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Abstract 1 

Asian people are under-represented in population-based, clinical, and genomic research.1,2 To 2 

address this gap, we have initiated the HELIOS longitudinal cohort study, comprising comprehensive 3 

behavioural, phenotypic, and genomic measurements from 10,004 Asian men and women of Chinese, 4 

Indian or Malay background. Phenotyping has been carried out using validated approaches, that are 5 

internationally interoperable. Health record linkage enriches both baseline phenotyping and evaluation 6 

of prospective outcomes. The integrated multi-omics data include whole-genome and RNA 7 

sequencing, quantification of DNA methylation, and metabolomic profiling. Our data reveal extensive 8 

lifestyle, physiological, genomic, and molecular diversity between the distinct Asian ethnic groups, and 9 

the biological interconnectivity between functional layers. This includes characterisation of divergent 10 

patterns of genome regulation between Asian individuals, that correlate with differences in educational 11 

attainment, dietary quality, and adiposity, and which overlap transcription factors and DNA methylation 12 

sites linked to the development of diabetes and other chronic diseases. Our unique HELIOS Asian 13 

Precision Medicine cohort study represents a state-of-the art platform to enable biomedical 14 

researchers to understand the aetiology and pathogenesis of diverse disease outcomes in Asia, and 15 

to generate insights that have the potential to improve health outcomes for Asian populations globally. 16 
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Introduction  1 

Age-related chronic diseases such as diabetes, cardiovascular and respiratory diseases, cancer, and 2 

cognitive decline are leading causes of morbidity and mortality across all regions of the world3. Driven 3 

by demographic transitions, increasing urbanisation, and adoption of unfavourable lifestyle choices, 4 

the Asia Pacific region in particular is facing a rapid increase in chronic disease burden that contrasts 5 

stable or falling disease rates in Europe and North America4. There are already 296 million Asian 6 

people living with diabetes, and this is expected to rise to 412 million by 20455. Cardiovascular 7 

disease (CVD) deaths in Asia have nearly doubled from 5.6 million in 1990 to 10.8 million in 20196. 8 

Addressing the rising burden of these major chronic disorders in Asian populations is a high priority for 9 

national and international stakeholders, including policymakers and healthcare providers. 10 

 11 

Chronic diseases are complex and multi-factorial, and arise through the interaction of lifestyle, 12 

environment, and genomic factors7. Longitudinal population studies, in which people are characterised 13 

at baseline and followed up over time for health outcomes, play a unique role in identification of the 14 

proximal and upstream processes and aetiological mechanisms underlying chronic disease. However, 15 

existing prospective cohort studies with comprehensive phenotypic and particularly genotypic 16 

measurements are predominantly based on populations of European ancestry8,9. This not only 17 

represents an important global health inequity, but also a major opportunity for discoveries relevant to 18 

the health of the ~4.8 billion Asian people living worldwide10. 19 

 20 

Singapore, a city-state in Southeast Asia, is home to 5.6 million people, most of whom are of Chinese, 21 

Malay, or Indian ancestries. The presence of these three population groups living side-by-side, 22 

provides a unique opportunity to explore the diverse lifestyle and genetic profiles of people from East 23 

Asia, Southeast Asia, and South Asia, and to relate these to health trajectories. Endowed with highly 24 

advanced healthcare and research infrastructure, Singapore is ideally positioned to advance precision 25 

medicine and population health research, relevant to global Asian communities.  26 

 27 

Here we describe the motivation, design, and early results of the Health for Life in Singapore 28 

(HELIOS) Study, a longitudinal population resource focussed on understanding the diseases and 29 

health states that are important to Asian populations. We show how the HELIOS study combines 30 

state-of-the-art clinical, molecular, and genetic epidemiological approaches, enriched with information 31 

derived from national health data, and highlight the extensive opportunities for transformative 32 

research. Our companion papers describe specific discoveries and innovations achieved using the 33 

study data, including findings directly relevant to health outcomes of people living in Asia11–13. 34 
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Results 1 

We recruited 10,004 Asian men and women aged 30 to 84 years to the HELIOS study between 2018 2 

and 2022 (www.healthforlife.sg). Participants were recruited from the Singapore general 3 

population11,12,14. The cohort includes 6,784 people who identified as Chinese or other East Asian 4 

background, 1,807 people who are of Indian or other South Asian background, and 1,354 people of 5 

Malay or other South-East Asian heritage. There were 59 participants from other ethnicities 6 

(Extended Table 1). Figure 1 briefly summarised our study design. 7 

 8 

Disparities in health outcomes amongst Asian populations in Singapore.  9 

Despite similar age and sex distributions, our three Asian ethnic groups exhibit distinct profiles for 10 

health, including disease burden and distributions for clinically relevant exposures and 11 

endophenotypes. We highlight that Indian and Malay participants have a higher prevalence for 12 

hypertension, obesity, and type 2 diabetes (T2D), compared to Chinese participants (Extended 13 

Figure 1), and a higher frequency of symptoms for depression and anxiety. Waist circumference, 14 

waist-to-hip ratio, and visceral fat mass are also highest in Indian and Malay people. This is 15 

accompanied by increased levels of triglycerides, haemoglobin A1c (HbA1c), fasting plasma glucose, 16 

insulin, C-Reactive Protein (CRP) and other traits related to adiposity and insulin resistance 17 

(Extended Table 1). We also find evidence for differences in healthcare reach, across a wide range of 18 

actionable disease diagnoses. For example, compared to Chinese, Indians and Malays were more 19 

likely to have undiagnosed diabetes, while undiagnosed osteoporosis was common in all ethnic 20 

groups. These illustrations provide insights into the potential health gains that might be achieved 21 

through improved uptake and reach of healthcare interventions in our multiethnic Asian population 22 

(Extended Figure 1).   23 

 24 

Behavioural and upstream exposures relevant to chronic disease in Asian populations. 25 

Our study design enables exploration of ‘upstream’ behavioural, environmental, and social factors 26 

relevant to health in Asian communities. As an initial illustration, we show that density of food related 27 

amenities and the ratio of public to private housing correlate closely with the prevalence of diabetes in 28 

our cohort, a key exemplar of major chronic disease risk in the population (r=0.5 and 0.8, respectively; 29 

P<0.05, Extended Figure 2). Self-reported food intake of study participants shows divergent 30 

consumption of food items, nutrient composition, and differences in diet quality indices between the 31 

ethnic groups, that align closely with traditional Asian dietary habits (Figure 2a-d). While diet quality 32 

scores are associated with multiple cardiovascular and metabolic phenotypes within our Asian 33 

population groups, we highlight that dietary habit does not fully explain the differences between the 34 

ethnic groups. For example, while ‘favourable’ DASH (dietary approaches to stop hypertension) 35 
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dietary quality score is highest amongst Indians, this directly contrasts with their high rates of obesity 1 

and adverse metabolic profiles compared to Chinese participants (P<2x10-6). Similarly, both self-2 

reported and accelerometer-based objective measurements identify that total physical activity is 3 

higher, amongst Indians and Malays, despite their unfavourable patterns of adiposity and metabolic 4 

performance (Figure 2e-g, Table 2, P<2.2x10-16). Our data thus reveal striking variation between 5 

communities in behavioral, environmental, and social factors important for health. Interestingly, while 6 

our results confirm expected relationships with key clinical traits within ethnic groups, they do not fully 7 

explain health differences between populations. Our observations provide a strong motivation for 8 

deeper clinical and molecular epidemiological research focused on Asian populations.  9 

 10 

DNA sequence variation and functional genomic diversity  11 

The disparate clinical profiles across the three ethnic groups are mirrored by extensive and structured 12 

covariation in molecular genotypes. Whole-genome sequencing (30x depth) reveals 252 million 13 

variants, including 239.7 million autosomal variants with 206.1 million Single Nucleotide 14 

Polymorphisms (SNPs) and 33.6 million short indels (Figure 3a).  Principal Component Analysis 15 

