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ABSTRACT

Background
Surveillance and prediction of antibiotic resistance in Escherichia coli relies on curated databases of genes and mu-
tations. Such databases currently lack quantitative data estimating the effect on MIC caused by the acquisition of any given
element for a particular antibiotic-species combination.
Methods
Using a collection of 2875 E. coli isolates with linked whole genome sequencing and MIC data, we used multivari-
able interval regression models to estimate the change in MIC for specific antibiotics associated with the acquisition of genes
and mutations in the AMRFinder database with and without an adjustment for population structure. We then tested the ability of
these models to predict MIC and binary resistance/susceptibility using leave-one-out cross validation.
Findings
We provide quantitative estimates (with confidence intervals) of the change in MIC associated with the acquisition
of genes/mutations in the NCBI-AMRFinder database. Whilst the majority of genes and mutations (89/111 (80.2%) were
associated with an increased MIC, a much smaller number (27/111, 24.3%) were found to be putatively independently
resistance conferring (i.e. associated with an MIC above the EUCAST breakpoint) when acquired in isolation. We found
evidence of differential effects of acquired genes and mutations between different generations of cephalosporin antibiotics and
demonstrated that sub-breakpoint variation in MIC can be linked to genetic mechanisms of resistance. 20,697/24,858 (83.3%,
range 52.9-97.7 across all antibiotics) of MICs were correctly exactly predicted and 23,677/24,858 (95.2%, range 87.3-97.7) to
within +/-1 doubling dilution.
Interpretation
Quantitative estimates of the independent effect on MIC of the acquisition of antibiotic resistance genes add to the
interpretability and utility of existing databases. Using these estimates to predict antibiotic resistance phenotype demonstrates
performance that is comparable to or better than approaches utilising machine learning models and crucially more readily
interpretable. The methods outlined here could be readily applied to other antibiotic/pathogen combinations.
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RESEARCH IN CONTEXT

Evidence before this study

We searched PubMed from inception to 05/04/2024 using the terms ((Escherichia coli OR E. coli) AND ((MIC) OR (minimum
inhibitory concentration))) AND (predict*) AND (whole genome sequencing). Of the 56 articles identified by these search
terms, eight were of direct relevance to this study. These studies generally focused on single antibiotics (3 studies), had
relatively small datasets (6 studies ¡1000 isolates) or used machine learning approaches on pan-genomes to predict binary (i.e.
susceptible/resistant) phenotypes (2 studies). Only one study attempted to predict ciprofloxacin MICs in 704 E. coli isolates
using a machine learning approach with known resistance conferring genes/mutations as features. To our knowledge, there are
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no studies estimating the independent effect (as opposed to the total effect of all elements present) of the acquisition of specific
antibiotic resistance genes (ARGs) or resistance-associated mutations on MICs of different antibiotics in E. coli more generally.

What this study adds

In this study we estimate the change in MIC for particular antibiotics associated with the acquisition of specific ARGs or
resistance-associated mutations, adjusting for the presence of other relevant genes and population structure. In doing so
we provide an approach to greatly enhance the information provided by existing ARG databases and approaches based on
predicting binary susceptible/resistant phenotypes, for example by demonstrating differential effects of ARGs on resistance to
antibiotics of the same class, enriching our understanding of the relationship between genotype and phenotype in a way that is
easily interpretable. Using more “parsimonious” models for prediction, we demonstrate high overall accuracy comparable to or
better, and crucially more readily interpretable, than recent machine learning models. We also demonstrate a genetic basis
behind sub-breakpoint variation in MIC for some antibiotics, demonstrating the value of non-dichotomised phenotypes for
identifying wildtype isolates (i.e. those carrying no ARGs) with greater confidence.

Implications of all available evidence

Whole genome sequencing data can be used to predict MICs for most commonly used antibiotics for managing E. coli infections
with accuracy approaching that of conventional phenotyping techniques, though very major error rates remain too high for
deployment in routine clinical practice. Further studies focusing on genotypes with high phenotypic heterogeneity should
investigate the phenotypic replicability, genetic heritability and clinical outcomes associated with these isolates.

INTRODUCTION

Antimicrobial resistance (AMR) is a major global public
health challenge with substantial associated morbidity and
mortality. In Escherichia coli, AMR is primarily conferred
either by acquired antibiotic resistance genes (ARGs) or by
point mutations in core chromosomal genes. Direct molec-
ular testing for the presence of these genes (e.g. using PCR
or sequencing) is not commonplace in most clinical settings,
where antibiotic susceptibility testing (e.g. broth microdilu-
tion assays) is instead use to distinguish wild-type isolates
from those carrying phenotypically detectable ARGs. Antibi-
otic susceptibility testing is currently reported to the majority
of non-infection specialist clinicians in a binary manner (e.g.
resistant or susceptible) because, particularly for susceptible
isolates, variation in MIC either side of the clinical breakpoint
has not generally been considered to be relevant to clinical
outcome, except in specific cases [1, 2].

Whole genome sequencing offers the potential for faster de-
tection of AMR as well as the ability to be implemented in
places where in vitro testing is not currently available/feasible.
It is also an agnostic test (susceptibility to an unlimited num-
ber of antibiotics can be tested in parallel genomically) and
offers the ability to simultaneously gain useful epidemiologi-
cal/surveillance information. Clinical use of WGS as a tool
for susceptibility testing is limited by higher costs, lack of
availability of expertise and poor correlation with laboratory
phenotype for some classes of antibiotic based on current
knowledge of ARGs and resistance-associated mutations.

