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ABSTRACT 

Understanding the genetic basis of gene expression can help us understand the molecular underpinnings of 

human traits and disease. Expression quantitative trait locus (eQTL) mapping can help in studying this 

relationship but have been shown to be very cell-type specific, motivating the use of single-cell RNA 

sequencing and single-cell eQTLs to obtain a more granular view of genetic regulation. Current methods 

for single-cell eQTL mapping either rely on the “pseudobulk” approach and traditional pipelines for bulk 

transcriptomics or do not scale well to large datasets. Here, we propose SAIGE-QTL, a robust and scalable 

tool that can directly map eQTLs using single-cell profiles without needing aggregation at the pseudobulk 

level. Additionally, SAIGE-QTL allows for testing the effects of less frequent/rare genetic variation through 

set-based tests, which is traditionally excluded from eQTL mapping studies. We evaluate the performance 
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of SAIGE-QTL on both real and simulated data and demonstrate the improved power for eQTL mapping 

over existing pipelines.   

INTRODUCTION 

 

Transcriptomes have been extensively measured by RNA sequencing (RNA-seq) followed by expression 

quantitative trait locus (eQTL) mapping across multiple cell types and tissues to identify genetic variants 

associated with gene expression1–3. eQTL analysis provides evidence on functional genetic variants and 

facilitates understanding the molecular basis for human diseases when integrated with genome-wide 

association studies (GWASs)4. More recently, single-cell RNA-seq (scRNA-seq) methods have enabled a 

more fine-grained view of cellular diversity, and single-cell eQTL mapping can help uncover gene 

regulation at a deeper resolution of cell types5. Indeed, when studying the effects of genetic variation on 

expression using bulk transcriptomes across multiple cell types, it is virtually impossible to differentiate 

between true transcriptomic effects as opposed to effects on cell type proportions6. Further, bulk modelling 

fails to consider intra-individual cell-to-cell variability. 

 

The first generation of single-cell eQTLs considered aggregated (typically, mean) gene expression from 

multiple cells per individual, using a so-called “pseudobulk” approach. This approach has provided 

important insights into the genetic basis of cell type-specific gene expression across several tissues7–14, but 

has limitations. In particular, the pseudobulk approach does not appropriately model the intra-individual 

cell-to-cell variability. Thus, it cannot leverage information shared across cells with similar profiles and 

lose power.  

 

More recently, new studies have proposed approaches that model the expression levels of single cells 

directly15–17 and effectively account for key characteristics of these data; first, they can handle the presence 

of multiple cells from the same individual using a random effect term, and second, they appropriately model 

the non-normally distributed single-cell counts by adopting discrete count distributions (e.g., Poisson). Yet, 

they still have several limitations. Most notably, these methods are computationally inefficient. They are 

typically used only for downstream interpretation of cell state or cell transition specific effects, following 

faster pseudobulk methods which are still employed for the main analysis15,16. Additionally, the increasingly 

larger number of cells in current studies7,17,18, which is fast approaching multiple millions as new datasets 

are generated17, poses more challenges in computational efficiency. Efficient memory usage and speed are 

particularly relevant for single-cell eQTL studies, which are only in their infancy and where the number of 

cells and individuals is ever-increasing. Moreover, thousands of phenotypes (=genes) are considered in 

eQTL analyses, and tens of cell types, further increasing the number of tests that need to be performed. 

Current methods are not scalable at the genome-wide scale thus cannot be used to identify trans-eQTLs, 

even though previous studies suggest trans-eQTLs explain a large proportion of gene expression 

variability19–21. Finally, bulk and single-cell eQTL studies have historically been limited to common genetic 

variants (population minor allele frequency; MAF > 5%). This is largely due to data availability, with most 

studies relying on genotype arrays and imputation, which is limited to selected tagged (common) loci on 

the genome. Generally, small sample sizes also limit the exploration of rare variations. From a 

methodological perspective, eQTL methods typically perform single-variant tests (where only one variant 
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is tested at a time), which are underpowered for low frequency variants. As the number of studies employing 

whole genome sequencing grows with increased sample sizes, opportunities arise to explore the role of rare 

genetic variations on gene expression. However, this also highlights the necessity for developing more 

efficient methodologies. 

 

Here, we propose SAIGE-QTL, an efficient and scalable approach for single-cell QTL mapping, that 

addresses the above mentioned limitations. SAIGE-QTL builds on SAIGE22, SAIGE-GENE23, and SAIGE-

GENE+24, a previously proposed suite of scalable and efficient generalised linear mixed model tools, 

already addressing similar challenges in the context of GWAS analyses. First, SAIGE-QTL implements a 

mixed-effect model, thus modelling the repeated sample structure resulting from multiple cells derived 

from the same individual, as well as the relatedness of the individuals considered, if any, via the inclusion 

of a genetic relatedness matrix (GRM) in the model. Second, it uses a Poisson mixed model, effectively 

modelling the single-cell expression profiles as discrete counts. Third, SAIGE-QTL is fast and scalable for 

large datasets and can efficiently test thousands of genes, tens to hundreds of cell types, and millions of 

cells and genetic variants. Importantly, this allows for trans-eQTL mapping, where we test for the effects 

of variants that are distant or even on a different chromosome than the target gene as well as cis-eQTL 

mapping, where the variants tested are in close vicinity of the target gene. Finally, SAIGE-QTL can test for 

the effects of rare and less frequent genetic variants (MAF ≤ 5%) on gene expression through the 

implementation of efficient set-based tests and employs the saddle-point approximation (SPA25) for better 

controlled type I error rates. Altogether, we introduce a novel method for single-cell eQTL mapping that 

overcomes several limitations of existing approaches, and demonstrate its utility on both simulated and real 

data, using the largest available population-scale single-cell dataset, the OneK1K cohort7, showing notable 

improvements in performance compared to existing tools. 

 

RESULTS 

Overview of Methods 

 

The SAIGE-QTL method contains three main steps for each gene (Supplementary Figure 1, 

Supplementary Note): (1) fitting the null Poisson mixed model, which includes individual-level covariates, 

such as sex, age, and ancestry PCs for donors, and cell-specific covariates, such as expression-based PEER26 

factors, as fixed effects and accounts for intra-individual cell-to-cell variability using a random effect; (2) 

a. testing for the association between each common genetic variant (e.g., MAF > 5%) and gene expression 

using score tests; b. conducting set-based tests for less frequent/rare variants with e.g., MAF ≤  5%, 

including Burden tests, SKAT27, and ACAT-V28, each having superior power in various scenarios of effect 

directions and sparsity levels followed by an ACAT-O test28 to combine p-values. (3) calculating a gene-

level p-value for each cis-eQTL region using the ACAT-V test28, which combines variant-level p-values 

(from Step 2a) using a Cauchy combination that is robust to the correlation among individual p-values and 

the sparsity of effects.  
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Step 1 iteratively estimates the model parameters using the penalised quasi-likelihood (PQL29) method and 

the computationally efficient average information restricted maximum likelihood (AI-REML) algorithm30, 

also used in SAIGE22 and GMMAT31. Several optimisation strategies have been applied to make fitting the 

null Poisson mixed model practical for large single-cell RNA-seq data sets with millions of cells across 

thousands of individuals, such as OneK1K7 (Methods; Supplementary Note). For example, the 

preconditioned conjugate gradient (PCG32) approach for solving linear systems is used to avoid inverting 

the 𝑁 × 𝑁 matrices through the matrix decomposition, which cost 𝑂(𝑁3), where 𝑁 is the total number of 

cells in scRNA-seq studies and can range from hundreds of thousands to millions, increasing with study 

sizes. The computation time is about 𝑂(𝑛𝑁𝑃) times the number of iterations for PCG to converge, where 

𝑛 is the number of individuals (donors) and 𝑃 is the number of covariates including the intercept. The 

𝑛 × 𝑁 cell by individual matrix indicating which individual each cell belongs to is stored in memory as a 

sparse matrix with 1s. Once the null model is fitted for a gene in a cell type, it can be used to test the 

association of any genetic markers or regions for that gene’s expression in that cell type.  