(PCA) and admixture analysis helped identify and cluster the dataset into three distinct population 16 

clusters corresponding to people of Chinese, Indian or Malay ancestry, as well as individuals who 17 

were admixed (Figure 3b, Supplementary Figure 1). The majority of variants identified are rare 18 

(minor allele frequency, MAF <1 %; 95% and 90% of autosomal SNPs and short indels respectively), 19 

while greater than 50% of variants were observed only in one of the populations. Functional 20 

annotation using Annovar15 identifies 88,995 coding variants anticipated to impact protein structure 21 

(Supplementary Table 1). Among the coding variants, 6,130 are non-synonymous SNPs, 34 are 22 

protein truncating SNPs, and 82,831 are indels (Figure 3a).  23 

 24 

Polygenic risk scores (PRS) confirm a strong relationship of genetic variation with quantitative traits 25 

and complex diseases, overall and in each of the three Asian ethnic groups. PRS also vary between 26 

populations (ANOVA p = 9.4x10-5 to 2.8x10-162; Figure 3c). The strongest separation was observed for 27 

depression, with higher PRS amongst Indians compared to Chinese and Malays (P=2.8x10-162). In 28 

contrast, although T2D PRS was strongly associated with diabetes risk amongst our Asian participants 29 

(OR for T2D 1.8 to 2.1 per SD, Figure 3d), T2D PRS shows limited variation between the Asian ethnic 30 

groups. Genetic factors identified by current Eurocentric genome-wide association studies thus also 31 

do not explain the three-fold higher risk of T2D observed amongst Indian and Malay individuals, 32 

compared to people of Chinese ancestry.  33 

 34 

 35 
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Quantification of DNA methylation in genomic DNA from whole blood (N=837,722 CpG sites), as a 1 

marker of genomic regulation reveals 16,444 unique CpG sites that are highly differentiated between 2 

the three Asian ethnic groups (P<2.9x10-8). These population specific methylation disturbances are 3 

enriched for location in DNase hypersensitivity sites (DHS), histone marks, enhancer and promoter 4 

regions, indicating ethnic specific patterns of genome regulation (Extended Figure 3a, 5 

Supplementary Table 2). The population-stratified methylation markers are enriched for location in 6 

the binding sites for specific, documented transcription factor across multiple cell lines (Extended 7 

Figure 3b, Supplementary Table 3). These include Pleiomorphic Adenoma Gene 1 (PLAG1) and 8 

Eleven-Nineteen Lysine-Rich Leukaemia Protein (ELL) (both P<10-4). PLAG1 is a nuclear transcription 9 

factor subject to maternal imprinting16, and which is implicated in pancreatic genesis, insulin secretion, 10 

and diabetes in neonates and adult organisms. We also note that the ethnically divergent methylation 11 

patterns strongly overlap CpG sites that predict future diabetes, providing evidence for nuclear 12 

regulatory disturbances that may contribute to the divergent metabolic outcomes observed between 13 

ethnic groups (Extended Figure 3c, Supplementary Table 4).  14 

 15 

We used PCA to explore potential processes driving genome regulation in the population. We show 16 

that the perturbations in DNA methylation are enriched for association with educational attainment, 17 

dietary quality, adiposity and cardiometabolic health, based on directly measured and genetically 18 

inferred exposures (Figure 4 and Extended Figure 4, Supplementary Table 5, Supplementary 19 

Table 6). Our results thus shine new light on the fundamental roles that these key modifiable social, 20 

behavioural, and physiological factors play, as primary, interlinked drivers of genomic regulation and 21 

health outcomes in diverse human populations. 22 

 23 

Metabolic variation in Asian populations  24 

Metabolomic profiling of plasma by high-throughput semi-quantitative mass spectrometry enabled us 25 

to quantify plasma concentrations of 1,073 discrete metabolites. We show that dietary patterns of our 26 

Asian participants intersect closely with their metabolic variation, enabling identification of metabolite 27 

sets that are representative of Asian dietary patterns; these associate closely with perturbations in 28 

regulatory pathways, and predict multiple chronic diseases.12 We also find that 153 of the 1,073 29 

plasma metabolites characterized show marked divergence between all three Asian ethnic groups 30 

(P<1x10-5, Figure 5a, Supplementary Table 7); of these 128 metabolites are of known identity. In 31 

general, amongst the 153 highly differentiated metabolites, Indians and Malays had lower levels of 32 

lipid metabolites, and higher levels of amino acids and nucleotides compared to Chinese (Figure 5b, 33 

Supplementary Table 7, Supplementary Table 8). 63% of lipid metabolites were inversely 34 

associated with the presence of hypertension, obesity, T2D, or CVD (P<4.7x10-5), and 16% were 35 
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inversely associated with all four phenotypes. Age, sex, genetic ancestry, diet, and BMI were each 1 

determinants of plasma concentrations for the highly differentiated metabolites (Figure 5c), but with 2 

substantial differences in their contribution on a metabolite specific basis. For example, BMI 3 

accounted for 18% of the variation in glutamate, while age accounted for 20% of the variation in the 4 

androgenic steroid dehydroepiandrosterone sulphate. Strong effects for genetic ancestry on metabolic 5 

variation were seen for 1-margaroyl-2-arachidonoyl-GPC (17:0/20:4), a phosphatidylcholine derived 6 

from eggs, fish, and meat.17–19 We show that concentrations of this metabolite are positively 7 

associated with self-reported intakes of red meat (P=5.3x10-57), fish (P=6.5x10-38), dairy (P=1.4x10-20), 8 

and poultry (P=1.1x10-17). Levels are also associated with chapati consumption, that is common in 9 

Indian communities (P=1.6x10-3). Circulating 1-margaroyl-2-arachidonoyl-GPC levels are strongly 10 

influenced by genetic variants in the FADS1/FADS2 gene cluster, a highly pleiotropic region that is 11 

linked to multiple lipids, cardiometabolic, inflammatory traits, skin diseases and pregnancy 12 

outcomes.20 FADS1/FADS2 variants are also known to be stratified between Asian populations, and 13 

recognised to influence metabolic responses to dietary intake, and may provide the basis for 14 

genomically determined ‘Precision Nutrition’.20 Our observations further highlight the important roles 15 

for both genetic and lifestyle factors in driving divergent metabolite profiles and health outcomes 16 

amongst Asian people.  17 

 18 

Potential for discovery through molecular epidemiological studies of Asian populations.  19 

The clinical, molecular, behavioural, and environmental diversity between the Asian ethnic groups 20 

provides robust new opportunities for discovery relevant to human biology and health outcomes. To 21 

illustrate this, we carried out genome-wide association of the 153 ethnically diverse plasma 22 

metabolites. We identify 365 independent genetic variants in 140 genomic loci, that are significantly 23 

associated with 113 metabolites at a genome wide significance threshold (P< 5x10-8) (Figure 6a). We 24 

observe a strong degree of genetic pleiotropy at multiple loci, in particular the FADS1/FAD2 gene 25 

locus which was associated with 39 metabolites (Figure 6b). Summary-data-based Mendelian 26 

Randomisation (SMR) analysis of metabolites with cis-eQTLs identified 1,176 significant gene-27 

metabolite pairs after multiple testing correction (P<4x10-5), comprising 585 genes and 104 28 

metabolites (Supplementary Table 9). We were able to replicate 166 gene-metabolite associations 29 

and identify 51 additional associations using cis eQTL information obtained using the HELIOS 30 

transcriptomics data (Supplementary Table 9, Supplementary Table 10). Colocalization analysis 31 

reveals shows that 79 of these gene-metabolite pairs are likely to share a common causal variant 32 

(coloc-H4 P>0.7). This includes the novel finding that plasma concentrations of dopamine 3-O-sulfate, 33 

are influenced by genetic variants at the cis-eQTL locus for SMAD5, a transcriptional regulator protein 34 

involved in the TGF-Beta pathway (Figure 6c) and implicated in the development of dopaminergic 35 
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neurones.21 Similarly, variation in plasma levels of metabolite X-11381, are determined by genetic 1 

variation found at the cis-eQTL locus for Nephrocystin 4 (NPHP4, Figure 6d), which plays an 2 

important role in renal tubular development and function. X-11381 is also associated with raised blood 3 

pressure and cardiovascular disease in our cohort (false discovery rate, FDR– P<0.05; 4 