There are several curated ARG databases in widespread use
for research purposes including ARMFinder[3], ResFinder[4]
and CARD[5]. These databases contain lists of genes associ-
ated with resistance to particular classes of antibiotics (and in

the case of ResFinder some individual antibiotics); however
the degree of this resistance is not quantified. Using these
tools, it is not possible to predict whether an isolate with a
particular genotype is likely to exhibit high- or low-level re-
sistance (e.g. a minimum inhibitor concentration (MIC) of
> 32/2 vs 16/2 for co-amoxiclav in E. coli), nor whether a
particular gene (e.g. blaCTX-M-27) confers the same average
change in MIC across all antibiotics within a given class.

Here we sought to estimate the phenotypic effect of specific
ARGs at the individual antibiotic-level using a large collection
of clinical E. coli isolates with linked whole genome sequenc-
ing and in vitro susceptibility testing data. We then evaluated
the accuracy of our approach for predicting MICs for specific
antibiotics in these isolates. Finally, we investigated the ability
of MICs to identify the genomic wild-type population.

METHODS
Isolate collection

We used 2875 isolates with linked whole genome sequenc-
ing data and MIC-level phenotyping for at least one antibi-
otic available from a collection of isolates from Oxfordshire,
UK6. Of these, 2410 were isolated from blood cultures col-
lected from patients attending one of four hospitals in the
Oxford University Hospitals NHS Foundation Trust (OUH)
between 2013-20186. An additional 465 isolates were col-
lected as part of a project to sequence all urine cultures sent
to the OUH laboratory which were positive for E. coli (identi-
fied using MALDI-ToF) between 12/02/2020-15/03/2020 and
04/06/2020-18/09/2020. Antibiotics considered in the anal-
ysis were: ampicillin, amoxicillin-clavulanate (hereafter co-
amoxiclav), ceftriaxone, cefuroxime, ciprofloxacin, gentam-
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icin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole
(hereafter co-trimoxazole). All phenotyping was performed
on the BD Phoenix system according to the manufacturer’s
instructions. Sequencing was performed using the Illumina
HiSeq platform as previously described [6].

Bioinformatics

Raw reads were assembled using Shovill[7] and
ARGs/mutations subsequently detected using the AM-
RFinder tool[3] (using the -O Escherichia flag to obtain
organism-specific results). The multi-locus sequence type
(MLST) and phylogroup of isolates were identified using the
MLST[8] and ClermonTyping[9] tools respectively. Isolates
were designated as their actual ST if they belonged to the
most common E. coli sequence types observed in Oxford-
shire[6] (131/95/73/69) or as their phylogroup if they did
not. Rare/unknown phylogroups were combined into an
“other” category. All tools were used on default settings.
Copy number of blaTEM-1 genes was estimated as previously
described (mapping coverage of blaTEM-1/mean coverage of
MLST genes)[10] as called using the ARIBA tool [11].

Statistics

Interval regression was used to model the association be-
tween the presence of ARGs and log2 MIC (expressed as
“fold-change” in MIC throughout the results section, i.e.
2(effect on log2 MIC of ARG presence)). For example, an MIC of 8/2
was modelled as having a lower bound of > log2(4) = 2 and
an upper bound of <= log2(8) = 3. This technique accounts
for the fact that MICs are not observed exactly, but only as the
highest concentration at which growth occurs. It also allows
isolates with varying MIC ranges (e.g. censored at > 8 for
isolate A, censored at > 32 for isolate B) to be included in
the same model. The extremes of MIC ranges were extended
three-fold to account for censoring (e.g. the lower bound of
an MIC interval ≥ 2 was taken to be log2(2/2/2/2) = −2).
We initially fitted three models for each antibiotic; univari-
able, multivariable and multivariable adjusted for bacterial
population structure. ARGs found ≥ 10 times in the dataset
using AMRFinder (as above) were included as the exact al-
lele (e.g. blaCTX-M-15), whereas those found 5-10 times were
collapsed into gene families (e.g. blaCTX-M other) and those
found < 5 times were grouped together in an “other gene
category”. For co-amoxiclav and piperacillin-tazobactam we
fitted additional fitted models incorporating blaTEM-1 as both
binary presence/absence and log2 copy-number.

For predictive models, variables were selected by backwards
elimination based on minimising the Akaike Information Cri-
terion (AIC) following which interaction terms significant at a
p < 0.01 threshold (to account for the multiple potential inter-
action effects considered) were included and a second round
of bidirectional elimination was performed, this time using
k (degrees of freedom used for penalty) of 3.8 (≈ p < 0.05).
Predictive performance was assessed by leave-one-out cross
validation. Binary (resistant/susceptible) performance metrics

(e.g. accuracy, sensitivity, specificity, major error, very major
error, negative and positive predictive value) were assessed
using EUCAST breakpoints [12]. All analysis was performed
in R version 4.3.0 [13].

For each antibiotic we described genes as being putatively as-
sociated with resistance if their estimated fold-change in MIC
(in the multivariable models adjusted for population structure)
was greater than one and significantly associated where the
lower confidence interval of the estimate was also greater than
one. We described genes as being independently resistance
conferring for a particular antibiotic (i.e. being associated
with an MIC greater than the breakpoint when present with-
out any other relevant genes) if the multivariable modelled
estimate of their effect was greater than log2(EUCAST break-
point) - intercept of the model. In these multivariable models,
the intercept corresponds to the MIC estimate for an isolate
with no resistance mutations or acquired antibiotic resistance
genes, analogous to the wild-type population that EUCAST
attempts to identify using ECOFFs (though the latter makes
no use of genomic information).