In Step 2, for common variants, the score test is performed based on model residuals and parameters 

estimated in Step 1 to test the association between each genetic variant and the expression level of the gene 

of interest. The overall cost of computing the variance of the score statistic for all variants is extremely high 

since the inversion of a 𝑁 × 𝑁 matrix is needed for each variant. To overcome this issue, SAIGE-QTL uses 

the variance ratio approximation derived under the Poisson mixed model by extending that used in SAIGE 

and other GWAS methods33–35. Two variance ratios are computed using a random subset of genetic markers, 

which have been previously shown to be approximately constant for variants with MAC ≥ 20 for linear 

mixed models33,34 and generalised linear mixed models22 (Methods and Supplementary Note).  These 

include a ratio of the full variance of the score statistic to the variance without any random effects, as well 

as a ratio of the full variance of the score statistic to the variance with random effects (which is cheaper to 

compute than the full variance), Notably, estimates of the second ratio have lower variation compared to 

the first,  as previously demonstrated in the SAIGE-GENE method23. To improve the computation 

efficiency while maintaining test accuracy, after fitting the null Poisson mixed model, SAIGE-QTL first 

approximates the full variance of score statistics using the variance calculated without random effects and 

the ratio of the two, similar to previous mixed model methods for GWASs, e.g., BOLT-LMM33, 

GRAMMAR-Gamma34, and SAIGE22. If the association p-value is lower than a cutoff, e.g., 0.05, SAIGE-

QTL then estimates the full variance of score statistics using the variance calculated with random effects 

and the ratio of the two and re-calculates the p-value. In addition, SAIGE-QTL approximates the 

distribution of the score test statistics using SPA to obtain more accurate p-values than using the Normal 

distribution.  

For less frequent/rare variants with MAF ≤ 5%, after fitting the null model in Step 1, set-based association 

tests, including Burden, SKAT27, and ACAT-V28 tests, are performed in Step 2b (Supplementary Figure 

1). SAIGE-QTL improves the power23,24 by allowing for incorporating multiple MAF cutoffs, functional 

annotations, and weights, e.g., based on the distance to the transcription start site (TSS), similar to 

approaches suggested by others3623,24. Results from different tests are combined using the minimum p-value 

or Cauchy combination method28 as used in SAIGE-GENE+23,24.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2024. ; https://doi.org/10.1101/2024.05.15.24307317doi: medRxiv preprint 

https://paperpile.com/c/lLSTeB/xvlj
https://paperpile.com/c/lLSTeB/VZzD
https://paperpile.com/c/lLSTeB/ab96
https://paperpile.com/c/lLSTeB/VPsV
https://paperpile.com/c/lLSTeB/LCFH
https://paperpile.com/c/lLSTeB/fwhO
https://paperpile.com/c/lLSTeB/bfJa+MQDx+0Hc1
https://paperpile.com/c/lLSTeB/MQDx+bfJa
https://paperpile.com/c/lLSTeB/ab96
https://paperpile.com/c/lLSTeB/an8X
https://paperpile.com/c/lLSTeB/bfJa
https://paperpile.com/c/lLSTeB/MQDx
https://paperpile.com/c/lLSTeB/ab96
https://paperpile.com/c/lLSTeB/qKLH
https://paperpile.com/c/lLSTeB/sUJm
https://paperpile.com/c/lLSTeB/an8X+xxT0
https://paperpile.com/c/lLSTeB/laAV
https://paperpile.com/c/lLSTeB/an8X+xxT0
https://paperpile.com/c/lLSTeB/sUJm
https://paperpile.com/c/lLSTeB/an8X+xxT0
https://doi.org/10.1101/2024.05.15.24307317
http://creativecommons.org/licenses/by/4.0/


 

5 

In Step 3, a gene-level p-value is estimated based on the Cauchy combination of variant-level p-values.  

This approach was first suggested by the APEX36 authors and provides highly concordant gene-level p-

values compared to those obtained using the Beta approximation method described in the FastQTL paper37 

and implemented in TensorQTL38 (Pearson’s R2 =1 when tested on p-values from TensorQTL applied to 

OneK1K, see below and Supplementary Figure 2).  

Computation and memory cost  

We evaluated the computation cost of SAIGE-QTL when mapping eQTLs from the largest-to-date cohort-

scale scRNA-seq dataset, OneK1K7. Briefly, the OneK1K dataset consists of scRNA-seq from over 1.2 

million immune cells of 982 unique individuals, categorised into 14 distinct (sub)cell types and matched 

genotypes (Methods). In total, 16,250 genes are expressed in at least 10% of the donors in at least one cell 

type (range: 6,326-15,400 across different cell types) (Supplementary Table 1), and 12,108,282 single-

base variants are called or imputed across the frequency spectrum (5,328,917 with MAF>=5%, 6,779,365 

with MAF<5%) for all autosomal chromosomes (1-22). 

 

The cost of Step 1 (fitting the null model) ranged between 34 and 1,569 CPU hours and 0.37 and 1.96Gb 

of memory usage across different cell types, with the differences being largely driven by the number of 

cells present for different cell types. The projected overall computation time (Supplementary Table 2) for 

Step 2 to test eQTLs in cis, considering a window of +/- 1M base pairs around the gene body, on all genetic 

variants with MAF > 5% for 20,000 genes was between 28 and 40 CPU hours across the 14 cell types. The 

estimated time was projected for testing 20,000 genes in each cell type based on the actual time cost on 

genes expressing in at least 10% of the donors (Supplementary Table 1). We benchmarked the cis-eQTL 

mapping for gene RPL23A in naïve B cells (“BIN”) ) as an example to compare SAIGE-QTL to the glmer 

function in the lme4 R package based on Poisson mixed models39, which was used previously by Nathan et 

al.15. SAIGE-QTL reduced the computation time by 59 times (2mins 50s for Step 1 and Step 2 by SAIGE-

QTL vs. 2.83 hrs by glmer for testing 2,019 markers with MAF > 5%).  

 

We also evaluated the time cost when testing for effects of all common variation genome-wide for three 

key representative cell types from the OneK1K dataset: CD4 naive and central memory T cells (“CD4NC”) 

as the most abundant cell type, with 463,528 cells in total; immature and naïve B cells (“BIN”) as an 

intermediate cell type (82,068 cells) and Plasma, as the least abundant cell type from PBMCs in the 

OneK1K dataset (3,625 cells). Testing 5.3 million variants across the genome with MAF > 5% for the 

20,000 expressed genes was projected to take 630, 719 and 1013 CPU hours for Plasma, BIN, and CD4NC 

respectively (Supplementary Table 2). As is shown, in genome-wide eQTL mapping, each genetic marker 

can be tested for multiple genes (phenotypes) in each Step 2 job. Reduction in the overhead of genotype 

reading substantially saves computation time. In addition, parallel computation has been implemented to 

reduce computation time further when using multiple CPUs for Step 2 jobs that test multiple genes.  

 

Type I error rates/False positive calibration 
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To evaluate the false positive calibration of SAIGE-QTL, we estimated the type I error rates of SAIGE-

QTL for mapping eQTLs using single-cell RNA-seq data by following the steps described in the “Data 

simulation” subsection of the Methods section using the real single-cell read counts of gene expression 

and permuted genotypes in the OneK1K data.  

To evaluate the calibration of SAIGE-QTL across cell type abundances, gene expression levels (measured 

in terms of sparsity, defined as the proportion of zero read counts), we considered the three cell types 

described above and randomly selected 50 genes with low (< 20%), medium (45 ~ 55%) and high (> 80%) 

sparsity levels in each cell type (Supplementary Table 3). For each gene, we first fitted a null Poisson 

mixed model using the real read counts for the gene from cells across individuals in Step 1 and then 

permuted the individual IDs to conduct the single-variant association tests on 405,663 genetic variants on 

chromosome 1 with MAF >  5% in Step 2a. In this way, we disrupted real association signals while retaining 

the per-individual read counts distribution across cells for the gene expression. We repeated the permutation 

250 times and estimated the empirical type I error rates as the proportion of p-values smaller than the given 

α level based on 1.01x109 tests for each gene. Empirical type I error rates were estimated with 50 genes 

combined on each sparsity level for each cell type at 7 different α levels from 5x10-8 to 0.05 

(Supplementary Table 4). Together with plots of the genomic control lambda values corresponding to the 

1st and 50th percentile (median) in Supplementary Figure 3A and the quantile-quantile (Q-Q) plots for 9 

random genes in Supplementary Figure 3B, our results suggested that SAIGE-QTL has well-controlled 

type I error rates for the single-variant association tests, with slightly deflated type I error rates when the 

sparsity level is medium to high and in less abundant cell types (Plasma and immature and naïve B cells).  