Supplementary table 7). Our rich multi-omics data thus provide multiple opportunities to improve 5 

understanding of the molecular pathways influencing metabolic performance and other pathways 6 

leading to chronic disease in Asian populations. 7 

 8 

Linkage to national health and administrative records. 9 

With participant consent, we link HELIOS research phenotypic data securely to their national health 10 

data, using the NRIC, a unique national identifier that is held by Singaporean citizens and Permanent 11 

Residents. De-identified linked research, health and administrative data were made available through 12 

the Trusted Research and Real-World Data Utilisation and Sharing Tech (TRUST) platform 13 

(https://trustplatform.sg). National Health and Administrative Records were identified for 95% of study 14 

participants, and include national disease registry records, disease diagnosis, national insurance 15 

claims, medications, laboratory tests, radiology, surgical procedures, and death registry records from 16 

1998 to 2020. The linked national health and administrative records for our 10,004 participants include 17 

1.6 million laboratory test results, 776,505 prescriptions and 131,211 diagnostic episode codes. Using 18 

diabetes as a case study, we show that the national health data recapitulate age stratified, ethnic 19 

disparity disease risk, and enable identification of incident diabetes cases, with greatest risk amongst 20 

participants who are older, obese and impaired fasting glucose (Extended Figure 5). These linked 21 

national data thus provide deep opportunities to extend baseline health assessment of participants, 22 

and to identify future health trajectories, including incident disease.  23 

 24 

Reproducibility of measurements.  25 

We demonstrate the reproducibility of our research phenotypic characterisation, by carrying out repeat 26 

assessment of 398 participants, one year after enrolment (range 58 to 1073 days). We show moderate 27 

to strong intra-class correlations for measures made, in all domains of assessment, a performance 28 

that is similar or better than those reported by UK Biobank22 and other major population studies.23 In 29 

general, objective physiological measurements were more reproducible than self-reported lifestyle and 30 

cognitive measurements (Extended Figure 6). High data completeness and reproducibility further 31 

support the validity of our unique multiethnic Asian dataset.  32 

 33 

  34 
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Discussion  1 

Asian populations are widely recognised to be under-represented in global genomic and health-related 2 

research cohorts, compared to their European counterparts. This represents an important impediment 3 

to identification of the population specific behavioural, environmental, genomic, and molecular 4 

exposures and processes that impact Asian health. The limited ethnic diversity of existing population 5 

studies also represents a major obstacle to the development of effective and evidence-based 6 

approaches for accurate diagnosis and therapeutic intervention, that address the health needs of 7 

Asians.  8 

 9 

To advance beyond current state-of-the-art, we have established the HELIOS study, a deeply 10 

phenotyped, longitudinal population cohort comprising 10,004 men and women from the multi-ethnic 11 

Asian population of Singapore. Our participants underwent extensive clinical, behavioural, 12 

environmental, and molecular characterisation, adopting techniques that are validated, aligned to best 13 

practices, and directly interoperable with international precision medicine cohort studies. HELIOS 14 

includes people of Chinese (East Asian), Malay (Southeast Asian) and Indian (South Asian) 15 

background. The inclusion of these three major Asian ethnic groups provides an opportunity for 16 

precision medicine research, that has the potential for relevance beyond Singapore, and across the 17 

wider Asia-Pacific region. The clinical characteristics of the cohort are broadly representative of the 18 

population from which they were recruited and are notable for the high rates of diabetes and related 19 

metabolic disturbances, that are recognised to be highly prevalent amongst Asian people.  20 

 21 

Whole genome sequencing demonstrates the genetic diversity of the population. While the majority of 22 

individuals cluster in one of the three main ancestral groups, there is also evidence for recent 23 

population admixture between each of these three groups. This unique population genetic architecture 24 

provides the basis for the presence of functionally and clinically relevant DNA sequence variation, that 25 

is specific to Asian subgroups. Characterisation and interpretation of this population genetic variation 26 

is anticipated to provide opportunities for new discoveries relevant to disease aetiology and is also an 27 

essential prerequisite for the application of genomic medicine in Asian populations.  28 

 29 

Our comprehensive characterisation of study participants is specifically designed to capture a wide 30 

spectrum of exposures relevant to health, as well as to reveal the systems biology that links these 31 

exposures to phenotypic variation and health outcomes in Asia. In keeping with this approach, we 32 

demonstrate the presence of variation in genome regulation and metabolic performance between the 33 

three Asian ethnic groups. For example, we identify extensive, ethnic-specific perturbations in DNA 34 

methylation that intersect with PLAG1, a nuclear transcription factor linked to pancreatic biology and 35 
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diabetes,24 which overlay CpG sites are linked with obesity and diabetes,25 mirroring the divergent 1 

metabolic outcomes between ethnic groups. Stratified genomic regulation correlates with socio-2 

economic factors, population specific dietary habits, physical activity, adiposity, and genetic diversity; 3 

these observations shine new light on the fundamental roles that social, behavioural, and inherited 4 

factors play as interlinked drivers of health outcomes in diverse human populations. We further use 5 

metabolomic profiling to demonstrate extensive variation in metabolite concentrations between our 6 

Asian groups, that reflects their specific patterns of diet, the differing levels of adiposity, the presence 7 

of genetic variation and transcriptional control. In parallel, metabolite profiling of our unique Asian 8 

population cohort has enabled identification of previously unrecognised pathways underlying 9 

cholesterol transport and cardiovascular risk, and potential opportunities for novel therapeutic 10 

approaches to cardiovascular disease prevention.13  11 

 12 

Linkage to national health data relevant to health provides powerful opportunities to enrich baseline 13 

phenotyping of participants in population-based cohorts, as well as to identify longitudinal health 14 

outcomes efficiently and accurately. Longitudinal population cohorts in Europe and North America 15 

have a long tradition of successful record linkage that has accelerated health-related research in these 16 

settings. In contrast, record linkage has been uncommon amongst the available Asian population 17 

cohorts, reflecting both limited implementation of national health data, as well as the nascent state of 18 

regulatory frameworks to enable safe data integration. Here we demonstrate the ability to achieve 19 

linkage to health and administrative records amongst the multi-ethnic Asian populations of Singapore, 20 

using a secure platform for linkage, deidentification and analysis, hosted by the Singapore Ministry of 21 

Health (the TRUST platform). We use this framework to retrieve extensive medication, laboratory, and 22 

diagnostic data for our study participants. With diabetes as a use case, we demonstrated the ability to 23 

identify accurately people with diabetes both cross-sectionally and prospectively, and to show 24 

expected longitudinal risk relationships. This successful approach to secure record linkage is 25 

unrivalled in the Asia Pacific region and will be instrumental in advancing the research goals of the 26 

study, for the benefit of Asian people living in Singapore and other global settings.  27 

 28 

With rich, multi-layered baseline data and long-term follow-up through linkage, the HELIOS study 29 

provides a world class resource for biomedical researchers from a wide range of disciplines, to 30 

investigate the behavioural, environmental, genomic, and molecular factors impacting health in Asian 31 

populations, with a level of detail that has not been previously possible. The successful approaches to 32 

population-based research established in the HELIOS study also provides the blueprint for ongoing 33 

efforts to create a precision medicine cohort comprising 100,000 people, the SG100K population 34 

study, to enable national efforts to advance precision medicine for Asian populations.   35 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307259doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307259
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Methods 1 

HELIOS is a prospective population-based cohort, comprising men and women aged 30 to 84 years, 2 

living in Singapore (www.healthforlife.sg; https://www.instagram.com/heliossg100k/;  3 

https://www.facebook.com/HELIOSSG100K/, IRB approval by Nanyang Technological University: IRB-4 

2016-11-030). Study design was informed by initial pilot studies (N=184, recruited between January 3, 5 