Data availability

All code and metadata used in this manuscript has been de-
posited in a GitHub repository (https://github.com/
samlipworth/ecoli_mic_arg) where there is also a
binder enabling key results and figures to be directly repro-
duced. Raw reads for all isolates used in the study are avail-
able in NCBI under project accession numbers PRJNA604975
and PRJNA1007570.

RESULTS

Multivariable regression identifies ARGs/mutations as-
sociated with increased MIC both above and below the
EUCAST clinical breakpoints

Of the 2875 isolates sequenced that had corresponding sus-
ceptibility data available for at least one antibiotic included
in this study, 1532/2869 (53%) were resistant to ampi-
cillin, 1038/2870 (36%) to co-amoxiclav, 177/2691 (6%)
to piperacillin-tazobactam, 315/2405 (13%) to cefuroxime,
238/2870 (8%) to ceftriaxone, 217/2869 (8%) to gentamicin,
402/2869 (14%) to ciprofloxacin and 777/2866 (27%) to co-
trimoxazole (Figure 1). We identified 106 gene and 41 mu-
tational variants catalogued and detected by AMRFinder as
associated with resistance to the eight antibiotics we evalu-
ated of which 34/106 (32%) and 17/41 (41%) occurred ≥ 10
times in the dataset. Of these, multivariable regression (ad-
justed for population structure) demonstrated a putative asso-
ciation with resistance (relevant model estimated fold-change
in MIC > 1) for 89/111 (80.2%) gene/mutation-antibiotic
pairs and a significant association (lower confidence interval
> 1) for 65/111 (58.6%). We further designated 27/111 24.3%
gene/mutation-antibiotic pairs as being putatively resistance
conferring (i.e. causing MIC to be above the EUCAST clinical
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breakpoint when acquired in isolation because their coefficient
was greater than log2(breakpoint) - intercept of model) – see
Methods]) of which 22/111 19.8% were significant (lower
confidence interval greater than log2(breakpoint) - intercept

of model). In general, estimates were similar between mul-
tivariable models with and without adjustment for bacterial
population structure.

Figure 1. MIC distributions and number of relevant ARGs/mutations carried for the eight antibiotics included in this study.
For ceftriaxone and ciprofloxacin, MIC distributions have been simplified to encompass all data (e.g. < 0.5 and ≤ 1 merged to
≤ 1) and for co-amoxiclav the > 8/2 category has been excluded for the purposes of this figure.

As a specific example, there were 24 unique genes associated
with cephalosporin resistance as catalogued by AMRFinder
that were detected in 2874 isolates with a ceftriaxone MIC, of
which 8 genes occurred at least ten times. Differences between
estimates in the univariable vs multivariable models (i.e. con-
founding) highlighted the known associations between ESBL
genes and ST131, and co-carriage of blaOXA and blaCTX-M-15
genes6 (Figure 2). However, only three genes (blaCTX-M-15,
blaCTX-M-27 and blaCTX-M-14) and the ampC-C42T mutation
were associated with resistance to ceftriaxone above the EU-
CAST breakpoint when acquired in isolation. Much smaller
effects (and non-significant though likely underpowered) were
observed for the other ampC promoter mutations annotated by
AMRFinder as being associated with cephalosporin resistance
(Supplementary Table 1), highlighting the need for improved
and antibiotic-specific classifications to be included in ARG
databases.

Similarly, there were 28 unique ARGs associated with amino-
glycoside resistance in AMRFinder that were identified in our

isolates, though only 10 occurred at least ten times and of
these, three (aac(3)-IId, aac(3)-IIe and ant(2”)-Ia) are specifi-
cally annotated as being associated with gentamicin resistance
in the AMRFinder database. In the multivariable model ad-
justed for population structure, all three of these ARGs were
found to be associated with an MIC above the EUCAST break-
point when acquired in isolation (Figure 3), although there was
evidence that aac(3)-IId was associated with a significantly
greater increase in MIC compared to aac(3)-IIe (fold-change
in MIC 13.8, 95%CI: 11.1-17.1 vs 6.7, 95%CI: 5.3-8.4, het-
erogeneity p < 0.001). Whilst the effect of aac(6’)-Ib-cr
(not listed as specifically conferring gentamicin resistance
in AMRFinder) was strongly confounded by the presence
of other gentamicin resistance conferring genes, as demon-
strated by change in effect estimates between univariable and
multivariable models, there was some evidence that it was
independently associated with sub-breakpoint increases in
MIC (fold-change multivariable model adjusted for popula-
tion structure: 1.3, 95%CI: 1.1-1.6, p = 0.002).
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Figure 2. Estimates of fold change in ceftriaxone MIC associated with carriage of beta-lactam resistance-associated genes.
Univariable (purple), and multivariable (with and without population structure variables, yellow/green respectively) estimates
are shown with 95% confidence intervals. The dotted line denotes the approximate fold change in MIC required for a gene to
confer resistance when acquired in isolation. Population structure is represented by sequence type for isolates belonging to the
most common STs (131/95/73/69) in Oxfordshire and by phylogroup for all other isolates. The reference group for this analysis
was the most common phylogroup (B2). Genes shown in red are those beta-lactamase genes classified as being associated with
cephalosporin resistance by AMRFinder.

