width equal to 10 HUs and 0.4 SUV for CT and PET images, 
respectively. PET and CT images were resampled to 4 × 4 × 4 mm3 and 1.5 × 1.5 × 1.5 mm3, 
respectively, prior to feature extraction. 

Feature selection and machine learning 

We considered 19 possible combinations of five input data including PET Organomics, CT 
Organomics, PET GTV, CT GTV, and clinical information. Table 3 summarizes these 19 strategies.  

Table 3. Summary of all 19 combinations of input data used in this study. Red cross sign means not 
used whereas the green thick sign means using that input. For better readability, they were classified 
in four subgroups and all included means using all five inputs as predictors. 

 

Figure 1 shows the flowchart of steps followed in this study protocol.  

 

Figure 1. Flowchart summarizing the different steps involved in the study protocol. All 19 input 
combinations were trained using three-fold cross-validation data split. Filled yellow star means using 
that input whereas blank (white) star means that input was not used. 

We used combinations of five feature selection (FS), six machine learning (ML) models and 19 
types of input in three-fold data split to train overall 570 × 3 (1710) models and compared the 
performance in terms of concordance index (C-index). Different FS algorithms were used in this 
study, including Minimal Depth (MD), Mutual Information (MI), Univariate C-Index (UCI), Boruta, 

Inputs PET Organomics CT Organomics PET GTV CT GTV Clincal Information
Clinics Only Clinics

PET GTV
CT GTV
PET GTV + CT GTV
PET GTV + Clinics
CT GTV + Clinics
PET GTV + CT GTV + Clinics
PET Organomics
CT Organomics
CT Organomics + PET Organomics
PET Organomics + Clinics
CT Organomics + Clinics
PET Organomics + CT Organomics  + Clinics
PET GTV + PET Organomics
CT GTV + CT Organomics
PET GTV + PET Organomics + Clinics
CT GTV + CT Organomics  + Clinics
PET Organomics + CT Organomics + PET GTV + CT GTV

All included PET Organomics + CT Organomics + PET GTV + CT GTV + Clinics

GTV Only

Organomics Only

Single Modalities
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Variable hunting (VH), Variable hunting Variable Importance (VH.VIMP). We implemented 6 ML 
models, including Cox Boost (CB), Cox Proportional Hazard regression (CoxPH), Generalized Linear 
Model Network (GLMN), GLM Boosting (GLMB), Random Survival Forest (RSF), and Survival 
Tree (ST). Details about the implemented methods are provided in supplementary material. 

First, we applied 3-fold nested cross-validation for each input. In each fold (external fold), we used 
z-score method to normalize feature values based on train dataset and transformed the values (mean 
and standard deviation) to test dataset. For remove redundant feature, we used Spearman correlation 
test with a threshold of 90%. This method removes one of the features that has a Spearman correlation 
coefficient over 90%. Then, FS algorithms were applied on the train dataset. The best selected 
features for each FS method were fed to ML algorithms. Internal 3-fold cross-validation with grid 
search was used for hyperparameter optimization. The detail of these parameters is provided in 
supplementary material. The trained model with best hyperparameter was evaluated on test dataset 
with 1000 bootstraps. Model evaluation was performed with C-index. Mean and standard deviation of 
3000 C-indices was reported for each model. The mlr package version 2.18 in R 4.1.2 was used for 
model development. 

Statistical Analysis 

The top performance models with respect to the C-index were selected for Kaplan- Meir (KM) curve 
analysis. The risk score in the test dataset for each fold KM was extracted and combined for all 
patients. The risk scores were transformed to high-risk and low-risk groups using the median value as 
the threshold. The log-rank test was used to show significant differences between two groups (p-
value<0.05). 

Results 

Segmentation accuracy 

Figure 2 shows an example of GTVs segmented on both diagnostic quality CT and CT of a 
PET/CT image for a case with Dice coefficient equal to 0.87, which is lower than the average value. 
An average Dice coefficient of 0.92 ± 0.08 was calculated on the 143 diagnostic cases showing 
excellent segmentation performance on GTV segmentation. Figure 3 presents an example of organs 
segmented on CT of a PET/CT image showing excellent performance of organ segmentation model as 
reported in a previous study [15]. 