 

To evaluate type I error rates of the ACAT-V tests in Step 3 that are used in SAIGE-QTL to obtain a p-

value for each gene at the cis-region, we then performed the ACAT-V test to combine single-variant p-

values for variants with MAF >  5% in each gene region (a window of +/- 1M base pairs around the gene 

body) on chromosome 1 with permuted individual IDs. We repeated the tests for 250 times with permutation 

of individual IDs in Step 2a for three randomly selected genes from each sparsity group and cell type. As 

shown in Supplementary Table 5 and Supplementary Figure 4, similar to single-variant tests, type I error 

rates were well controlled for the gene-level ACAT-V tests with a slight deflation.  

 

We also performed the set-based tests for rare genetic variants with MAF ≤ 5% in each gene region on 

chromosome 1 in Step 2b.  The tests were repeated for 250 times with permuted individual IDs and we 

observed well calibrated set-based tests in SAIGE-QTL for genes from different sparsity groups across 

three cell types as presented in Supplementary Figure 5.  

 

 

 

Association analysis of OneK1K scRNA-seq and imputed genotypes 

 

To demonstrate the application of SAIGE-QTL to real-world scRNA-seq cohorts, we applied it to data from 

the OneK1K project7, which includes scRNA-seq from over 1.2 million immune cells of 982 unique 

individuals, categorised into 14 distinct (sub)cell types, with matched genotypes. We mapped cis eQTLs 

(considering all SNPs of minor allele frequency >5% and within a +/- 1Mb window around the gene body) 

for all genes expressed in at least 10% of the donors (in the relevant cell type) (Supplementary Table 1). 
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We used the Poisson mixed model from SAIGE-QTL, modelling single-cell counts directly, as opposed to 

aggregating counts at the donor level using a “pseudobulk” approach, as conducted in the original paper7 

(using Matrix eQTL40; Methods). We used the same covariates as in the original model, correcting for sex, 

age, 6 genotype PCs and 2 cell type-specific expression PEER26 factors from the original publication. We 

observed well-calibrated p-values in SAIGE-QTL, with genomic control lambda values around one in the 

three representative cell types (Figure 1A). Across all 14 cell types, SAIGE-QTL identified 17,218 eGenes 

across all cell types (FDR<5%, as described below and in Methods), representing 5,894 unique genes of 

which 2,447 (42%) were specific to one cell type only (Supplementary Figure 6). 

 

SAIGE-QTL identified more eGenes than the pseudobulk approach 

 

We compared SAIGE-QTL with the widely used tool TensorQTL38, which we ran using (mean) pseudobulk 

counts and the same covariates and window size as above across all 14 cell types (Methods). We obtained 

good concordance of the nominal p-values between the two methods (Pearson’s correlation ranges from 0.9 

to 0.97, Supplementary Figure 7A). We also observed that TensorQTL provides more significant nominal 

p-values than SAIGE-QTL for eQTLs with extremely significant p-values, i.e., p-values < 10-100 , while 

SAIGE-QTL tends to have more significant p-values than TensorQTL for those less significant eQTL 

signals as shown in Supplementary Figure 7B.  Among genes with similar sparsity levels across cells, 

those with a higher sparsity level after pseudobulking tend to have more significant nominal association p-

values in TensorQTL than SAIGE-QTL (Supplementary Figure 8). Effect size estimates were concordant 

too, though to a lesser extent, which can be explained by the different underlying models with different 

units (Gaussian for pseudobulk vs Poisson model for read counts from individual cells; Pearson’s 

correlation ranges from 0.35 to 0.71, Supplementary Figure 9).  

 

To obtain gene-level p-values for TensorQTL, we used the Beta approximation method described in the 

FastQTL paper37, using 10,000 permutations as recommended by the authors (Methods). For SAIGE-QTL, 

we used the ACAT-V test to combine correlated p-values using the Cauchy  combination28,41, as described 

above. In both cases, we further corrected for multiple testing across all genes tested (for each cell type) 

using the q-value method42, reporting results at FDR<5%. For both sets of results, we confirmed a clear 

link between the number of cells available for each cell type and the number of eQTLs detected (Pearson’s 

correlation = 0.96, and 0.97 for SAIGE-QTL and TensorQTL, respectively; Figure 1B), with SAIGE-QTL 

detecting 48.8% more eGenes (i.e., genes with at least one eQTL) compared to TensorQTL (17,218 vs 

11,569 eGenes across all 14 cell types) (Supplementary Table 6A). Improved power of SAIGE-QTL 

compared to TensorQTL was confirmed by comparing the chi-square statistics of the most significant 

genetic variants with nominal p-value < 5x10-8 in eGenes across the two methods, which ranged between 

3.8% and 19.2% higher for SAIGE-QTL across all 14 cell types (Figure 1C). If the two methods identified 

different top variants, the ones identified by TensorQTL were included in the comparison. As the ACAT-

V test can provide slightly more significant p-values than Beta permutation (Supplementary Figure 2A), 

we also applied ACAT-V on nominal p-values from TensorQTL (Supplementary Figure 2B). We 

observed that TensorQTL with ACAT-V detected 10.4% more eGenes than with Beta permutation (12,777 

vs 11,569) (Supplementary Table 6B). Other analyses in this paper used results from TensorQTL with 

Beta permutation, which the original TensorQTL program used.  
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To further evaluate the power of our method, we assessed the effect of the numbers of cells available for 

association. Considering the most abundant OneK1K cell type, CD4NC, we considered different levels of 

down-sampling, considering subsets of 1, 5, 10, 20 and 50% of all cells (keeping the cell-to-donor ratio 

intact; Methods). In all cases, we ran SAIGE-QTL after selecting all genes expressed in at least 1% of all 

cells considered (post-subsetting). Additionally, we generated pseudobulk counts (by considering the mean 

expression level across cells for each individual, gene and cell type) for each of the 5 cell subsets and also 

ran TensorQTL for the same genes. As expected, the number of eGenes detected decreased as the number 

of cells considered decreased, and SAIGE-QTL consistently identified more significant eGenes than 

TensorQTL (75% more on average, Figure 1D). 

 

Reassuringly, we retained a large overlap between the sets of eGenes (at FDR<5%) identified across the 

two methods, with on average 94% of eGenes identified by TensorQTL found by SAIGE-QTL also (across 

14 cell types, range: 87-96%, Figure 2A). As an example of an eQTL found using SAIGE-QTL and missed 

by TensorQTL, we identified an eQTL (rs1375493) for the inflammatory bowel disease (IBD)-associated 

ITGA4 locus, which is a well known regulatory signal, and is able to recapitulate the monocyte-specificity 

of the eQTL, which has been previously shown4 (Figure 2B and Supplementary Figure 10). Similar to 

what is done in the original OneK1K study, we next performed five rounds of conditional association 

analysis (conditioning on previously significant variants to identify additional independent signals), which 

identified 4,647 additional eQTLs across the 14 cell types in OneK1K (for 2,435 genes, Supplementary 

Figure 11). 

 

SAIGE-QTL identified additional immune disease-associated loci mediated by gene 

expression  

We then use a Mendelian randomization approach to identify loci contributing to the autoimmune disease 

through gene expression changes in any of the 14 cell types. The SMR tool (Methods) was used to conduct 

the analysis using eQTL results by the SAIGE-QTL and the original Matrix eQTL40 and GWAS summary 

statistics for four autoimmune diseases, Crohn’s disease (CD)43, inflammatory bowel disease (IBD)43, 

rheumatoid arthritis (RA)44, and systemic lupus erythematosus (SLE)45. We found that the SMR p-values 

are very concordant when using results from the two methods, with results from SAIGE-QTL identifying 

more SMR associations compared to Matrix QTL across all four diseases (n=58 vs n=55 for CD, 152 vs 

123 for IBD, 299 vs 249 for RA, and 9 vs 4 for SLE. Supplementary Table 7), with on average 90% gene-

cell type combinations using eQTL results from Matrix eQTL also identified when using eQTL results from 

SAIGE-QTL (Figure 2C). In addition, using results from SAIGE-QTL, more unique loci were detected to 

contribute to the disease of interest through gene expression change in one or more cell types  (n=17 vs 

n=14 for CD, 34 vs 28 for IBD, 77 vs 63 for RA, and 5 vs 4 for SLE, Supplementary Figure 12). Notably, 

several loci identified using eQTL results from SAIGE-QTL but missed by using results from Matrix eQTL 

act through changes in expression of genes that are known to be implicated in the autoimmune diseases. 