5/15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.15.24307162doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.15.24307162
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Estimates of fold change in gentamicin MIC associated with carriage of aminoglycoside resistance-associated genes.
Univariable (purple), and multivariable (with and without population structure variables, yellow/green respectively) estimates
are shown with 95% confidence intervals. The dotted line denotes the approximate fold change in MIC required for a gene to
confer resistance when acquired in isolation. Population structure is represented by sequence type for isolates belonging to the
most common STs (131/95/73/69) in Oxfordshire and by phylogroup for all other isolates. The reference group for this analysis
was the most common phylogroup (B2). Genes shown in red are those aminoglycoside resistance genes classified as being
associated with gentamicin resistance by AMRFinder.
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A full table of adjusted estimated fold-change in MIC for all
antibiotics included in this study is provided in supplementary
table 1, and figures for the effects from all models for antibi-
otics other than ceftriaxone and gentamicin in supplementary
figures S1-6.

Sub-breakpoint variation in MIC is linked to underlying
genetic mechanisms

Given the signal above (e.g. for aac(6’)-Ib-cr) that at least
some of the sub-breakpoint MIC variation observed might
have a biological explanation, we examined this in further de-
tail for co-amoxiclav and cefuroxime (chosen because in our
dataset more MICs were strictly above the lowest concentra-
tion than other antibiotics, i.e. MIC variation in the susceptible
population was better characterised). Restricting to only those
isolates with an MIC below the relevant EUCAST breakpoints
and adjusting for the presence of other ARGs and population
structure, we found that there was still evidence of an as-
sociation between the presence of specific ARGs and MIC
(Cox-Snell pseudo R2 0.37/0.15 for co-amoxiclav/cefuroxime
respectively, Table 1) with the largest effect sizes observed for
blaTEM-1 for co-amoxiclav (fold change in MIC for presence
of gene 1.91, 95%CI: 1.83-2.00, p < 0.001) and ampC-T32A
for cefuroxime (fold change in MIC 2.11, 95%CI: 1.68-2.66,
p < 0.001).

In this analysis, we also found some evidence that particular
STs/phylogroups had slightly higher (e.g. ST131 fold change
in MIC: 1.11, 95%CI: 1.03-1.19, p = 0.006] and phylogroup
B1 [fold change in MIC: 1.19, 95%CI: 1.10-1.29, p < 0.001])
or slightly lower (ST69 [fold change in MIC: 0.90, 95%CI:
0.85-0.97, p = 0.003], phylogroup A [fold change in MIC:
0.82, 95%CI 0.76-0.90, p < 0.001]) MICs for co-amoxiclav
compared to the reference group (non ST 131/73/95 phy-
logroup B2 isolates), suggesting that there may be some effect
related to population structure alone, independent of known
ARG presence/absence, eg as yet unidentified ARGs strongly
associated with clade, and supported by the non-random MIC
distributions of isolates with no known beta-lactamase genes
when plotted by ST/phylogroup (Fig.S7). Similar observa-
tions held for cefuroxime (Table 1).

AmpC promoter mutations have a variable effect across
cephalosporin sub-classes

Next, we investigated whether there was evidence of
antibiotic-specific differences in the effects on log2 MIC as-
sociated with carriage of a particular ARG/mutation between
different generations of cephalosporins (Figure 4). The ampC
promoter mutations ampC-C42T and ampC-T32A are anno-
tated by AMRFinder as causing cephalosporin resistance. In
our analysis there was evidence that both are independently as-
sociated with resistance to second cefuroxime. For cephalexin,
only ampC-T32A (fold change in MIC 7.10 95%CI 5.32-9.49,
p < 0.001) was also independently associated with supra-
breakpoint increases in MIC (though we may be underpow-
ered to detect this for ampC-C42T (fold change in MIC 4.40

95%CI 2.69-7.22, p < 0.001) where there was still some evi-
dence of such an effect). There was some evidence that both
ampC-C42T and ampC-T32A were independently associated
with resistance to cefuroxime (estimated fold change in MIC
4.95 95%CI 3.00-8.15, p < 0.001 and 3.57 95%CI 2.86-4.45,
p < 0.001 respectively).

For ceftriaxone, ampC-C42T was associated with sub-
breakpoint MIC increases (fold change in MIC: 2.78, 95%CI:
1.87-4.12, p < 0.001). ampC-C11T was also associated
with sub-breakpoint increases in MIC that were larger for
cephalexin (fold change in MIC: 2.91, 95%CI: 2.08-4.08,
p < 0.001) than for cefuroxime (fold change in MIC 1.64,
95%CI: 1.22-2.20, p = 0.001), cefepime (fold change in MIC:
1.65, 95%CI: 1.05-2.57, p = 0.03) or ceftriaxone (fold change
in MIC: 1.38, 95%CI: 0.91-2.10, p = 0.13). In contrast to
the heterogeneous effects observed across cephalosporin sub-
classes for ampC promoter mutations, there was evidence that
the blaCTX-M gene family was independently associated with
resistance to all cephalosporin sub-classes (Figure 4).