2018 and March 21, 2018, Supplementary Table 11), which enabled development of community 6 

engagement and involvement activities, study protocols and training programs. Participants were 7 

recruited between April 2, 2018 and January 7, 2022. Assessment of reproducibility was carried out in 8 

398 participants (recalled between September 3, 2019 and January 28, 2022, Supplementary Table 9 

12, Extended Figure 6). The study is a template for future efforts with increased sample size 10 

(SG100K, target 100,000 participants). 11 

 12 

• Recruitment. Study participants were recruited from the Singapore general population through a 13 

range of community outreach programs to ensure participation from ethnic minority groups, as well 14 

as people across socio-economic groups. Community engagement included language-specific 15 

recruitment drives conducted in the worship places, religious associations, and community 16 

associations across Singapore; multilingual study advertisement and documents (English, Chinese, 17 

Malay, and Tamil); and collaboration with a range of employers and occupational groups. 18 

Individuals were excluded if they were pregnant or breastfeeding, or had acute illness, major 19 

surgery within the previous 3 months, current participation in a drug trial, or cancer treatment in the 20 

past year. 21 

• Consent. HELIOS asks permission from participants to use the data and samples that they 22 

contribute, for clinical and molecular epidemiological research focussed on improving human 23 

health. This includes the application of ‘untargeted’ molecular profiling techniques that assess 24 

genomic, proteomic, transcriptional, metabolomic and other ‘omic’ variation in the biological 25 

samples collected. Participant consent also includes permission for linkage to disease registers, 26 

medical records, social care datasets and other health-related datasets held by Singapore’s public 27 

bodies. Linkage is enabled by the Singapore NRIC, a unique national identifier allocated at birth, 28 

and with universal coverage. Consent provides permission for use of the data and samples from 29 

participants, by both academic and industry researchers, and for recontact of participants, including 30 

recontact based on phenotypic or genotypic characteristics. The HELIOS study operates under the 31 

governance framework of the Nanyang Technological University, and with Institutional Review 32 

Board approval (Ref: 2016-11-030)  33 

• Baseline examination. At enrolment, participants complete a comprehensive physiological, clinical, 34 

and behavioural assessment, carried out in a single visit (Extended Table 2). The electronic health 35 
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and lifestyle questionnaires collect demographic, lifestyle, reproductive history, and other potentially 1 

health-related information. In addition, a broad range of physiological measurements, including a 2 

state-of-the-art imaging module comprised of a 3-D carotid ultrasound, dual energy X-ray 3 

absorptiometry (DEXA) scans for bone density and body composition, and comprehensive optical 4 

imaging, are performed. These imaging technologies will enable the identification of pre-clinical 5 

disease phenotypes that will aid prognostic and preventative research. Participants also complete a 6 

physical fitness test and have physical activity monitored using accelerometer devices over a 7-day 7 

period. Biological samples (blood, urine, saliva, stool, and skin tapes) are also collected. The 8 

assessment process, biological samples collection and storage, quality management, return of 9 

assessment findings, ethics and data security are described in detail in Supplementary Methods.  10 

• Follow-up. The HELIOS study will follow up participants long-term to identify any event of interest. 11 

This design allows the investigation of the causes and nature history of a broad range of diseases 12 

and health conditions. Participants enrolled in the HELIOS study will be followed up through routine 13 

health record linkage, re-contact with participants, Singapore Cancer Registry, Ministry of Health, 14 

and Health Promotion Board records, where available, for medical records, ongoing behaviours and 15 

built environment exposure. 16 

 17 

Analysis of biological samples. 18 

• Clinical chemistry. This includes assessment of fasting glucose, insulin, and lipid profile, as well as 19 

HbA1c and CRP. Fasting glucose, HbA1c and lipid profile were measured from fasting blood 20 

samples by the accredited laboratory (QuestLab, Singapore, SAC–SINGLAS ISO 15189:2012). 21 

Fasting insulin and CRP were measured with immunoassays using the ADVIA Centaur XPT 22 

Immunoassay System and ADVIA 1800 Chemistry System, respectively (Siemens Healthcare, 23 

Erlangen, Germany). 24 

• Whole Genome sequencing (WGS). Whole genome sequencing was carried using the Novaseq 25 

platform, with data processing using DRAGEN v3.7.8. Individual sample Variant Call Format (VCF) 26 

files were transformed into HAIL matrix tables26. Multi-allelic sites were efficiently split into multiple 27 

rows of bi-allelic sites, ensuring a comprehensive representation of the genetic variation. Samples 28 

were merged in batches of 1,000, to create a unified HAIL matrix table representing the sample 29 

cohort, with 258,062,302 genetic variants. Stringent variant and sample quality control (QC) 30 

parameters were employed to ensure the accuracy and reliability of the genomic data. These 31 

included a number of q30_bases (threshold 77.5GB high quality bases), as well as ratios for 32 

transition /transversion, heterozygous/homozygous variation, and insertion/deletion, applying a 33 

threshold of 6x Median Absolute Deviation (MAD) for each. Samples exhibiting more than 1% 34 

cross-contamination, call rate <95%, autosomal coverage <95% at 15X, or discordant sex 35 
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information (reported vs genetically determined) were also flagged. The QC metrics were added as 1 

annotations to the HAIL Matrix table, which was then converted to a merged VCF file of 10,000 2 

samples. The VCF file was also converted and stored as PLINK227 binary files to perform 3 

downstream analysis.  4 

• Methylation profiling. Bisulfite conversion of genomic DNA was performed using the EZ DNA 5 

methylation kit (Zymo Research, Orange, CA), with DNA methylation quantified using the Illumina 6 

Infinium MethylationEPIC BeadChip® array (EPIC) (Illumina, Inc, CA, USA) according to 7 

manufacturer protocols. Bead intensity was retrieved using the minfi package in R, with a detection 8 

P<0.01 used for marker calling. Of the 846,604 positions assayed by the array, we excluded 9 

markers with call rates <95% (N=8,882). In total 58 samples were excluded, 2 for array scanning 10 

failure, 39 for sex inconsistency and 17 duplicates. None of the samples failed sample call rate 11 

(<95%). This left us with 837,722 CpG sites and 2,342 samples for analysis. We analysed 12 

epigenome-wide data in R using minfi and other R scripts, in accordance with the CPACOR 13 

pipeline.28 In brief, marker intensities were normalised by quantile normalisation, with white blood 14 

cell subsets imputed.29 15 

• RNAseq. RNAseq libraries were prepared using samples of whole blood (n=1,234) collected in 16 

PaxGene RNA tubes at enrolment. RNAseq libraries were prepared from at least 1μg of total RNA 17 

using NEBNext® Ultra™ II Directional RNA Library Prep (New England Biolabs, Inc.), with 18 

GLOBINClear (Thermo Fisher Scientific) for depletion of globin gene RNA and Ribosomal RNA 19 

(rRNA). The libraries were sequenced on a NovaSeq6000, using a paired-end run of 2 x 150bp. We 20 

aimed for at least 30M aligned reads per library (~9Gb of data). Adapter and quality trimming were 21 

performed in TrimGalore30 whereas SortMeRNA was used for the removal of rRNA.31 Alignment to 22 

the reference genome (GRCh38) was done using STAR version 2.7.9a32, followed by quantification 23 

of reads with RSEM version 1.3.3.33, which identified a total of 60,708 genes. Gender mismatch 24 

check was performed by interrogating for anomaly across 5 genes – namely XIST, RPS4Y1, 25 

EIF1AY, DDX3Y, and KDM5D. A total of 6 samples had failed this check, resulting in a total of 26 

1,228 samples for downstream analysis. Genes with transcript per million (TPM) ≥1 and read count 27 

≥6 in at least 20% of the samples were retained; resulting in a remaining total of 12,434 genes. 28 

Finally, the genes were normalized using the Trimmed Mean of the M-values (TMM) approach34. 29 