For example, the locus at 9q21 was shown to affect the risk of CD and IBD through changes in CARD9 

expression in monocytes (MonoC), where previous studies suggested the dysfunction of CARD9 may 

contribute to the pathogenesis of IBD46,47,48. The locus 20q13 was identified to causally contribute to RA 

through the gene expression change of CD40 in plasma and the CD40 pathway has been long implicated in 

different studies for RA49–51, which is a promising treatment target52–54.  
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SAIGE-QTL enables genome-wide scan for identifying Trans-eQTLs  

 

Scalable and fast, SAIGE-QTL enables genome-wide scans of genetic effects on single-cell expression, 

effectively allowing testing for trans eQTLs (where the genetic variant tested is far away or even on a 

different chromosome compared to the target gene). We mapped trans eQTLs for the three representative 

cell types selected above (CD4NC, BIN, Plasma). In total, we identify 413 trans eQTLs for 390 genes across 

the three cell types (at p<5e-8, MAF ≥10%, Figure 3A, results for p<5e-6 reported in Methods and 

Supplementary Figure 13). As an example, rs3924376 on chromosome 16 is a cis eQTL in CD4NC for 

SPNS1, a gene involved in mitochondrial homeostasis55, and a trans eQTL for MRPL32 a chromosome 7 

gene encoding Mitochondrial ribosomal protein L32 (Figure 3B). 

 

Rare-variant eQTL signals identified by SAIGE-QTL  

 
Finally, we tested for the effects of rare variants on single-cell expression across all 14 cell types. In total, 

6,779,365 rare SNPs (MAF ≤ 5%) could be called from the SNP array data from the OneK1K paper7. For 

each gene expressed in at least 10% of donors for a given cell type, we considered all rare variants within 

a cis window up and downstream of the gene body (+/-1Mb). We performed set-based tests (considering 

all variants in the window at once), including Burden, SKAT and ACAT-V. Overall, we identified 5,541 

rare (MAF≤5%) variant eGenes (RV-eGenes) across all 14 cell types (2,317 unique genes, Figure 4A, 

Supplementary Figure 14). Of these, 483 (21%) were independent of common eQTL signals from the 

same genes, which remained significant (FDR < 0.05)  after conditioning on all independent significant 

common eQTLs (Supplementary Figure 15). We also ran the set-based tests using weights based on the 

distance from the transcription start site (“dTSS”, Methods), finding on average 68% (range: 50-89% 

across cell types) more significant effect when compared to using equal weights, and 77% (50-112%) when 

compared to the traditional weighting of variants following a Beta(1,25) distribution (Figure 4B). 

Compared to the common variants, we observe about a third of the number of eGenes identified (mean=0.33, 

min=0.26, max=0.49) across different cell types, with a very strong correlation, due to the number of cells 

available for each cell type (Figure 4C). 

DISCUSSION 

 

Single-cell eQTL mapping has recently become an important tool for identifying the molecular 

underpinnings of genetic variation at a cellular level. However, current methods still present several 

limitations. The most commonly used methods, such as Matrix eQTL40, TensorQTL38, and QTLtools56 

implement linear regressions, which cannot account for any structure between the samples.  Therefore, they 

are limited to using pseudobulk approaches in unrelated samples, where single-cell counts are aggregated 

to a single value for each individual, gene, cell type57. This is typically done considering mean expression 

levels, which fail to model cell-to-cell variability and to exploit shared signals between cells from the same 

individual. Newer methods that directly model single-cell expression profiles exist but are limited in speed 
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and scale and are currently only used as downstream interpretation tools rather than for discovering new 

genetic signals15,16. 

 

Here, we introduced SAIGE-QTL, an efficient open-source tool implementing a Poisson mixed model. This 

tool overcomes these limitations by modelling single-cell profiles directly as discrete counts, accounting 

for both individual effects and relatedness between individuals, and is scalable and efficient, which allows 

fast genome-wide scans. Additionally, compared to existing methods, SAIGE-QTL implements not only 

single-variant tests but also set-based tests, which are better powered than single-variant tests for low-

frequency variants. 

 

We demonstrated that SAIGE-QTL is well calibrated for both the single-variant test for common variants 

and the set-based tests for rare and less frequent variants. As evaluated using the OneK1K dataset7, we have 

shown that eQTL mapping at the cellular level using SAIGE-QTL identified 48.4% more eGenes than the 

previous analyses using the pseudobulk approach. For about a third of the number of eGenes identified 

through common variant tests, we identified rare (MAF≤5%) variant eGenes through set-based tests, of 

which 21% were independent of common eQTL signals from the same genes. In addition, we identified 

413 trans eQTLs for 390 genes in three representative cell types (CD4NC, BIN, Plasma). 

    

SAIGE-QTL has existing limitations. First, the Poisson model is used to model the discrete read counts. 

While it has been recommended in the literature to use for scRNA-seq read counts, it is not necessarily the 

best model for all genes. Negative Binomial regression can be more appropriate to model read counts of 

genes with over-dispersion in scRNA-seq data. Second, as expected, the Poisson mixed model used for 

modelling single-cell read counts by SAIGE-QTL does not always have higher power for all genes than the 

pseudobulk approach in TensorQTL. Further investigation needs to be conducted to evaluate why some 

genes have much more significant p-values in pseudobulk analyses and vice versa. For example, the sparsity 

levels before and after pseudobulking may play a role as shown in Supplementary Figure 8. Third, 

SAIGE-QTL does not test for interactions of genotypes and other cell contexts, such as cell states, which 

has been previously reported to be critical for identifying dynamic eQTLs15. Finally, several approaches 

used by SAIGE-QTL to enhance computational efficiency are not directly applicable to random slope 

mixed models. These models can accommodate cells with diverse correlation structures instead of treating 

cells as repeated measurements. For example, read counts from cells may exhibit spatial correlation when 

leveraging spatial transcriptomics data. These limitations will be addressed next using the SAIGE-QTL 

framework. 

 

METHODS 

 
SAIGE-QTL builds on the previously proposed SAIGE22 and SAIGE-GENE23,24 tools, with some key 

additions: i) the phenotype is modelled to follow a Poisson distribution, which is better suited for the single-

cell expression count data; ii) random effect accounting for multiple cells per individual (in addition to the 

random effect accounting for relatedness between individuals); iii) improved computational efficiency for 

fitting Poisson mixed models with a random intercept; iv) ACAT-V28 test in addition to the Burden and 
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SKAT for set-based tests for less frequent/rare genetic variants with multiple user-specified weights; v) the 

Cauchy method (ACAT-O28) for gene-level p-value combination to identify cis-eGenes; vi) cis window file 

as an input file to the open-access software to facilitate cis testing, and multi-gene implementation for 

genome-wide (trans) tests. The key steps are summarised below and details of our method can be found in 

the Supplementary Note. 