Quinolone resistance occurs in a step-wise, rather than
gene specific, manner
For both ciprofloxacin and levofloxacin, mutations in
quinolone resistance associated genes increased the MIC in a
stepwise manner, with carriage of 3 mutations/ARGs gener-
ally being required for resistance above EUCAST breakpoints
(Figure 5, Fig.S8). In contrast to the other antibiotics above,
acquisition of a single mutation/ARG was very rarely asso-
ciated with an MIC above the breakpoint (469/475 [99%]
isolates carrying a single ARG/mutation were at or below
the EUCAST breakpoint). However, the proportion with
an MIC > 0.25 was notably higher for gyrA S83L (36/152,
24%), qnrS1 (12/19, 63%) and qnrB19 (7/10, 70%) compared
to other mutations/ARGs (3/294, 1%; p < 0.001, Figure 5).
Carriage of ≥ 3 mutations/ARGs was primarily observed in
STs 131 and 1193 (Fig.S9). Comparison of estimates from
the multivariable models adjusted for population structure
revealed possible reduced effects of gyrA-S83L and qnrS1 for
levofloxacin compared to ciprofloxacin (Figure 5).

Predictive accuracy of interval regression models to esti-
mate MICs and susceptibility vs resistance using EUCAST
clinical breakpoints
Overall, using leave-one-out cross validation the “parsimo-
nious” models were able to correctly predict the exact MIC
in 20,697/24,858 (83.3%) cases (52.9-97.7% across antibi-
otics) and were within +/- one MIC doubling dilution for
23,677/24,858 (95.2%) isolates (87.3-97.7% across antibi-
otics) (Table 2, Figure 6). After translating measured MICs to
binary phenotypes, major error rates (i.e. erroneous prediction
of susceptible isolates as resistant, 1 minus specificity) were
below the FDA specified threshold of 3% for all antibiotics
except co-amoxiclav. Consistent with this, negative predic-
tive values (NPV) (range 94.5-99.0% across antibiotics) and
specificity (range 97.5-99.6) were very high for all antibi-
otics except co-amoxiclav (NPV 93.3%, specificity 75.7%).
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Figure 4. Estimates (with 95% confidence intervals) for fold-change in MIC for the most common beta-lactamase genes
across four cephalosporin sub-classes. Results are from the multivariable model adjusted for population structure. Dotted lines
represent an approximation of the fold-change from the wild-type population required to cause resistance.
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Figure 5. Top - comparison of estimated fold-change in MIC for levofloxacin (y-axis) and ciprofloxacin (x-axis) in the
multivariable model adjusted for population structure. Each point represents a gene/mutation with error bars showing 95%
confidence intervals for levofloxacin (vertical) and ciprofloxacin (horizontal). The two genes highlighted are those whose
confidence intervals do not cross the line of equivalence (i.e. x=y where the estimated effect for both antibiotics is equal) and
therefore appear to be associated with relatively greater ciprofloxacin than levofloxacin resistance. Bottom - Distribution of
ciprofloxacin MICs associated with stepwise acquisition of ARGs/mutations (n=951 isolates with at least one quinolone
resistance associated ARG/mutation). Dotted lines mark the boundaries of the number of ARGs/mutations (incrementing from
one on the far left to six on the far right).
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Figure 6. Accuracy of predicted MICs, as compared to the phenotypic test result used as the gold standard for this study. The
x-axis shows the difference between predicted and measured MICs on a log2 (i.e. doubling) scale. Positive values represent
predictions that the isolate is more resistant than measured and vice versa. M - major error, where the isolate is predicted to be
resistant but in vitro susceptibility testing determines it to be susceptible. VM - very major error, where the isolate is predicted
to be susceptible but in vitro susceptibility testing determines it to be resistant.
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Conversely upper 95% CI around the very major error rates
(erroneous categorisation of resistant isolates as susceptible,
1 minus sensitivity) were above the FDA specified threshold
(upper confidence interval < 7.5%) for all antibiotics, with
correspondingly high very major error rate and lower sen-
sitivities particularly for piperacillin-tazobactam (sensitivity
20.3%, 95%CI: 14.8-27.2) and cefuroxime (67.3%, 95%CI:
61.8-72.4).

Poor performance for beta-lactam/beta-lactamase inhibitor
combinations was mostly explained by unexplained pheno-
typic heterogeneity in isolates containing blaTEM-1 (Fig.S10).
We subsequently refitted the models for co-amoxiclav and
piperacillin-tazobactam incorporating blaTEM-1 copy number.
This led to modestly better phenotype predictions for both
drugs (MIC correct to within +/-1 dilution 90.6% (95%CI:
89.5-91.6) vs 87.5% (95%CI: 86.2-88.7) co-amoxiclav and
94.6% (95%CI: 93.7-95.4) vs 94.1% (95%CI: 93.1-94.8)
piperacillin-tazobactam with small corresponding increases in
binary accuracy 84.4% (95%CI: 83.0-85.7) vs 81.3% (95%CI:
79.8-82.7) co-amoxiclav and 94.2% (93.2-95.0) vs 94.0%
(93.0-94.8) piperacillin-tazobactam (Table 1).

The utility of MIC for identifying the genomic wild-type
population

The goal of this and other studies to predict phenotype from
genotype can in some ways be thought of as the opposite
challenge to that faced by breakpoint-setting committees such
as EUCAST or CLSI. As part of defining breakpoints charac-
terising isolates as susceptible or resistant, these organisations
consider MIC distributions derived from isolate collections to
attempt to derive an epidemiological cut-off value (ECOFF)
that reliably identifies isolates with no phenotypically de-
tectable resistance mechanisms (known as “wild-type” pop-
ulations). Here, we therefore sought to investigate whether
there was evidence of a correlation between MIC and the
presence of genomic mechanisms of resistance in these “wild-
type” populations.