Selected features 

Table 4 shows the number of selected features for every 14 possible combinations of inputs where at 
least two types of inputs were used. In other words, CT GTV, PET GTV, CT Organomics, PET 
Organomics, and clinical parameters were not included in this Table since all the selected features 
were from the single input data. The most frequently selected features were for PET Organomics. The 
detailed names of features and organ names selected by all five FS models may be found in 
supplementary Table 2. 

For inputs of PET Organomics + CT Organomics + PET GTV + CT GTV (all inputs except 
clinical information) all five feature selection methods selected mostly PET Organomics (86/150) and 
then CT Organomics (57/150) features, the most frequent selected organs by all FS methods were 
aorta, whole lung textures, heart left ventricle myocardium textures, and heart right ventricle textures. 
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Figure 2. GTV segmentations for a case with Dice coefficient of 0.87 on diagnostic CT images. The 
top row shows a pair of manual (ground truth) and deep learning (DL) segmentation output on a 
diagnostic CT image where the axial magnified slices compare the manual (red) and DL (green) 
contours. The bottom row shows the corresponding axial slices segmented using DL on CT of a 
PET/CT image. The 3D visualization shows the whole lung and GTV segmented. 

 
Model comparison 

 

 

 

 

Table 5 summarizes the average and the best model C-Indices for every 19 combinations of inputs 
averaged over three folds. Supplementary Table 3 depicts the C-Index for every three folds and all 
570 combinations of FS and models. The highest C-index (0.76) was achieved for a single fold using 
MD FS method, RSF machine and PET Organomics input. The resulting C-indices heatmap 
comparing all the 570 models are depicted in Figure 4. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.15.24307393doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.15.24307393
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Figure 3. 3D visualization of organ segmentations. Set1: Brain, eyeballs, vertebrae, clavicles, ribs, 
whole heart, rectus lumborum muscle, small intestine, sacrum, hips, and femoral heads. Set2: 
Vertebrae, oesophagus, aorta, heart substructures (LV, RV, LV cavity, RA, LA), stomach, pancreas, 
colon, rectum, and bladder. Set3: Lung five lobes, ribs, sacrum, hips. Some organs are repeated in all 
three sets for better visualization and as anatomical reference. 
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Table 4. Frequency of selected features by every input data by all five feature selection methods. The 
blue color bar shows the frequency. In cases where input information was not used, the value was 
replaced by “not included”. 

 

 

 

 

 

Inputs FS GTV_CT GTVs_PET organomics_CT organomics_PET clinics
CT GTV + CT Organomics  + Clinics UCI 7 not included 23 not included 0

MI 0 not included 1 not included 29
VH 0 not included 30 not included 0
VH.VIMP 0 not included 11 not included 0
MD 0 not included 29 not included 0

PET GTV + PET Organomics + Clinics UCI not included 1 not included 29 0
MI not included 0 not included 8 22
VH not included 0 not included 30 0
VH.VIMP not included 0 not included 17 0
MD not included 0 not included 24 0

CT GTV + Clinics UCI 28 not included not included not included 2
MI 0 not included not included not included 30
VH 15 not included not included not included 0
VH.VIMP 9 not included not included not included 1
MD 18 not included not included not included 2

PET GTV + Clinics UCI not included 29 not included not included 1
MI not included 0 not included not included 30
VH not included 11 not included not included 2
VH.VIMP not included 10 not included not included 0
MD not included 26 not included not included 4

PET GTV + CT GTV UCI 14 16 not included not included not included
MI 13 17 not included not included not included
VH 9 6 not included not included not included
VH.VIMP 6 5 not included not included not included
MD 16 14 not included not included not included

PET GTV + CT GTV + Clinics UCI 11 19 not included not included 0
MI 3 5 not included not included 22
VH 11 10 not included not included 1
VH.VIMP 9 5 not included not included 0
MD 10 11 not included not included 2