 

SAIGE-QTL 

 

In a scRNA-seq study that sequenced 𝑁 cells from 𝑛 individuals, a Poisson generalised linear mixed model 

is used to model the read counts from the  𝑗𝑡ℎ  cell of the 𝑖𝑡ℎ  individual 𝑦𝑖𝑗  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) . Let the 

 𝑋𝑐𝑖𝑗   denote 𝑝𝑐 cell-level covariates, such as cell states and cell-level expression PEER factors, including 

the intercept for the  𝑗𝑡ℎ cell of the 𝑖𝑡ℎ individual, and  𝑋𝑑𝑖   denote 𝑝𝑑 individual (donor)-level covariates, 

such as age, gender, genotype PCs, for the 𝑖𝑡ℎ individual. Let  𝐺𝑖  =  0,1,2 represent minor allele counts for 

the genetic variant of interest. The Poisson mixed model can be written as 𝜇
𝑖𝑗

 = 𝑒𝑥𝑝(𝜂𝑖𝑗 ) and 

𝜂
𝑖𝑗 

=𝑋𝑑𝑖𝛼𝑑  +  𝑋𝑐𝑖𝑗𝛼𝑐  + 𝐺𝑖𝛽  + 𝑏𝑖   , where 𝛽, 𝛼𝑑, and 𝛼𝑐  are the regression coefficients of the genotype 

𝐺𝑖 , and the covariates 𝑋𝑑𝑖  and 𝑋𝑐𝑖𝑗 , respectively. Formulating the model using matrices and vectors, let 𝒁 

denote the 𝑁 ×  𝑛 design matrix with 1s and 0s to indicate which individual each cell belongs to. The model 

can also be written as 𝜼 =  𝑿𝒄 𝜶𝒄  +  𝒁𝑿𝒅 𝜶𝒅   +  𝒁𝑮𝜷 +  𝒁𝒃𝒅 , where 𝜂 is the 𝑁 ×  1 vector of 𝜂
𝑖𝑗 

, 𝑿𝒄  

is the 𝑁 ×  (𝑝𝑐  +  1) matrix containing the cell-level covariates including the intercept, 𝑿𝒅  is the 𝑛 × 𝑝𝑑 

matrix containing individual (donor)-level covariates, and the random effect 𝒃 =  𝒁𝒃𝒅, where 𝒃𝒅 is the 

𝑛 ×  1 vector of 𝑏𝑖 and is assumed to follow multivariate Normal distribution 𝑏𝑑 ~ N(0, ∑ 𝜏𝑘 𝜳𝒌 
𝐾
𝑘=1 ) with 

𝜳𝒌  being the known 𝐾 variance-covariance matrices, which can include the identity matrix to account for 

intra-individual variance of read counts across multiple cells and the genetic relationship matrix to account 

for sample relatedness, if any. We test the null hypothesis of no genetic association 𝑯𝟎 : 𝜷 =  𝟎  vs 

𝑯𝟏 : 𝜷 ≠  𝟎. 

 

Estimating the variance component and other model parameters (Step 1) 

 

Similar to SAIGE22 and GMMAT31, in Step 1, SAIGE-QTL fit the null model 𝜼 =  𝑿𝒄 𝜶𝒄  +  𝒁𝑿𝒅 𝜶𝒅  +

 𝒁𝒃𝒅 . The model parameters are estimated iteratively using the PQL29 method and the AI-REML 

algorithm30. At iteration 𝒒, let   (�̂�𝑘
(𝑞) , �̂�𝒅

(𝒒), �̂�𝒄
(𝒒) , �̂�𝒅

(𝒒)
),  be estimated as  (�̂�𝑘, �̂�𝒅, �̂�𝒄, �̂�𝒅), let �̂�𝑖𝑗

(𝑞)
 be 

the estimated mean of 𝑦𝑖𝑗  , �̂�(𝒒)  =  𝑑𝑖𝑎𝑔(�̂�𝑖𝑗
(𝑞)), and let �̂�

(𝒒)
 =  {�̂�(𝒒)}

 −𝟏
  + ∑ �̂�𝑘

(𝑞)𝒁𝜳𝒌 𝒁
𝑻 𝑲

𝒌=𝟏  be 

an 𝑁 ×  𝑁  matrix of the variance of working vector �̃�  = 𝑿𝒄 �̂�𝒄
(𝒒)

  +  𝒁𝑿𝒅 �̂�𝒅
(𝒒)

+  𝒁�̂�𝒅
(𝒒)

 + (𝒚 −

 𝝁
(𝒒)

)/ �̂�
(𝒒)

. The PCG32 approach is used to  calculate the product of {�̂�
(𝒒)

}
−1

 and an 𝑁 × 1 vector at each 

iteration of model fitting, which is much more cost efficient than obtaining {�̂�
(𝒒)

}
−1

through matrix 

decomposition. Note that using the PCG approach, the product of �̂�
(𝒒)

and an 𝑁 × 1 vector needs to be 

calculated, which can be done with consecutive multiplications of the matrices 𝒁𝑻 ,  𝜳𝒌 , Z and the 𝑁 × 1 

vector and does not require pre-computing and storing the 𝑁 × 𝑁  matrix  𝒁𝜳𝒌 𝒁
𝑻 .  This reduces the 

computation time to calculate the product from 𝑂(𝑁2) to 𝑂(𝑛𝑁) and is particularly efficient as 𝑛 ≪  𝑁 

e.g., when millions of cells are generated from hundreds or thousands donors in the study.  
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Estimating the variance ratios 
  
A score test statistics for 𝐻0 : 𝛽 =  0 is 𝑇 =  𝑮𝑻 𝒁𝑻 (𝒀 − �̂�), where 𝐺 is the 𝑛 ×  1 genotype vector, 𝑌 is 

the 𝑁 ×  1 phenotype vector with read counts from cells, �̂� is the 𝑁 ×  1 vector with estimated mean of 𝑌 

under 𝐻0 . The variance of 𝑇  is 𝑉𝑎𝑟𝐻0
(𝑇)  =  �̃�𝑻�̂� �̃�, where �̂� = �̂�−𝟏 − �̂�−𝟏 𝑿(𝑿𝑻 �̂�−𝟏 𝑿)−𝟏 𝑿𝑻 �̂�−𝟏  ,   

�̃�  =  𝒁𝑮 −  𝑿(𝑿𝑻�̂�𝑿)−𝟏 𝑿𝑻�̂�𝒁𝑮  is the covariate-adjusted genotype vector, 𝑋 is the 𝑁 × (𝑝𝑐 + 1 +
 𝑝𝑑) matrix with all covariates including the intercept, and  𝑿 =  [𝑿𝒄   𝒁𝑿𝒅 ]. For each genetic variant, 

given �̂�, the calculation of 𝑉𝑎𝑟𝐻0
(𝑇) requires 𝑂(𝑁2) computation. Similar to SAIGE22,  BOLT-LMM33 

and GRAMMAR-Gamma34, let 𝑉𝑎𝑟𝐻0
(𝑇) ∗ =   �̃�𝑻�̂� �̃� , which does not incorporate random effects, and it 

has been shown previously that 𝑉𝑎𝑟𝐻0
(𝑇)/𝑉𝑎𝑟𝐻0

(𝑇)∗ is approximately constant for all genetic variants 

with MAC ≥  20 22,33,34,58.  

 

Here we estimate two variance ratios. First, similar to what has been used in the GWAS method fastGWA-

GLMM59, we use the unadjusted (but mean-centred) genotype data, 𝑮𝒄  =  𝒁(𝑮 −
𝟏

𝒏
(𝟏𝑻𝑮)𝟏) , where 𝟏 is 

a column vector of ones of size 𝑛 × 1, to calculate 𝑉𝑎𝑟𝐻0
(𝑇𝑐) ∗ =   𝐺𝑐

𝑇�̂� 𝐺𝑐 and then estimate the variance 

ratio �̂�𝑐  = 𝑉𝑎𝑟𝐻0
(𝑇)/𝑉𝑎𝑟𝐻0

(𝑇𝑐)∗ . Second, to approximate the 𝑉𝑎𝑟𝐻0
(𝑇) more accurately, we incorporate 

the random effects via �̂�
−1 

 into the denominator to estimate the variance ratio �̂� = 𝑉𝑎𝑟𝐻0
(𝑇)/𝑉𝑎𝑟𝐻0

(𝑇)∗, 

where 𝑉𝑎𝑟𝐻0
(𝑇)∗ = �̃�𝒅

𝑻
 �̂�−𝟏 �̃�𝒅 . �̂�  has lower variation than �̂�𝑐  as previously demonstrated in SAIGE-

GENE23. To further improve the computational efficiency, we use the donor-level covariates and intercept-

adjusted genotype vector �̃�𝒅  =  𝒁𝑮 −  𝒁𝑿𝒅𝑰(𝑿𝒅𝑰
𝑻𝒁𝑻�̂�𝒁𝑿𝒅𝑰)−𝟏 𝑿𝒅𝑰

𝑻𝒁𝑻�̂�𝒁𝑮  to compute 𝑉𝑎𝑟𝐻0
(𝑇)∗ 

and then estimate �̂�. With pre-computed 𝒁𝑻�̂�−𝟏 𝒁 and 𝒁𝑻�̂�𝒁, the computation cost of 𝑉𝑎𝑟(𝑇)∗ is 𝑂((1 +
 𝑝𝑑)𝑛2) and 𝑉𝑎𝑟(𝑇𝑐)∗ is 𝑂(𝑛), respectively, instead of 𝑂(𝑁).  