For some antibiotics (e.g co-trimoxazole, ampicillin), there
was a clear dichotomy between wild-type and non-wild-type
populations with highly bimodal MIC distributions; no addi-
tional predictive information about the probability of ARG
carriage was given from intermediate MIC data (Figure 7). In
contrast, for other antibiotics (e.g. cefuroxime, co-amoxiclav.
gentamicin), there was evidence of increasing proportions
of isolates containing known resistance-associated mecha-
nisms with increasing sub-breakpoint MICs that would be
erroneously categorised as belonging to wild-type populations
using current ECOFFs. Finally, whilst we had very small
numbers of isolates with intermediate MICs, there was some
evidence that isolates with a gentamicin MIC of 4 (n=25, clas-
sified as above the ECOFF/resistant by EUCAST) belong to
wild-type genomic population.

DISCUSSION

Previous studies aiming to predict phenotype from geno-
type in E. coli have focused on the association of particu-
lar ARGs/point mutations with a binary susceptible/resistant
profile, and have generally been unable to account for the
presence of multiple resistance mechanisms, which is com-
mon in E. coli and other Enterobacterales. Here we used
multivariable interval regression to estimate the quantitative
change in MIC for specific antibiotics associated with the ac-
quisition of particular ARGs/resistance-associated mutations,
allowing us to adjust simultaneously for the presence of mul-
tiple resistance mechanisms. Our models have comparable or
better predictive performance (when converted to a binary sus-
ceptible/resistance phenotype) compared to machine learning
methods applied in other recent studies (performance sum-
marised in table S3) [14–16]. Unlike these studies however,
the estimated changes in MIC associated with acquisition
of ARGs (with confidence intervals) produced here are easy
to understand and apply, permitting a greater understanding
of the relationship between genotype and phenotype at the
antibiotic-organism level. For some ARGs known to confer
resistance to a particular class of antibiotics, we demonstrated
that there are clear within-class phenotypic differences which
are not reflected in existing databases.

Previous studies have demonstrated that population structure
alone or neighbour typing can provide reasonable predictions
of antibiotic phenotype [16, 17], due in part to the strong
association between some sequence types (e.g. ST131) and
carriage of particular ARGs. Here we found evidence that, at
least for certain antibiotics, there was evidence of an associ-
ation between population structure and MIC independent of
ARG presence/absence. The mechanism for this is unclear
but warrants further investigation and may have important
implications for resistance prediction models. Possible ex-
planations include the presence of unknown mechanisms of
resistance that are structured by bacterial lineage, and a dif-
ferential impact of genetic context on gene expression, which
was not considered in this study.

A long held tenet of EUCAST states that “breakpoints for
susceptibility testing should not divide wild-type populations”
with the premise being that isolates from the wild-type distri-
bution lack phenotypically detectable resistance mechanisms
and that any variation represents technical artifact rather than
biological signal [18, 19]. Here we show that this assumption
does not hold completely in our dataset and that biological
mechanisms likely explain at least some of the sub-breakpoint
MIC variation observed. From a genomic perspective, our
study provides clear evidence that for some antibiotics, current
EUCAST ECOFFs do not always accurately identify the ge-
nomic wild-type population. The clinical significance of this
and the broader question of whether clinical outcomes better
correlate with binary phenotype, MIC or genotype is unknown
and should be explored in future work and clinical studies.
Similarly it is unknown whether the phenotypic variability we
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Figure 7. Ability of MIC to identify the genotypic wild-type population (i.e. isolates without the presence of known
mechanisms of resistance). Plots B-H and J-P show the distribution of the number of ARGs/mutations confirmed as being
associated with resistance in the multivariable models adjusted for population structure carried by isolates according to their
observed MIC. MIC values above/below the EUCAST breakpoint are shown in yellow/purple respectively. Plots A-G and I-O
show the proportion (with 95% confidence intervals) of isolates carrying no known ARGs/mutations confirmed as being
associated with resistance in the multivariable models adjusted for population structure.

observed for a given single genotype (e.g. co-amoxiclav MIC
for isolates carrying blaTEM-1 as their sole known resistance
mechanism) translates into meaningful differences in clinical
outcome; this also merits further investigation.

Limitations of this study include the use of truncated MIC
distributions which likely lead to underestimates for the effect
of the presence of some genes on change in log2 MIC. We
were unable to retest isolates with discordant phenotypes and
technical laboratory error may therefore account for some
of the discrepancies between genotype and phenotype which
we observed. We chose to include all available data to max-
imise power and use cross-validation to estimate error; thus
replication of our results in an external dataset would be im-
portant in future. We accounted for variation in tested di-
lutions over time (mainly for co-amoxiclav) using interval
regression but this may have affected results. Some of the
unexplained phenotypic heterogeneity we observed may be at
least partly explainable by additional genetic factors modulat-
ing the expression of ARGs (e.g. IS26-mediated amplification
of blaTEM-1 for piperacillin-tazobactam20), or as yet unde-
termined resistance mechanisms, which we did not consider
here as they are not included in standard ARG databases. Our
analysis was restricted to a single species (E. coli), but our
methods would be applicable to quantifying the impact of
genotype on MIC for other antibiotic-species combinations.