CT Organomics + Clinics UCI not included not included 28 not included 2
MI not included not included 1 not included 29
VH not included not included 29 not included 1
VH.VIMP not included not included 13 not included 0
MD not included not included 30 not included 0

PET Organomics + Clinics UCI not included not included not included 30 0
MI not included not included not included 8 22
VH not included not included not included 30 0
VH.VIMP not included not included not included 16 0
MD not included not included not included 24 0

CT Organomics + PET Organomics UCI not included not included 10 20 not included
MI not included not included 13 17 not included
VH not included not included 13 17 not included
VH.VIMP not included not included 10 7 not included
MD not included not included 15 11 not included

PET Organomics + CT Organomics  + Clinics UCI not included not included 6 24 0
MI not included not included 0 1 29
VH not included not included 9 20 1
VH.VIMP not included not included 2 14 0
MD not included not included 17 13 0

CT GTV + CT Organomics UCI 4 not included 26 not included not included
MI 4 not included 26 not included not included
VH 0 not included 30 not included not included
VH.VIMP 0 not included 13 not included not included
MD 0 not included 28 not included not included

PET GTV + PET Organomics UCI not included 4 not included 26 not included
MI not included 5 not included 25 not included
VH not included 1 not included 29 not included
VH.VIMP not included 0 not included 16 not included
MD not included 0 not included 30 not included

PET Organomics + CT Organomics + PET GTV + CT GTV UCI 1 2 9 18 not included
MI 1 1 12 16 not included
VH 0 0 10 20 not included
VH.VIMP 0 0 7 8 not included
MD 0 0 15 8 not included

PET Organomics + CT Organomics + PET GTV + CT GTV + Clinics UCI 0 1 4 25 0
MI 0 0 0 1 29
VH 0 1 11 18 0
VH.VIMP 0 0 5 10 0
MD 0 0 11 13 0
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Table 5. Model performance comparison based on inputs in terms of three-folds average C-Index. The 
highest values of 0.68 and 0.67 achieved are highlighted with bold font. 

 
 

 

Figure 4. C-indices heatmap comparing all the 570 models. The colormap on the right shows the 
significance of colors. The vertical axis depicts the inputs whereas the horizontal access depicts the 
FS/Model combination. 

 
# Inputs 

C-Index (average over all fold

mean std minimum ma

Clinics Only 1 Clinics 0.58 0.02 0.52 

GTV Only 2 PET GTV 0.59 0.02 0.55 

3 CT GTV 0.59 0.02 0.55 

4 PET GTV + CT GTV 0.59 0.02 0.55 

5 PET GTV + Clinics 0.60 0.03 0.53 

6 CT GTV + Clinics 0.59 0.02 0.54 

7 PET GTV + CT GTV + Clinics 0.60 0.02 0.53 

Organomics Only 8 PET Organomics 0.61 0.03 0.57 

9 CT Organomics 0.61 0.02 0.55 

10 CT Organomics + PET Organomics 0.60 0.03 0.52 

11 PET Organomics + Clinics 0.60 0.02 0.57 

12 CT Organomics + Clinics 0.60 0.02 0.57 

13 PET Organomics + CT Organomics + Clinics 0.60 0.02 0.55 

Single Modalities 14 PET GTV + PET Organomics 0.61 0.02 0.57 

15 CT GTV + CT Organomics 0.60 0.02 0.56 

16 PET GTV + PET Organomics + Clinics 0.60 0.03 0.54 

17 CT GTV + CT Organomics + Clinics 0.59 0.02 0.52 

18 PET Organomics + CT Organomics + PET GTV + CT GTV 0.59 0.02 0.55 

All included 19 PET Organomics + CT Organomics + PET GTV + CT GTV + Clinics 0.60 0.02 0.55 

 

lds) 

maximum 

0.61 

0.63 

0.62 

0.63 

0.65 

0.63 

0.63 

0.68 

0.67 

0.68 

0.65 

0.63 

0.63 

0.66 

0.65 

0.66 

0.62 

0.67 

0.65 
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Table 6 summarizes the inputs for every 30 combinations of FS and models with the highest C-
Index averaged over all folds. PET Organomics was used as input in 18/30 of those combinations, 
while CT Organomics was used in 14/30 combinations. It should be noted that only 6/30 and 11/30 
combinations used CT GTV and PET GTV radiomics. 