 

We have shown that �̂� and �̂�𝑐 are approximately constant for all genetic variants (Supplementary Note).  

To estimate �̂� and �̂�𝑐, we calculate the variance ratios starting with 30 randomly selected genetic variants at 

an increment of 10 genetic variants until the coefficient of variation (CV) is smaller than 0.001 and calculate 

the mean of the variance ratios as �̂� and �̂�𝑐, respectively.  

 

 

Score test for single variants and set-based tests for rare variants (Step 2) 
 

Using the estimated variance ratio �̂�𝑐 , the variance-adjusted test statistic can be calculated as 𝑇𝑎𝑑𝑗  =

 
𝑮𝑻𝒁𝑻 (𝒀−�̂�)

�̂�𝑐𝑮𝒄
𝑻�̂� 𝑮𝒄

 

, under the null hypothesis has mean zero and variance unity. For variants with p-value < 0.05, 

we use �̂� to re-calculate 𝑇𝑎𝑑𝑗  = 
𝑮𝑻𝒁𝑻 (𝒀−�̂�)

 �̂��̃�𝒅
𝑻

 �̂�−𝟏 �̃�𝒅

. This strategy allows SAIGE-QTL to reduce the computation 

cost to calculate 𝑇𝑎𝑑𝑗  from 𝑂((1 +  𝑝𝑑)𝑛2)  to 𝑂(𝑛) for ~95% of genetic markers. In addition, it has been 

previously observed that the asymptotic normality assumption of the score test statistic 𝑇𝑎𝑑𝑗   leads to severe 

Type I error inflation for low-frequency and rare variants in the context of logistic mixed models with case-

control ratios are unbalanced 22–24 and the modified Poisson mixed model when the event rate is low58.  

SPA25 has been used to successfully approximate  𝑇𝑎𝑑𝑗  for better controlled type I error rates. In SAIGE-

QTL, we also implement and apply SPA to obtain better approximation of the distribution of 𝑇𝑎𝑑𝑗  to obtain 

more accurate p-values (Supplementary Note).  
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For eQTL analysis of rare variations due to the lack of power of single-variant tests, SAIGE-QTL conducts 

the set-based tests, including the Burden, SKAT27, and ACAT-V28 tests, Test statistics of the Burden and 

SKAT63 tests can be constructed based on score statistics from the marginal model for individual variants 

in the testing set and test statistics of the ACAT-V28 test can be constructed using p-values from the marginal 

model for individual variants. Following what has been proposed in SAIGE-GENE+24, to reduce the data 

sparsity due to ultra-rare variants, before testing each variant set, ultra-rare variants with MAC ≤ 20 are 

collapsed in SAIGE-QTL to a pseudo-variant and then the pseudo-variant is tested together with all other 

variants with MAC > 20. In addition, multiple functional annotations and maximum minor allele frequency 

cutoffs are allowed to be incorporated into the set-based tests to improve power and p-values are combined 

using the minimum P value or Cauchy combination method28.  

 

Calculating gene-level p-values for identifying cis-eGenes (Step 3) 

 
In Step 3,  the gene-level p-value for each gene is calculated by combining the variant-level p-values of 

common variants (MAF>5% is used in the OneK1K study) using the ACAT-V28 test based on the Cauchy 

combination as recently suggested in the linear mixed model method for eQTL mapping, APEX36. We 

assume that there are 𝑀  genetic variants in the cis-region, let  𝑇𝐴𝐶𝐴𝑇  =  ∑ 𝑣𝑚 
𝑀
𝑚=1 𝑡𝑎𝑛{(0.5 − 𝑝𝑚 )𝜋} ,  

where 𝑝𝑚 is the p-value for the 𝑚𝑡ℎ  variant, 𝑣𝑚 is the weight for the 𝑚𝑡ℎ  variant and let 𝑣 =

 ∑ 𝑣𝑚 
𝑀
𝑚=1 . The p-value of 𝐴𝐶𝐴𝑇 is approximated by 𝑝𝐴𝐶𝐴𝑇 ≈  1/2 − {𝑎𝑟𝑐𝑡𝑎𝑛 (𝑇𝐴𝐶𝐴𝑇  /𝑣)}/𝜋.  It is a 

computationally efficient approach to combine p-values, which is robust to the correlation between 

individual p-values28. It  provides highly concordant gene-level p-values compared to those obtained using 

the Beta approximation method37,38 (Supplementary Figure 2), but is much faster as it does not require 

any permutations to be performed. It also allows for incorporating variant-level weights, e.g., distance to 

transcription start site, to improve the power of detect cis-eGenes.  

OneK1K analysis 

 

We consider the OneK1K dataset as it is available from the original publication7. This includes genotypes 

(from SNP array data) and scRNA-seq from 14 different immune cell types for 1,267,758 peripheral blood 

mononuclear cells (PBMCs) and 982 individuals of European ancestry from the Tasmanian Ophthalmic 

Biobank in Tasmania, Australia. For eQTL mapping with both SAIGE-QTL and TensorQTL, we 

considered the same covariates used for eQTL mapping in the original paper: sex and age of the individuals, 

six genotype PCs and 2 PEER factors calculated from gene expression from each cell type separately. Since 

the original study used pseudo-bulk aggregate counts, the PEER factors are defined per individual, not cell, 

so we kept those values here (i.e., all cells for a given individual were assigned the same PEER factor value). 

As used in the original publication7,  the SCTransform v1 function in the Seurat R package60 was used to 

normalise read counts by total reads and account for batch and mitochondrial gene percentage, while still 

returning Poisson counts. The corrected read counts were used as input for Step 1 in SAIGE-QTL to fit null 

Poisson mixed models for each gene in different cell types.  

 

For each gene in each cell type, we calculated the gene-level p-value in Step 3 based on all genetic variants 

within a 1Mb window around the gene body with MAF>5%. No weights are incorporated in the Cauchy 

combinations for a fair comparison with the results using TensorQTL.  
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Cell type name abbreviations: CD4NC: CD4+ naïve and central memory T cells, CD4ET: CD4+ T cells with 

an effector memory or central memory phenotype, CD4SOX4: CD4+ T cells expressing SOX4, CD8ET: CD8+ 

T cells with an effector memory phenotype, CD8NC: CD8+ naïve and central memory T cells,  CD8S100B: 

CD8+ T cells with expression of S100B, NK: natural killer cells, NKR: natural killer recruiting cells, Plasma: 

Plasma cells, BMem: memory B cells, BIN: immature and naïve B cells, MonoC: classical monocytes, MonoNC: 

nonclassical monocytes, DC: dendritic cells. 

 

Data simulation for type I error evaluation  

 
We first selected three representative cell types (CD4NC, BIN and Plasma) with high, medium, and low 

abundance (Supplementary Table 1). Next, we randomly selected 50 genes with low (< 20%), medium 

(45 ~ 55%) and high (> 80%) sparsity levels, defined as the proportion of zero read counts,  in each cell 

type separately (Supplementary Table 3). For each gene, we fit a null Poisson mixed model on the single-

cell counts for the selected genes using the same covariates as described in the “OneK1K analysis” 

subsection above. Once the model is fitted, before running Step 2 for association tests, we permuted 

individual IDs in the genotype file to disrupt the possible association between genotype and gene expression. 

With each permutation, single-variant association tests on 405,663 genetic variants on chromosome 1 with 

MAF>5% were performed (Step 2a). Permutation was repeated for 250 times to obtain a sufficient number 

of tests for estimating empirical type I error rates at different α levels (Supplementary Table 4). ACAT-

V tests were then performed for each gene region on chromosome 1 to estimate the empirical type I error 

rates at different α levels for Step 3 as shown in Supplementary Table 5.  

 

The set-based tests (Step 2b) were performed for rare/less frequent genetic variants with MAF ≤ 5% in 

each gene region on chromosome 1 for three randomly selected genes from each sparsity group in three cell 

types. Two sets of weights were used, 1) equal weights, where each variant is assigned the same weight, 2) 

weights following a Beta(1,25) distribution, as commonly used in rare variant association tests. The tests 

were repeated for 10 times with permuted individual IDs and the Q-Q plots shown in Supplementary 

Figure 5.  