In summary, in this study we have used genomic data to
estimate the change in MIC associated with the acquisition
of ARGs/resistance-associated mutations catalogued in the
AMRFinder database at the specific antibiotic-level for 8 an-
tibiotics for E. coli. We demonstrate that MIC predictions
inferred from genotype are correct to within +/- 1 doubling
dilution of the broth microdilution-derived MIC 95% of the
time, with binary prediction major error rates generally below
the FDA specified threshold of 3% at the expense of higher
very major error rates. The same genotype may have dif-
ferent MIC-level effects on different antibiotics within the
same class. Our method demonstrates that some resistance-
associated genotypes result in changes in MIC below the
breakpoint and may thus be overlooked by binary method-
ologies. Similarly, for some antibiotics, the probability that
dichotomised reporting of in vitro susceptibility testing ‘mis-
categorises’ isolates as belonging to the wild-type population
is not equal for all MIC values below the breakpoint. Our data
demonstrates that, particularly for beta-lactam/beta-lactamase
inhibitor combinations, certain genotypes display a heteroge-
nous in vitro phenotype – the exact reason for this remains
unclear. As increasing volumes of WGS data with linked MIC
and outcome data become available, future studies should
determine whether this heterogeneity correlates with patient
outcome and by extension whether phenotype or genotype is
more useful for guiding selection of antimicrobial therapy.
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Table 1. Uni- and multivariable estimates for fold-change in log2(MIC) associated with carriage of beta-lactamase ARGs in
isolates susceptible to co-amoxiclav and cefuroxime (i.e. with MICs <= 8/2 and <= 8 respectively). Note that phylogroup B2
represents isolates belonging to this phylogroup but not to STs 131/73/95 and similarly phylogroup D represents non-ST 69
isolates. blaTEMp* refers to a mutation in the blaTEM-1 promotor region.

Gene/Clade Univariable p Multivariable p

Co-amoxiclav

ampC-C11T 0.94 (0.37-2.41) 0.90 1.10 (0.51-2.36) 0.81
ampC-T32A 0.94 (0.55-1.62) 0.82 1.08 (0.63-1.85) 0.79
blaCTX-M-14 1.88 (1.09-3.24) 0.02 1.26 (0.81-1.97) 0.31
blaCTX-M-15 1.20 (1.03-1.39) 0.02 1.21 (1.05-1.39) 0.007
blaCTX-M-27 1.21 (0.99-1.48) 0.06 1.37 (1.16-1.61) < 0.001
blaOXA-1 1.07 (0.80-1.41) 0.66 0.83 (0.64-1.08) 0.16
blaSHV-1 1.35 (1.17-1.56) < 0.001 1.58 (1.41-1.77) < 0.001
blaTEM 1.02 (0.81-1.27) 0.89 1.14 (0.95-1.36) 0.16
blaTEM-1 1.84 (1.76-1.92) < 0.001 1.91 (1.83-2.00) < 0.001
blaTEM-1 + blaTEMp-C32T 1.33 (0.83-2.12) 0.23 1.50 (1.03-2.18) 0.03
blaTEM-1 + blaTEMp-G162T 1.88 (0.74-4.81) 0.19 2.14 (1.00-4.59) 0.05
other gene 0.85 (0.61-1.19) 0.34 0.81 (0.63-1.05) 0.12
ST 131 1.23 (1.13-1.34) < 0.001 1.11 (1.03-1.19) 0.006
ST 95 1.15 (1.06-1.24) < 0.001 1.06 (0.99-1.13) 0.07
ST 73 1.07 (1.01-1.14) 0.03 1.03 (0.98-1.09) 0.25
ST 69 1.17 (1.08-1.27) < 0.001 0.90 (0.85-0.97) 0.003
phylogroup A 0.87 (0.78-0.97) 0.01 0.82 (0.76-0.90) < 0.001
phylogroup B1 1.30 (1.18-1.43) < 0.001 1.19 (1.10-1.29) < 0.001
phylogroup C 1.36 (1.15-1.60) < 0.001 1.18 (1.03-1.35) 0.02
phylogroup D 1.17 (1.05-1.30) 0.004 1.08 (0.99-1.18) 0.09
phylogroup F 1.00 (0.88-1.13) 0.99 0.96 (0.87-1.06) 0.4
phylogroup other 1.04 (0.91-1.19) 0.55 1.03 (0.92-1.15) 0.62