• Metabolite profiling. The Metabolon Global Discovery Panel was used for untargeted mass-30 

spectrometry-based metabolic profiling of 10,000 fasting EDTA plasma samples. Samples were 31 

initially stored at -80C, then thawed, aliquoted, and shipped on dry ice to Metabolon.  Samples 32 

were prepared and extracted for assay using four methods: two separate reverse-phase 33 

(RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), RP/UPLC-34 

MS/MS with negative ion mode ESI, HILIC/UPLC-MS/MS with negative ion mode ESI. All methods 35 
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utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo 1 

Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated 2 

electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass 3 

resolution. Several recovery and internal standards, and controls (blanks and pooled matrices) 4 

were added for quality control (QC) purposes.  Experimental samples were randomized across the 5 

platform run with QC samples spaced evenly among the injections. Five samples failed Metabolon 6 

QC standards and were removed from analysis. Peak area-under-curve was used for metabolite 7 

quantification, and data across inter-day batches were normalized by median scaling. Data 8 

corresponding to (i) 235 samples from a second visit of the same participant, and (ii) 9 outlier 9 

samples (greater than 6 standard deviations from the mean of first and second principal 10 

components) were excluded. Metabolites missing in more than 25% of the data were removed, and 11 

the remaining imputed with minimum value, then log-transformed and standardized before further 12 

data analysis.  13 

 14 

Statistical analyses 15 

• Clinical definitions. Hypertension was defined as self-reported and/or blood pressure ≥140/90 16 

mmHg; obesity is BMI ≥30 kg/m2.35 Type 2 diabetes was self-reported and/or fasting glucose 17 

≥7.0mmol/L or HbA1c ≥6.5%.36 Cardiovascular disease includes subclinical atherosclerosis, defined 18 

as the presence of atherosclerotic plaque or mean cIMT ≥0.8.37 Depressive symptoms are PHQ-9 19 

score ≥1038, whereas anxiety symptoms: GAD-7 score ≥10.39 Osteoporosis is defined as lumbar 20 

spine bone mineral density T-score of -2.5 or below.40 21 

• Correlation across phenotypes. The correlation coefficients across phenotypes were calculated 22 

using Pearson correlation analyses for z-scored transformed measurements and visualised in 23 

heatmap.  24 

• Dietary habit and nutrition. Ethnic variations in dietary intakes (foods and macronutrients) and diet 25 

quality (DASH score)41 were assessed using the validated FFQ42. Food items were recorded as 26 

servings/day, and macronutrients were expressed in kcal/day after accounting for type of 27 

macronutrients/serving and weight/portion of each food, and subsequently aggregated to derive % 28 

contribution to total daily energy intake. For macronutrients, % macronutrient was scaled and 29 

visualised as radar plot (R package fmsb) across ethnicity. For food items, daily servings were log-30 

transformed and analysed using linear regression, adjusted for age, sex and ethnicity, with Chinese 31 

being the reference. We applied Bonferroni-Hochberg corrected p-value threshold of P<1x10-100 32 

and selected the top 20 foods significantly higher in Malay and in Indian subgroups. Foods were 33 

grouped into 4 categories based on animal source or relevance to ethnicity. For DASH, a modified 34 

score was derived from 7 components (fruits, vegetables, wholegrains, nuts and legumes, low-fat 35 
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dairy, red and processed meats, and sweetened beverages), ranging from 0 (low quality) to 35 1 

(high quality). Difference across ethnicity was analysed using linear regressions. 2 

• Physical activity. Physical activity in various domains and intensity levels and sedentary behaviour 3 

were derived based on the validated long IPAQ43. Participants with at least 150-300 minutes of 4 

moderate-intensity or at least 75-150 minutes of vigorous-intensity physical activity or an equivalent 5 

combination of moderate- and vigorous-intensity activity throughout the week and with at least 2 or 6 

more days on moderate- and vigorous-intensity activities a week were deemed as meeting the 7 

WHO guidelines for recommended physical activity44. Accelerometry data were collected as an 8 

optional assessment amongst the first 1000 participants in the next phase of the HELIOS Study. 9 

Participants wore Axivity AX3 wrist-worn triaxial accelerometer on their non-dominant wrist 10 

continuously for 7 consecutive days, including during sleep. Raw accelerometry data were 11 

calibrated to local gravitational acceleration45,46 following which movement-related acceleration was 12 

expressed using the Euclidean Norm Minus One (ENMO) metric (https://github.com/MRC-Epid). 13 

This method has been validated against energy expenditure in free-living conditions45,46 to generate 14 

mean Euclidean Norm Minus One (ENMO). The data of 867 out of 1000 participants were suitable 15 

for analysis. Comparison across ethnicities were performed using Kruskal-Wallis rank sum and Chi-16 

square tests.  17 

• Environment. OneMap APIs (https://onemap.gov.sg) were called within the R environment to 18 

generate the latitude and longitude of each participant’s postal code and planning area. All 19 

geospatial Singapore data with relevant attribute tables were extracted from the national open data 20 

collection (https://beta.data.gov.sg). The extracted tables include planning area, population census 21 

by subzones; subzones by type of dwelling; and parks and nature reserves. Open-sourced QGIS 22 

v3.32.1 software was used to project geospatial data and population density. Geospatial tags for 23 

shops selling food and beverages and shopping centres, as well as amenities for sustenance, were 24 

extracted using QuickOpenStreetMap plug-ins. OpenStreetMap IDs representing food amenities 25 

(n=9901) were tagged to the respective planning area in Singapore using OneMap API. To 26 

generate bubble plots linking environmental factors with disease outcome, the area (m2) per 27 

planning area polygons was calculated to derive population density using sf and lwgeom package. 28 

• Annotation of Genetic Variants. Variants were annotated using the ANNOVAR tool15, with the 29 

refGene GRCh38 reference. Novel variants present in our dataset were identified after comparing 30 

the dbSNP v156 database47 of all reported variants.  31 

• Population Structure analysis and clustering. To understand the genetic structure and stratify our 32 

population, we applied strict filters to the data excluding variants with MAF < 5% (i.e. present in less 33 

than ~500 out of the 10,000 genotyped individuals), Hardy-Weinberg equilibrium (HWE) P<0.1%, 34 

sample and variant missingness <2% and removed variants in the MHC region as well as the Chr8 35 
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Inversion region. Duplicated samples (n=3) and samples with reported ancestry labelled as 1 

“Others” (non-Southeast Asian [n= 60]) were removed for the current analysis. Linkage 2 

Disequilibrium (LD) based pruning was performed for the final filtered data with an LD-r2 of 0.1 3 

within a 200KB window. Genetic relatedness was estimated using the genome function to 4 

determine the pi_hat estimate for all pairs of individuals in our dataset. We performed PCA to 5 

extract the top 50 genetic PCs from our data. Given the complex structure of our data, we use a 6 

data-driven approach to determine and cluster the individuals belonging to specific ethnic groups. 7 

The results of the PCA analysis were used to perform K-means clustering (K=3) to group  the 8 

individuals into three super populations (Chinese, Indian and Malay). These ancestry labels were 9 

used to estimate the ancestry-stratified allele frequency file, which is used as input to run 10 

supervised admixture analysis using SCOPE.48 The results from the admixture analysis were used 11 

to determine the 6 final ancestry clusters using a semi-supervised K-means clustering approach. 12 

Additionally, to understand the genetic structure of our data with reference to 1000 genomes49, we 13 

merge the LD independent SNPs with 1KG data from four super populations and perform PCA 14 

again with the merged set of samples and variants after applying the same filters as above. All the 15 

filtering, PCA, LD and relatedness analysis were performed using the PLINK2 tool27 and the k-16 

means clustering was done using R. 17 

• PRS. Summary statistics for estimating PRS for the genomic and the epigenomic variation analysis 18 

were obtained from the PGS Catalog (Supplementary Table 13)50, selecting the study with best 19 

possible trans-ancestry base data and validation. PRS was estimated using the score function in 20 

PLINK227, separately for each ancestry group, and then merged and normalized to identify ancestry 21 

level differences. The performance of PRS was tested separately for each ethnic group while 22 

adjusting for age and sex, and meta-analysed to determine trans-ancestry performance. For the 23 