 

CD4NC cell subsetting 
 

For the subsetting analysis (Figure 1D), we considered the most abundant cell type from OneK1K, CD4NC 

(CD4 naive and central memory T cells). For each percentage level of subsetting (1, 5, 10, 20 and 50%), 

we subsetted the number of total cells to that percentage, while retaining the cell to donor ratio for each 

individual included. Next, we re-mapped cis eQTLs using SAIGE-QTL for each set, maintaining all other 

settings (covariates included, cis window size). Only genes expressed in at least 1% of the cells were tested, 

so those numbers decreased for smaller sets. Pseudobulking for TensorQTL was performed post subsetting, 

by considering the mean expression for each gene, cell type and individual. These values were then logged 

prior to eQTL mapping, to mirror the approach used in the OneK1K paper7. 

 

Mendelian Randomization analysis 
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To identify genes whose expression levels are associated with human complex disease risk, we utilised the 

Summary-data–based Mendelian randomization (SMR)61 framework and used the top associated cis-eQTL 

of the gene as an instrumental variable (IV). We input the eQTL summary statistics of OneK1K cohort 

from SAIGE-QTL and four GWAS summary statistics of autoimmune diseases: Crohn’s disease (CD)43, 

inflammatory bowel disease (IBD)43, rheumatoid arthritis (RA)44, and systemic lupus erythematosus 

(SLE)45. We also ran the SMR tool using the eQTL summary obtained from Matrix eQTL40 for the same 

14 cell types as a comparison. A HEIDI (HEterogeneity In Dependent Instruments) test implemented in the 

SMR framework was further performed to distinguish the pleiotropy/causality from linkage. The genes that 

are not rejected by the HEIDI test indicate that the gene expression levels are associated with the disease 

risk due to pleiotropy/causality at one shared genetic variant. 

  

For each cell type, we calculated the q-values of each SNP-gene pair (the SNPs within a 1Mb window 

around the gene body) and only tested the genes whose top associated cis-eQTL pass the threshold of 

FDR<5%, to match what we used throughout the study (the thresholds used for each method and cell type 

are provided as Supplementary Table 8). Specifically, for each cell type we considered the weakest eGene 

still under the threshold of FDR<5%. Then, we considered the smallest p-value for that gene, across the cis 

SNPs tested (note that this necessarily results in the number of genes tested being different between SAIGE-

QTL and Matrix eQTL). The significance of the SMR test was determined at p-value from SMR < 0.05 / 

M, where M is the total number of genes tested in each cell type. 

 

 

Trans eQTL mapping 

 

For each of the three representative cell types (CD4NC, BIN and Plasma), considering the large number of tests 

and limited power for detecting trans-eQTLs with low frequency, we conducted genome-wide single-

variant tests for all common variants with MAF >10%. We define trans signals as those outside of a 2Mb 

window around the gene for same-chromosome, as well as all inter-chromosome associations. Additionally, 

we  exclude the MHC region on chromosome 6. 

 

We report results at two different significance levels, 𝑝 < 5 × 10−6 (Supplementary Figure 13) and 𝑝 <

5 × 10−8 (Figure 3).  At 𝑝 < 5 × 10−8, we identified 223 trans eQTLs for CD4NC, 124 for BIN, 690 for 

Plasma (211, 120 and 69 unique genes, respectively), for a total of 413 trans eQTLs for 390 unique genes 

across all 3 cell types. At 𝑝 < 5 × 10−6, we identified 47,210 trans eQTLs for CD4NC, 33,936 for BIN, 13,677 

for Plasma (12,693, 10,477 and 5,460 unique genes, respectively), for a total of 94,795 trans eQTLs for 

13,159 unique genes across all 3 cell types. 

 

Rare variant testing  

 

When testing for the effects of rare variation (MAF≤5%) on single-cell gene expression, we used the 

Burden, SKAT and ACAT-V tests, and used the Cauchy approach to combine p-values. We also considered 

three sets of weights, 1) equal weights, where each variant is assigned the same weight, 2) weights following 

a Beta(1,25) distribution, as commonly used in rare variant association tests, and 3) weights based on a 

variant’s distance from the gene’s transcription start site (TSS). For the latter, we followed the procedure 
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outlined by the APEX authors36, whereby “each variant received a weight proportional to e-γ|d| where d is 

the number of base pairs between the variant and TSS and γ = 1e-5. Additionally, in order to determine the 

independence of these signals from common variants’ effects we performed conditional analysis, 

conditioning on all common variant eQTL signals at FDR<5%, across all five rounds of conditional analysis 

(Supplementary Figure 15). 

Code availability 

 

SAIGE-QTL is implemented as an open-source R method available at: 

https://github.com/weizhou0/qtl 

 

Code to reproduce all analyses and figures included here can be found at: 

https://github.com/annacuomo/SAIGE_QTL_analyses  

 

Data availability 

 

The OneK1K single-cell RNA-seq and genotype data were available via Gene Expression Omnibus 

(GSE196830).  

 

Summary statistics for the eQTLs in this study can be found on Zenodo: 

https://zenodo.org/records/10811106.  

 

GWAS summary stats for the MR analysis were downloaded from: i) CD and IBD GWAS were 

downloaded from IBD Genetics Consortium website (www.ibdgenetics.org) from Liu et al. Nature Genetics. 

2015; ii) RA GWAS summary was downloaded from GWAS Catalog (study ID: GCST90132223) in 

Ishigaki et al. Nature Genetics, 2022 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90132001-

GCST90133000/GCST90132223/GCST90132223_buildGRCh37.tsv.gz); iii) SLE GWAS summary was 

downloaded from GWAS Catalog (study ID: GCST90018917) in Sakaue et al. Nature Genetics, 2021 

(https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90018001-

GCST90019000/GCST90018917/GCST90018917_buildGRCh37.tsv.gz). 
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Fig. 1: Performance evaluation of SAIGE-QTL
A. Calibration (genomic control lambda values) across three representative cell 

types.
B. Scatter plot of power (number of eGenes identified at FDR<5%, y axis) and 

number of cells (x axis) between SAIGE-QTL (solid dots) and TensorQTL 
(crosses) across 14 cell types.

C. For each of the 14 cell types, boxplots of chi squared statistics for the top 
eQTL in SAIGE-QTL (diagonal lines) and TensorQTL (dots). When the top 
variant was different between methods, the TensorQTL top variant was 
selected. y axis is truncated at the maximum value 200. 

D. Scatter plot of power (number of eGenes identified at FDR<5%, y axis) and 
percentage of cells subsampled for the most abundant cell type (CD4NC, 
Methods).
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Fig. 2: SAIGE-QTL single-cell eQTL mapping identifies more eQTLs than 
pseudobulk methods.
A. Venn diagrams representing the overlap of significant eGenes (FDR<5%) 

identified by SAIGE-QTL and TensorQTL across all 14 cell types.
B. Example of disease-specific eQTL detected by SAIGE-QTL and not by 

TensorQTL (ITGA4 locus, monocytes-specific eQTL (see Suppl. Fig. 10)).
C. Among eGenes identified by SAIGE-QTL and TensorQTL across 14 cell types, 

gene-cell type pairs that are identified by the Summary-data–based Mendelian 
randomization (SMR) framework to be associated with four autoimmune disease 
risks. CD: Crohn’s disease, IBD: inflammatory bowel disease, RA: rheumatoid 
arthritis, SLE: systemic lupus erythematosus.  

A

B

C

CD IBD RA SLE
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CD4NC BIN PlasmaA

Fig. 3: Computational efficiency of SAIGE-
QTL allows genome-wide scans to identify 
trans eQTLs 
A. Overview of trans effects (heatmap of 

chromosome by chromosome 
relationships) in 3 representative cell 
types (p<5e-8).

B. Example(s) of a variant that has a cis 
eQTL effect (blue) on SPNS1 (top) and 
also a trans eQTL effect (green) on a 
different gene (MRPL32, bottom) in, 
CD4NC. Shown are Manhattan plots for 
each of the two genes.
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Fig. 4: Rare variant eQTLs identified in OneK1K.
A. Overview of RV signals (MAF<=5%) across 14 cell types (all cis variants 

collapsed). Bars represent the number of significant eGenes (FDR<5%).
B. Effect of different weighting strategies in the set-based tests across all cell 

types. Compared methods are equal weights, Beta(1,25) distribution, weight 
based on the distance of each variant from the transcription start site (dTSS).