Figure 5 shows the Kaplan-Meier curves for nine selected models. GTV MD/RSF feature selection 
and model using PET Organomics + CT Organomics + PET GTV + CT as input showed the lowest p- 
value (0.00074), confirming its ability to separate high-risk patients from the low-risk group. 

Table 6. Highest C-Index and the corresponding inputs shown for every 30 combinations of 
FS/Model. 

FS-Model Best Inputs Overall C-Index 

MD--CB PET GTV + Clinical 0.63 

MD--CoxPH PET Organomics 0.68 

MD--GLMB PET Organomics 0.66 

MD--GLMN PET Organomics 0.66 

MD--RSF PET Organomics 0.67 

MD--ST PET Organomics + CT Organomics + PET GTV + CT GTV 0.63 

MI--CB CT Organomics 0.61 

MI--CoxPH CT Organomics + PET Organomics 0.62 

MI--GLMB CT Organomics 0.61 

MI--GLMN CT GTV + Clinical 0.62 

MI--RSF CT Organomics 0.66 

MI--ST CT Organomics + PET Organomics 0.64 

UCI--CB CT Organomics + PET Organomics 0.64 

UCI--CoxPH PET GTV + PET Organomics + Clinical 0.64 

UCI--GLMB CT Organomics + PET Organomics 0.64 

UCI--GLMN CT Organomics + PET Organomics 0.65 

UCI--RSF CT Organomics + PET Organomics 0.68 

UCI--ST CT GTV + CT Organomics 0.64 

VH--CB CT GTV + CT Organomics 0.62 

VH--CoxPH PET GTV + PET Organomics 0.66 

VH--GLMB PET GTV + PET Organomics 0.65 

VH--GLMN PET GTV + PET Organomics 0.66 

VH--RSF PET GTV + Clinical 0.63 

VH--ST CT Organomics 0.62 

VH.VIMP--CB PET Organomics 0.61 

VH.VIMP--
CoxPH 

PET GTV + Clinical 0.65 

VH.VIMP--
GLMB 

PET Organomics + CT Organomics + PET GTV + CT GTV + 
Clinical 

0.64 

VH.VIMP--
GLMN 

PET GTV + Clinical 0.64 

VH.VIMP--RSF CT GTV + Clinical 0.63 

VH.VIMP--ST PET GTV + PET Organomics + Clinical 0.63 
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Figure 5. KM curves of 9 selected combinations of Inputs/FS/Model. #0: PET GTV + PET 
Organomics + Clinical/UCI/RSF, #1: PET Organomics + CT Organomics + PET GTV + CT GTV + 
Clinical/UCI/RSF, #2: CT Organomics/UCI/RSF, #3 CT Organomics/ MI/RSF, #4: PET 
Organomics/MD/Coxph, #5: CT Organomics + PET Organomics/UCI/glmnet, #6: CT GTV + CT 
Organomics/UCI/RSF, #7: CT Organomics + PET Organomics/VH/Coxph, #8: PET Organomics + 
CT Organomics + PET GTV + CT GTV/MD/RSF. P-values shown in the bottom of each curve. P-
values <0.05 are considered statistically significant. 

Discussion 

Survival prognosis information may be useful in optimizing treatment plans, risk stratification, and 
resource allocation. Artificial intelligence has proved promising in predicting the prognosis of patients 
with various malignancies [21; 22]. However, the potential information in regions other than the GTV 
is often overlooked and was not considered in NSCLC cancer prognosis. Lee et al. [6] used peri-
tumoral regions radiomics and demonstrated its importance in two-year survival prediction. Hosny et 
al. [7] showed the importance of radiomics and dosiomics extracted from areas surrounding the GTV 
in NSCLC patients in prognosis through explainable deep learning and importance maps. Mattonen et 
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al. [8] reported on the importance of metabolic tumour volume penumbra extended by 1cm in NSCLC 
recurrence. To the best of our knowledge, this is the first study exploring the added value of 
information contained in regions other than the treatment planning GTV and its surrounding tissues. 