PRS used in the methylation analysis, scores were estimated together for all the individuals with 24 

methylation data available.  25 

• DNA methylation. We first identified CpG sites that were considered significantly differentially 26 

methylated between any pair of Asian ethnic subgroups at a p-value threshold of 2.9x10-8. This 27 

cutoff was obtained via a two-step process. Firstly, we defined epigenome-wide significance as 28 

P<8.62x10-8, which was obtained via permutation testing and is also close to what would have been 29 

obtained via Bonferroni correction. We then performed a second Bonferroni adjustment for the 30 

multiple testing between the three pairs of ethnic subgroups (Chinese versus Malay, Chinese 31 

versus Indian, and Malay versus Indian), which brings us to P<2.9x10-8. To further assess the 32 

relationship between DNA methylation and metabolic outcomes, we focused on 315 sentinel CpG 33 

sites that are significantly associated with incident T2D based on our epigenome-wide association 34 

testing performed in age-, sex- and ethnicity-matched controls in the Translating Omics into A 35 
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Stratified approach for prevention of T2D (TOAST) study. As one of the CpG sites was not found in 1 

HELIOS, this left us with 314 CpG sites for the analyses. DNA methylation was measured using 2 

baseline samples collected before onset of T2D, with primary analysis of epigenome-wide data 3 

performed as described previously28. In brief, the association of each autosomal CpG site with 4 

incident T2D was tested using logistic regression, adjusted for confounders such as age, sex and 5 

further adjusted for imputed white blood cells (WBC) proportion and PC1-30 of control probe 6 

intensities. To assess the association of these CpG loci with BMI in the HELIOS participants, we 7 

then performed linear regression with the same covariate adjustments. Correlation between CpG 8 

sites were assessed using Pearson correlation analyses, with the circos plot generated by the 9 

circlize package.  10 

• Functional Annotation of Sentinel CpG:  We perform functional overlap analysis and annotation of 11 

the sentinel CpGs using eFORGEv2.051 analyzing the 16444 CpG sites for enrichment across 12 

DNase I hotspots, 5 histone marks and 15 chromatin states across 39 cell types from the Roadmap 13 

Epigenomic Consortium.52 We determine the number of Sentinel CpGs overlapping with the 14 

annotated regulatory and chromatin regions in the different cell types. The enrichment of our 15 

sentinel CpG set was evaluated by comparing it to 1,000 background sets that contain an equal 16 

number of sites as the input. The background sets were matched using gene annotation and CpG 17 

island annotation and the mean overlap for the background sets was calculated. We used the 18 

background sets to calculate the fold enrichment as observed count /mean (expected counts) and 19 

obtained an empirical P value from the distribution of the background sets.   20 

• Transcription Factor (TF) Enrichment: The binding site information for the 1210 human TFs tested 21 

was obtained from the Remap database, 2022 release (https://remap.univ-amu.fr/).53 We used the 22 

homo sapiens Cis Regulatory Modules (CRM) peaks for this analysis. We first determine how many 23 

of our sentinel CpGs overlap with the binding sites of the different TFs, and then estimated the fold 24 

enrichment; p-value for enrichment was calculated by comparing the overlap of our sentinels to the 25 

overlap of CpG probes from the background set of all CpGs. The p-value for enrichment was 26 

obtained using hypergeometric test and corrected for multiple testing at a False Discovery Rate 27 

threshold of 0.05 (Supplementary Table 4).  28 

• Enrichment across behavioural, lifestyle and genetically inferred traits. We tested the associations 29 

between the 16,444 ethnically differentiated CpGs, and 187 trait-exposures, including directly 30 

measured phenotypes as well as PRS to derive genetically inferred exposures (Supplementary 31 

Table 5). Linear or logistic regression was used, with adjustment for age, sex, ethnicity, methylation 32 

array control probe PCs, and white cell subset composition estimated by the Houseman method29. 33 

We then performed the same analysis for all CpGs on the MethylEPIC array (837,722) to estimate 34 

background expectations. We then calculated enrichment (observed vs. background), using the 35 
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hypergeometric test. We inferred statistical significance at P<0.05/32, based on an estimate of 32 1 

independent phenotypes derived from PCA of phenotypic covariation. 2 

• Epigenetic PCA analysis. To understand the genetic and environmental factors influencing genome 3 

regulation in our population, we also examined the relationship of 186 exposures (Supplementary 4 

Table 6) with the principal components of variation in methylation at the 16,444 CpG sites that are 5 

differentiated between our Asian ethnic groups. We used PCA as a data reduction strategy to 6 

identify the primary axis of variation in the methylation at these CpG sites. We then tested the 7 

associations with the 5 PCs with potential exposure, adjusted for age, sex, ethnicity, methylation 8 

array control probe PCs, and white cell subset composition estimated by the Houseman method29. 9 

We again inferred statistical significance at P<0.05/32, based on an estimate of 32 independent 10 

phenotypes derived from PCA of phenotypic covariation. 11 

• Metabolic variation. To explore the variation in metabolite levels across ethnicities, we randomly 12 

split the dataset into discovery (70%) and test (30%) cohorts. Using linear regression analysis, we 13 

estimated the association between variation in levels of 1,073 metabolites and self-reported 14 

ethnicities (Malay compared to Chinese, Indian compared to Chinese, and Malay compared to 15 

Indian) in the discovery cohort, adjusted for age, sex, and shipment batch. We applied a 16 

Bonferroni-corrected p-value threshold of 1x10-5 to account for multiple testing (1,073 metabolites x 17 

3 pair-wise tests). We then repeated the same set of analyses for these 162 metabolites in the 18 

replication cohort, and a subset of 153 metabolites that met the following criteria: 1) significantly 19 

associated with ethnicity in the discovery cohort at P<1x10-5, and 2) significantly associated with 20 

ethnicity in the test cohort at P<0.05 and with the same direction of estimates. In an age and sex-21 

matched cohort of 1,146 participants per ethnicity, we performed PCA of the 153 metabolites to 22 

assess the extent of clustering of individuals by ethnicity. Out of these 153 metabolites, 128 were 23 

well-characterized and known metabolites. We evaluated associations between these 128 24 

metabolites and four common health outcomes: hypertension, obesity, T2D, and CVD, using 25 

logistic regressions adjusted for age, sex, and shipment batch. For each phenotype, we applied a 26 

Bonferroni-corrected p-value threshold of 4.7x10-5 to account for multiple testing (1,073 27 

metabolites). We also evaluated associations between a metabolite of interest (1-margaroyl-2-28 

arachidonoyl-GPC) and FFQ foods, adjusted for age, sex, ethnicity and shipment batch, and 29 

reported Bonferroni-Hochberg corrected p-values for the top four foods. Furthermore, for each of 30 

these metabolites, we calculated partial R-squared values to estimate the contribution of genetic 31 

ancestry and various demographic and lifestyle factors on metabolic variation. Genetic ancestry 32 

was represented using the first 50 genetic PCs, and dietary habits using the first 10 PCs 33 

representing 169 food items and major macronutrients. Finally, pairwise correlation between 34 

metabolites was estimated using Pearson correlation and a significance p-value threshold of 1x10-6 35 
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was applied to account for multiple testing. Metabolites were grouped into 10 categories (super-1 

pathways) and annotated to pathways or chemical classes based within each category (sub-2 

pathways). The circos plot was generated using the circlize package. 3 

• RNA sequencing.  Expression quantitative trait loci (eQTLs) were analysed using Matrix eQTL (R 4 

package MatrixEQTL), with gene expression modelled as a regression model of genotypes and 5 

covariates, including age, sex, ethnicity, RIN (RNA integrity number) and the top 6 PEER 6 

(Probabilistic Estimation of Expression Residuals) factors.54 For the identification of significant cis 7 

and trans eQTLs, a Bonferroni-corrected p-value threshold at P<0.05 was applied.  8 