C. Scatterplot of the number of number of significant eGenes with common 
variant signals (x axis) and rare variant signals (y axis) across the 14 cell 
types.

A
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Supplementary Figures
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Suppl. Fig. 1: Method overview of SAIGE-QTL.
Key steps, input arguments and parameters estimated are specified for our 
SAIGE-QTL method. Details can be found in the Methods and Supplementary 
Note.
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Suppl. Fig. 2: Concordance of gene-level p-values ac using the Beta 
permutation and the Cauchy combination methods.
Scatterplots showing the concordance of negative log10 gene-level p-values 
calculated using different methods. Both axes show results using the nominal p-
values from TensorQTL, but gene-level summary p-values are calculated using 
ACAT-V (Cauchy method, as we propose here, x axis) vs using the Beta 
approximation method used typically in TensorQTL (y axis).
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Suppl. Fig. 3: Evaluations of p-value calibration of SAIGE-QTL on common 
variants (MAF > 5%) from simulation studies under the null hypothesis. 
A. Genomic control lambda values of single-variant association tests. 
B. Quantile-quantile plots of 3 randomly selected genes from each sparsity group 

and cell type (results from chromosome 1 with 10 times of permutations are 
plotted).

50 genes were randomly selected from each sparsity group per cell type and single-
variant association tests across chromosome 1 were conducted for the single-cell 
expression read counts of each gene. 

A

B

RPS10 , sparsity = 7.9% DNAJC3, sparsity = 49.9%

Plasma

EEF1A1 , sparsity = 0% HLA.DMB, sparsity = 45.5% SEC24D, sparsity = 98.9%

ACTB , sparsity = 3.2% IFITM2, sparsity = 52.8% LIMD1, sparsity = 98.5%

BIN

CD4NC

HSBP1L1, sparsity = 97.2%
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Suppl. Fig. 4: Quantile-quantile (QQ) plots of ACAT-V tests of common variants 
(MAF > 5%) on each gene region on chromosome 1 in simulation studies under 
the null hypothesis. 
Genes were randomly selected from each sparsity group (low, intermediate, high) per 
cell type and single-variant association tests across chromosome 1 with 250 times of 
permutations were conducted for the single-cell expression read counts of each gene 
(Suppl. Fig. 3B). For a cis window up and downstream of each gene body (+/-1Mb) 
on chromosome 1 the ACAT-V test is performed to obtain a gene-level p-value. 
Three representative cell types (Plasma: least abundant, naive and immature B cells, 
Bin: intermediate, and CD4 positive naive and central memory T cells, CD4NC: most 
abundant) are shown.

RPS10 , sparsity = 7.9% DNAJC3, sparsity = 49.9% HSBP1L1, sparsity = 97.2%

Plasma

EEF1A1 , sparsity = 0% HLA.DMB, sparsity = 45.5% SEC24D, sparsity = 98.9%

ACTB , sparsity = 3.2% IFITM2, sparsity = 52.8% LIMD1, sparsity = 98.5%

BIN

CD4NC
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Suppl. Fig. 5: Quantile-quantile (QQ) plots of set-based tests of rare variants 
(MAF ≤ 5%) on each gene region on chromosome 1 in simulation studies 
under the null hypothesis. 
For three representative cell types (=rows, Plasma: least abundant, naive and 
immature B cells, Bin: intermediate, and CD4 positive naive and central memory 
Tcells, CD4NC: most abundant), shown are the p-values for rare variants (MAF <= 
5%) from simulation studies under the null hypothesis that there is no eQTL 
effects on gene expression across representative genes of varying sparsity 
(=columns, specific to each genes, low to high sparsity from left to right). 

CALM2, sparsity = 59.6% SLC25A6, sparsity = 96.9%

Plasma

GTF3C6 , sparsity = 11.7% ATP6V1G1, sparsity = 54.0% NPM1, sparsity = 91.0%

PABPC1, sparsity = 87.3%PCBP2, sparsity = 51.7%TXN2, sparsity = 12.4%

CD4NC

BIN

SETD5 , sparsity = 11.6%
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Suppl. Fig. 6: cell type-specific eQTLs. 
Upset plot showing the cell type specificity of significant eGenes (FDR<5%) 
identified by SAIGE-QTL in the OneK1K dataset. Coloured bars represent the 
number of eQTLs only found in a specific cell type, while black bars represent 
shared signals across two or more cell types. Values >10 are included. The 
UpSetR package in R was used for this figure.
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Suppl. Fig. 7: p-value concordance between SAIGE-QTL and TensorQTL. 
Scatter plots of negative log10 p-values from TensorQTL (x axis) and SAIGE-QTL 
(y axis) are shown for each of the 14 cell types. Top variants in eGenes identified 
in OneK1K (FDR < 5%) are included. 
A. All variants, with correlation coefficients specified.
B. As in A, but zooming in to x and y axes values between 0 and 10.

B

A
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Suppl. Fig. 8: Relationship between sparsity levels and the nominal p-values 
of sc-eQTL using SAIGE-QTL and pseudobulk eQTL using TensorQTL. 
Sparsity level across cells (y axis) is plotted against sparsity level across donors (x 
axis) for top variants in eGenes with FDR < 0.05 that have different p-values in the 
two analyses. If the top variants are different identified by SAIGE-QTL and 
TensorQTL, the ones by TensorQTL are included. Each plot represents the results 
for each of the 14 cell types. Variants with more
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Suppl. Fig. 9: Effect size concordance between SAIGE-QTL and TensorQTL. 
Scatter plots of estimated effect sizes from TensorQTL (x axis) and SAIGE-QTL (y 
axis) are shown for each of the 14 cell types, and correlations are specified. Top 
variants in SAIGE-QTL results in each eGene identified by either of the two 
methods are included. 
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Suppl. Fig. 10: Forest plot of effect sizes of the top cis-eQTL variant 
rs1375493 in gene ITGA4 across 14 cell types.
For the significant eQTL identified for ITGA4 and shown in Figure 2B, forest plot of 
effect sizes across all cell types, highlighting that this is a monocyte-specific signal. 
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Suppl. Fig. 11: Common variants conditional analysis results.
For each of 14 cell types (represented by the different colours), bars represent the 
number of significant eGenes (FDR<5%) identified for each of 5 rounds of 
conditional analysis (R1 to R5).
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Suppl. Fig. 12: Number of loci identified in any cell type by SMR using 
eQTLs identified by the two methods. 
Venn diagrams representing the overlap of significant summary-based Mendelian 
Randomisation (SMR) results identified based on eQTLs detected using each of 
the two methods, for the three immune-mediated diseases considered. Similar 
plots for gene-cell type combinations are shown in the main figure (Fig 2C).
CD: Crohn’s disease, IBD: inflammatory bowel disease, RA: rheumatoid arthritis, 
SLE: systemic lupus erythematosus.

CD IBD

RA SLE
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Suppl. Fig. 13: Trans eQTL effects across three representative cell types.
Same as main figure (Fig. 3a), but considering all associations with p-value < 5e-
6. For three representative cell types (Plasma: least abundant, naive and 
immature B cells, Bin: intermediate, and CD4 positive naive and central memory 
Tcells, CD4NC: most abundant), heatmaps where the colour intensity represents 
the number of significant independent trans eQTLs. Rows represent the 
chromosome the variant is on, columns the gene chromosome.

CD4NC BIN Plasma
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Suppl. Fig. 14: QQ plots of set-based test p-values for rare variants (MAF <= 
5%) in OneK1K.
A. All genes (expressed in >= 10% of donors) across 14 cell types.
B. As in A, but after permutating genotypes to remove association signal to 

assess calibration of our test.

B. Null with permuted sample IDs (set-based tests)

A. MAF<= 5% in cis regions of genes in oneK1K (set-based tests) 
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Suppl. Fig. 15: Rare variants conditional analysis results.
For each cell type, bars represent the number of eGenes identified by our rare 
variant analysis (faded colour), and the number of eGenes that remain significant 
after conditioning on any significant single-variant signal for the same gene (solid 
colour). 
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