We explored the survival prediction capability of different sets of radiomic features extracted from 
different regions of the GTV and other organs from PET and CT imaging modalities. We also 
exploited the available clinical information and extensively tested 5 × 6 × 19 models in a three-fold 
data split to avoid the effect of random test/train split and invalid results. The aim of this study was to 
investigate the prognostic value of information extracted from different regions. Hence, we used 
multiple combinations of feature selection and machine learning methods to determine the approach 
achieving the best performance. Our results demonstrated that there is much more information in 
Organomics which can be used to predict the prognosis with AI. As summarized in Figure 4, all 
models achieving a C-Index more than 0.65 used Organomics, except one. The frequency of the 
selected features in Table 4 indicate the importance of Organomics in risk stratification, especially for 
the last two input combinations “PET Organomics + CT Organomics + PET GTV + CT GTV” and 
“PET Organomics + CT Organomics + PET GTV + CT GTV + Clinical” where the whole radiomics 
information from organs and GTVs was fed into feature selection algorithm and most of the selected 
features belong to PET Organomics and CT Organomics inputs for all FS methods, except for MI 
which selected clinical information instead and not the GTV information. Besides as presented in 
Table 6, most FS/Model combinations achieved the best results using PET Organomics and CT 
Organomics information. The most important organs affecting patients’ prognosis were the aorta, 
lungs, heart substructures.  

Our best models using PET Organomics and CT Organomics C-Index averaged over three folds 
was 0.68, while the highest C-Index in a single fold was 0.76. Our best results using PET GTV , CT 
GTV and PET GTV + CT GTV in terms of C-Index were 0.63, 0.59, and 0.63, respectively which is 
in agreement with results reported by Amini et al. [5] using the same inputs (0.63, 0.64, and 0.65, 
respectively), except CT GTV where the C-Index achieved is lower in our study. It should be 
mentioned that we used three-fold cross-validation without harmonization w hile they used two-
fold split strategy and ComBat harmonization. This comparison proved that although we did not have 
access to the manual GTV segmentations, our deep learning segmentation model provided a 
comparable GTV segmentation. 

One limitation of our study was the lack of ground truth segmentation on PET/CT images. We 
tried to overcome this issue by using a large training dataset including the diagnostic CT for the same 
group of patients to train the state-of-the-art nnU-Net model through ensemble learning. We used CT 
images of PET/CT for the same group of patients as part of the training dataset. It should be clarified 
that the aim of this study was not to develop a generalizable deep learning segmentation model. This 
study aimed to test the hypothesis of the presence of important radiomics information in regions other 
than the GTV and its surrounding tissues. We used the deep learning models to transfer the 
segmentations from diagnostic CTs available in part of the dataset to PET/CT images. The overall 
Dice of 0.92 ± 0.08, actually comparable with results reported by Wang et al. [23] and Zhang et al. 
[24], demonstrated the successful transform of the segmentations. However, as we illustrate a case 
with Dice coefficient equal to 0.87, which is lower than average in Figure 2, there is a good match 
between the segmentations. We used two other datasets for training to overcome the image quality 
difference between diagnostic CT images and non-enhanced low-dose CT images of PET/CT. It 
should be mentioned that we cannot claim that organs other than the lungs were healthy organs, it may 
be additional pathologies in other areas which may be captured in the radiomics textures. 

Conclusion 

There is important and useful information in terms of radiomic features outside the primary 
malignancies regions, including organs such as the aorta, heart, and lung which can improve the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.15.24307393doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.15.24307393
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

performance of AI algorithms. Our study suggests using as much as possible information from 
medical images toward generating a digital twin of patients with Organomics, GTV information and 
clinical data. 
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