• Genome Wide Association Studies (GWAS). To identify genetic variants associated with metabolite 9 

levels in the HELIOS dataset, we first divide the cohort to select only individuals having metabolite 10 

data and were clustered in our three main ancestry groups (Chinese, N=5,961; Indian: N=1,470; 11 

Malay: N=838) that were determined by our data driven approach. The individuals in the three 12 

admixed group (n = 409) were not included in the analysis. We then perform GWAS QC and 13 

analysis for each group separately, followed by inverse variance meta-analysis to create summary 14 

statistics across the study population. GWAS variant QC filters were: MAF < 0.5%, HWE p-value 15 

<1x10-6, Missingness <2%. Sample filters were pi_hat < 0.75, IBC <|0.2| and Sex-mismatch. We 16 

used PLINK227 to get the final set of samples and variants to be used for the analysis. Overall, 17 

5,940 Chinese, 1,461 Indians and 833 Malays with 12.7, 16, and 14.7 million variants respectively 18 

were included in the analysis. For the GWAs of metabolites, we log transformed the metabolite data 19 

and removed individuals with the highest deviation (>5 SD from the mean). Age, sex, top 20 20 

genetic PCs, and batch were used as covariates in the analysis. The individual GWAS for each 21 

ancestry was performed using REGENIE.55 The subset of SNPs for REGENIE step 1 were chosen 22 

after filtering for MAF <5%, HWE P<1x10-6 in the ethnic group being analysed. We removed the 23 

MHC and chr8 inversion regions, followed by LD pruning at an r2 of 0.05 within a 200kb window. 24 

Meta-analysis of the three summary statistics was performed using METAL with a fixed effect 25 

model controlling for genomic inflation across each dataset. Variants were filtered for being in at 26 

least two datasets, heterozygosity P>0.05 and max difference between allele frequencies <0.5.  27 

• SMR and colocalization: Summary data-based mendelian randomization analysis (SMR)56 was 28 

performed to identify pleiotropic association between gene expression (exposure) (from the eqtlgen 29 

dataset56) and metabolite levels (outcome) using GWAS summary statistics. To limit the number of 30 

tests, we include SNPs that pass genome-wide significance in our GWAS as well as in the cis-31 

eQTL dataset. Analysis was performed using the SMR tool57. For the metabolite-gene pairs with 32 

significant SMR association, we performed colocalization analysis using the coloc package 33 

implemented in R.58 The region of 1MB on each side of the SMR associated SNP was used for 34 

colocalization analysis under a single causal variant assumptions and the default prior probabilities. 35 
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Metabolite- Gene pairs with a coloc H4 posterior probability >0.7 were considered to be colocalized 1 

and share a common causal variant.  2 

• Validity and reproducibility assessment of measurements. Pairwise correlation matrix across 3 

phenotypes was calculated using Pearson correlation analyses for z-scored transformed 4 

measurements. The reproducibility of 107 measurements in 10 domains (Supplementary Table 5 

14) between baseline test and the repeated study was assessed using correlation coefficients 6 

calculated from Spearman correlation analysis for z-scored transformed measurements. 7 

 8 

Data availability 9 

The HELIOS phenotype and genotype data used in this manuscript are protected and are not publicly 10 

available due to data privacy regulations. Data access request can be submitted to the HELIOS Data 11 

Access Committee by emailing helios_science@ntu.edu.sg for details. For accessing de-identified 12 

National Health and Administrative records linked through TRUST, please contact TRUST platform 13 

(https://trustplatform.sg) for details.  14 

 15 

Code availability 16 

The analytic codes are available in the following github repository.   17 
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Figure 1.  Overview of participant recruitment, data and biospecimen collection, and 
linkage. Abbreviations: DEXA: dual energy X-Ray absorptiometry; ECG: electrocardiogram; 
OCT: optical coherence tomography; OCTA: optical coherence tomography angiography.
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Figure 2. Lifestyle factors across three populations. a) Longitudinal changes in 
macronutrient trends nationally from 1998 to inception of HELIOS study in 2022 (n=10,004). 
Ethnic variations in b) macronutrients (proportion to total energy intake), c) diet quality 
represented by a modified DASH score (range from 0 for low quality to 35 for high quality) and 
d) top 20 FFQ foods (servings/day) significantly different across ethnicities within HELIOS 
study. e) Physical activity and f) Accelerometer-based physical activity according to the levels of 
self-reported physical activity (R=0.23, p=1.7x10-11). g) The proportion of people who meet the 
WHO guideline of physical activity by ethnicity and the proportion of physical activity across. h) 
The relationships between lifestyle factors and cardiometabolic phenotypes are heterogeneous 
across ethnic groups. Abbreviations: DASH: dietary approaches to stop hypertension; IPAQ: 
International Physical Activity Questionnaire; MET: metabolic equivalent of task; MUFA: 
monounsaturated fat; PUFA: polyunsaturated fat; SFA: saturated fat; WHO: World Health 
Organization. 
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Figure 3. Genomic variation in Asian Populations. a) Number of variants annotated in each functional coding mutation category, 
by ancestry. The darker shades indicate unique variants observed only in the specific ancestry. b) 2-dimensional PCA genomic 
variants by ancestry group. c) Distribution of PRS scores for six complex traits in the three major ancestry groups. d) Forest plot 
displaying association PRS scores with respective complex trait by ancestry group, and overall [C: Chinese, M: Malay, I: Indian, T: 
Trans-ancestry]. 
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Figure 4. PCA plots of DNA methylation levels at 16,444 CpG sites that are highly stratified between our Chinese, Indian and 
Malay Asians and their association with various traits. a-c) display the methylation diversity for individuals from the three ethnic 
groups (PC1 on x axis, and PC2 on y axis). Overlaid are the effect sizes and directions for the beta coefficients derived from 
regression analyses of measured exposures on PC1 and PC2 of the DNA methylation; a) clinical traits; b) dietary exposures 
assessed objectively by circulating metabolites; c) Polygenic Risk Scores (PRS). The beta weights for PC1 and PC2 are scaled 
along the top x-axis and the right y-axis respectively. The results identify the directly measured and genetically inferred exposures 
that may relate to population level epigenetic variation between Asian ethnic groups. d) The effect sizes and the directions for the 
beta coefficients derived from regression analysis of measured exposures on PC1 to PC5(%Variance base on top 100 variance;  
PC1 – 17.6%, PC2 – 9.9%, PC3 – 5.1%, PC4 – 2.2%, PC5 – 2%). *p-value<0.05, **p-value<0.0015. Abbreviations: CIMT: carotid 
intima-media thickness; WHR: waist hip ratio. 
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Figure 5. Metabolic variation across three populations. a) PCA plot of 153 significantly 
differentiated metabolites across three age-sex matched ethnic cohorts of 1146 individuals each
(The first two PCs explain 23% of variation). Selection criteria for 153 metabolites include: 1) 
significantly associated with ethnicity in the discovery cohort (70% participants, P<1x10-5), and 
2) significantly associated with ethnicity in the test cohort (30% participants, P<0.05 and same 
direction of estimates as in the discovery cohort). b) Circos plot of 128 well-characterized and 
known metabolites (in sequence from outermost to innermost layer): 1) metabolite super-
pathways, 2) significant associations with HT, Obs, T2D, and CVD, denoted by a black dot, 3) 
estimates of regression coefficient for association with ethnicities (CI: Indian compared to 
Chinese, CM: Malay compared to Chinese, IM: Malay compared to Indian). Curved lines at the 
centre highlight significant pairwise correlation between metabolites. Grey lines represent 
pairwise correlations within the same super-pathway; blue lines represent pairwise correlations 
across sub-pathways but within the same super-pathway; green lines represent pairwise 
correlations across super-pathways. c) Violin plot showing contribution (as partial r-squared 
values) of age, dietary PCs, BMI, sex, and genetic PCs on variation of plasma abundance of 
153 metabolites. The inset plot zooms in on the partial r-squared distribution between 0.0 - 0.1.  
Abbreviations: BMI: body mass index; CVD: cardiovascular disease; HT: hypertension, Obs: 
Obesity, PCA: Principal Component Analysis; T2D: type 2 diabetes. 
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Figure 6. Genetic Architecture of Molecular Traits. a) Manhattan plot for summary of all associations between plasma metabolite 
levels and genetic loci. Only genetic variants with P<5x10-8 are coloured based on the strongest associated metabolite group for the 
specific variant. Genes for top 50 loci identified through SMR are annotated. b) Distribution of number of associated metabolites per 
locus, demonstrating the pleiotropy of genetic effects on metabolites. The loci with at least 5 associated metabolites are annotated 
with the SMR associated gene. c) Regional plot highlighting the shared causal variant between Dopamine 3-O-sulfate and SMAD5. 
d) Regional plot highlighting the shared causal variant between X-11381 and NPHP4. 
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Extended Table 1. Demographics, lifestyle, physiological, and molecular measurements of 
participants at baseline, HELIOS 2018-2022 