Cefuroxime

ampC-C11T 1.40 (1.07-1.83) 0.01 1.41 (1.10-1.80) 0.007
ampC-C42T 1.16 (0.47-2.86) 0.75 1.35 (0.58-3.14) 0.49
ampC-T32A 1.97 (1.54-2.52) < 0.001 2.11 (1.68-2.66) < 0.001
blaCTX-M-15 1.16 (0.90-1.49) 0.25 0.70 (0.53-0.91) 0.007
blaCTX-M-27 1.16 (0.47-2.86) 0.75 1.02 (0.44-2.37) 0.96
blaOXA-1 1.50 (1.30-1.72) < 0.001 1.57 (1.35-1.82) < 0.001
blaSHV-1 0.98 (0.86-1.12) 0.75 1.03 (0.91-1.17) 0.62
blaTEM 1.10 (0.87-1.39) 0.41 1.11 (0.89-1.38) 0.36
blaTEM-1 1.03 (0.99-1.07) 0.14 1.05 (1.01-1.10) 0.01
blaTEM-1 + blaTEMp-C32T 1.37 (1.24-1.52) < 0.001 1.43 (1.29-1.58) < 0.001
blaTEM-1 + blaTEMp-G162T 1.53 (1.15-2.02) 0.003 1.59 (1.22-2.06) < 0.001
blaTEM-40 1.16 (0.87-1.54) 0.31 1.19 (0.92-1.56) 0.19
other gene 1.10 (0.85-1.41) 0.47 1.19 (0.95-1.51) 0.14
ST 131 1.27 (1.18-1.37) < 0.001 1.23 (1.15-1.32) < 0.001
ST 95 0.83 (0.77-0.89) < 0.001 0.84 (0.78-0.90) < 0.001
ST 73 1.03 (0.97-1.09) 0.28 1.02 (0.97-1.08) 0.46
ST 69 1.08 (1.01-1.16) 0.04 1.08 (1.01-1.16) 0.02
phylogroup A 0.99 (0.90-1.08) 0.76 0.98 (0.90-1.08) 0.74
phylogroup B1 0.93 (0.85-1.01) 0.09 0.93 (0.86-1.02) 0.12
phylogroup C 1.30 (1.16-1.47) < 0.001 1.26 (1.12-1.42) < 0.001
phylogroup D 1.26 (1.15-1.38) < 0.001 1.28 (1.17-1.39) < 0.001
phylogroup F 1.00 (0.89-1.13) 0.96 1.02 (0.91-1.14) 0.79
phylogroup other 1.10 (0.97-1.25) 0.15 1.09 (0.97-1.23) 0.15
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Table 2. Performance metrics for predictive models assessed using leave-one-out cross validation. Accuracy, specificity, sensitivity, very major error (VM, proportion of
resistance isolates incorrectly identified as susceptible), major error (M, proportion of susceptible isolates incorrectly identified as resistant), positive predictive value
(PPV) and negative predictive value (NPV) were assessed used binary resistant/susceptible phenotypes classified using EUCAST breakpoints. Values in brackets
represent 95% confidence intervals. *In these models the blaTEM-1 gene was included as both binary presence/absence and log2(copy number). A full table including
proportions for each measure can be found in Table S2.

MIC correct MIC correct +/- 1 dilution Accuracy Specificity Sensitivity Very major error (VM) Major error (M) PPV NPV

Gentamicin 84.1% (82.7-85.4) 97.1% (96.4-97.6) 98.2% (97.6-98.6) 99.6% (99.2-99.8) 80.6 (74.6-85.6) 19.4% (14.4-25.4) 0.4% (0.2-0.8) 94.1% (89.4-96.9) 98.4% (97.9-98.9)
Ceftriaxone 97.1% (96.4-97.7) 97.9% (97.3-98.4) 98.3% (97.7-98.7) 99.2% (98.8-99.5) 88.2% (83.3-91.9) 11.8% (8.1-16.7) 0.8% (0.5-1.2) 90.9% (86.3-94.2) 98.9% (98.4-99.3)
Ciprofloxacin 91.6% (90.6-92.6) 98.1% (97.5-98.5) 98.4% (97.8-98.8) 99.1% (98.7-99.5) 93.2% (90.1-95.5) 6.8% (4.5-9.9) 0.9% (0.5-1.3) 94.3% (91.2-96.3) 99.0% (98.5-99.3)
Ampicillin 89.0% (87.6-90.0) 95.3% (94.4-96.0) 95.5% (94.7-96.3) 97.5% (96.5-98.3) 93.7% (92.3-94.8) 6.2% (5.1-7.6) 2.5% (1.7-3.5) 97.8% (96.8-98.4) 93.2% (91.7-94.4)
Co-amoxiclav 51.1% (49.3-53.0) 87.5% (86.2-88.7) 81.3% (79.8-82.7) 76.4% (74.4-78.3) 89.8% (87.7-91.5) 10.2% (8.5-12.3) 23.6% (21.7-25.6) 68.3% (65.8-70.8) 93.0% (91.5-94.2)
Co-amoxiclav* 56.4% (54.6-58.3) 90.6% (89.5-91.6) 84.4% (83.0-85.7) 85.1% (83.4-86.7) 83.2% (80.8-85.4) 16.8% (14.6-19.2) 14.9% (13.3-16.6) 76.0% (73.4-78.4) 90.0% 99.4-91.3)
Cefuroxime 58.8% (56.8-60.7) 96.2% (95.4-96.9) 94.8% (93.9-95.7) 98.7% (98.0-99.1) 69.5% (62.1-74.5) 30.5% (25.5-35.9) 1.3% (0.9-2.0) 88.7% (83.9-92.2) 95.6% (94.6-96.4)
Cefepime 91.0% (89.8-92.1) 95.6% (94.7-96.4) 96.7% (95.9-97.4) 97.7% (97.0-98.3) 83.0% (76.2-88.2) 17.0 (11.8-23.8) 2.3% (1.7-3.0) 72.9% (65.8-79.0) 98.7% (98.2-99.1)
Co-trimoxazole 91.9% (90.9-92.9) 95.7% (94.8-96.4) 95.3% (94.5-96.1) 98.1% (97.4-98.6) 87.9% (85.4-90.0) 12.1% (9.9-14.6) 1.9% (1.4-2.6) 94.5% (92.5-96.0) 95.6% (94.6-96.4)
Piperacillin-Tazobactam 88.4% (87.1-89.5) 94.1% (93.1-94.9) 94.0% (93.0-94.8) 98.4% (97.9-98.9) 26.0% (19.8-33.2) 74.0% (66.8-80.2) 1.6% (1.1-2.1) 52.3% (41.4-62.9%) 95.3% (94.4-96.0)
Piperacillin-Tazobactam* 88.8% (87.5-89.9) 94.6% (93.7-95.4) 94.2% (93.2-95.0) 98.4% (97.9-98.9) 29.4% (22.9-36.8) 70.6% (63.2-77.1) 1.6% (1.1-2.1) 55.3% (44.7-65.5) 95.5% (94.6-96.2)
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