 

Characteristics  
Chinese 

N = 6,784 
Indians 

N = 1,807 
Malays 

N = 1,354 
Overall a 

N = 10,004 
Age at baseline (years), mean (SD) 53.2 (12.0) 53.1 (11.5) 51.0 (11.1) 52.9 (11.8) 
Male, % 2658 (39.2) 858 (47.5) 483 (35.7) 4027 (40.3) 
Marital status, %     

Single 1433 (21.3) 187 (10.4) 143 (10.7) 1772 (17.9) 
Married 4717 (70.1) 1371 (76.5) 1026 (76.6) 7159 (72.2) 
Separated, divorced, widowed 577 (8.58) 234 (13.1) 171 (12.8) 986 (9.9) 

Education, %     
Secondary school or less 1468 (21.7) 562 (31.2) 563 (41.7) 2606 (26.1) 
Post-secondary b 1920 (28.4) 484 (26.9) 509 (37.7) 2925 (29.3) 
Bachelor 2420 (35.8) 457 (25.4) 208 (15.4) 3100 (31.1) 
Postgraduate 957 (14.1) 299 (16.6) 69 (5.11) 1344 (13.5) 

Homeowner, % 5878 (87.2) 1550 (86.1) 1138 (84.4) 8614 (86.6) 
House type, %      

Public housing  4392 (65.0) 1384 (76.9) 1248 (92.5) 7056 (70.8) 
Private housing  2340 (34.6) 407 (22.6) 94 (6.97) 2867 (28.8) 
Other 27 (0.4) 9 (0.5) 7 (0.5) 44 (0.4) 

Household monthly income ≥ $10,000 c 1843 (32.0) 325 (20.4) 129 (11.0) 2318 (27.0) 
Cigarette smoking, %     

Never 5078 (75.3) 1260 (70.0) 818 (60.8) 7188 (72.2) 
Past 1261 (18.7) 347 (19.3) 288 (21.4) 1917 (19.3) 
Current 405 (6.0) 194 (10.8) 240 (17.8) 845 (8.5) 

Alcohol consumption, %     
Never 5260 (78.1) 1364 (75.8) 1311 (97.5) 7968 (80.2) 
1-3 times per month 695 (10.3) 173 (9.6) 13 (1.0) 890 (9.0) 
1-4 times per week 668 (9.9) 229 (12.7) 17 (1.3) 929 (9.4) 
Daily  108 (1.6) 34 (1.9) 3 (0.2) 146 (1.5) 

Physical activity (MET-h/day), median 
(IQR) 7.23 (22.8) 17.3 (30.6) 19.6 (30.5) 9.68 (26.0) 
Sedentary time (h/day) d, mean (SD) 6.04 (2.98) 5.54 (2.97) 5.51 (3.11) 5.86 (3.01) 
BMI (kg/m2), mean (SD) 23.6 (3.81) 27.1 (4.93) 28.2 (5.50) 24.9 (4.68) 

< 18.5 341 (5.0) 24 (1.3) 14 (1.0) 380 (3.8) 
18.5 to < 23.0 2962 (43.8) 323 (17.9) 184 (13.6) 3486 (34.9) 
23.0 to < 27.5 2494 (36.9) 717 (39.7) 488 (36.1) 3722 (37.3) 
≥ 27.5 965 (14.3) 740 (41.0) 667 (49.3) 2390 (24.0) 

Waist circumference, mean (SD) 80.6 (10.6) 89.8 (11.9) 88.1 (12.4) 83.3 (11.8) 
Total fat percentage e, mean (SD) 36.6 (6.70) 41.0 (7.61) 41.3 (7.18) 38.0 (7.27) 
VAT volume (cm3) e, mean (SD) 629 (275) 826 (296) 791 (309) 687 (296) 
Handgrip strength (kg), mean (SD)     

Left  26.2 (8.58) 26.8 (8.76) 25.2 (8.71) 26.2 (8.65) 
Right  28.7 (9.29) 29.1 (9.48) 27.5 (9.31) 28.6 (9.36) 

Blood pressure (mmHg), mean (SD)     
Systolic 121 (18.0) 123 (18.6) 123 (18.4) 121 (18.2) 
Diastolic 75.4 (10.4) 77.0 (10.6) 75.9 (10.4) 75.7 (10.5) 

Molecular, mean (SD)     
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Triglycerides (mmol/l) 1.21 (0.76) 1.39 (0.89) 1.43 (0.97) 1.27 (0.82) 
Total cholesterol (mmol/L) 5.26 (0.96) 5.01 (0.98) 5.31 (1.07) 5.22 (0.99) 
HDL (mmol/l)  1.61 (0.42) 1.30 (0.33) 1.42 (0.37) 1.53 (0.42) 
LDL (mmol/l) 3.10 (0.84) 3.09 (0.86) 3.24 (0.95) 3.12 (0.86) 
HbA1c (%) 5.60 (0.65) 6.06 (1.23) 5.95 (1.21) 5.73 (0.89) 
Fasting plasma glucose (mmol/l) 4.95 (0.91) 5.51 (1.79) 5.35 (1.86) 5.11 (1.29) 
Insulin (U/L) 9.25 (6.46) 14.4 (10.8) 12.0 (8.27) 10.6 (7.94) 
CRP (mg/dL) 1.29 (3.94) 3.41 (5.60) 2.93 (6.30) 1.90 (4.73) 

 
Abbreviations: CRP: C-Reactive Protein; DEXA: dual energy X-Ray absorptiometry; HbA1c: 
haemoglobin A1c; HDL: high-density lipoprotein; IQR: interquartile range; LDL: low-density lipoprotein; 
MET: metabolic equivalent task; SD: standard deviation; T2D: type-2 diabetes.  
a Included additional 59 participants with other ethnicities. 
b Included junior college or IB or equivalent, vocation or the Institute of Technical Education, or 
diploma. 
c Included salary, rental income, investments, pensions, and government transfers. 
d Calculated as average sitting hours per day including weekends. 
e Derived from DEXA whole-body scan. 
Notes: All calculations were based on participants with available information. Participants with missing 
values on any one characteristic were not counted in the calculation of the respective characteristic. 
The percentages might not add to 100 due to rounding.  

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 15, 2024. ; https://doi.org/10.1101/2024.05.14.24307259doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.14.24307259
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

Extended Table 2. Spectrum of baseline measurements and biological samples in the 
HELIOS 
 
Domain Components 

Health and lifestyle 
questionnaire 

Demographics and socioeconomic status; tobacco smoking; alcohol 
consumption; mobile-phone use; Pittsburgh Sleep Quality Index; 
Patient Health Questionnaire-9; Generalized Anxiety Disorder-7; 
childhood and early life history; personal health history; reproductive 
health history; International Physical Activity Questionnaire;26 nurse 
questionnaire (medication and hospitalization history) 

Dietary intake 
Electronic Food Frequency Questionnaire on a range of food and 
beverages frequently consumed in multi-ethnic Singapore31 

Cognitive health 

UK-Biobank based computerized cognitive test comprising reaction 
time, numerical recall, fluid intelligence (verbal and numerical 
reasoning), paired associate learning, episodic memory, and Stroop 
test32 

Physiological 
measurements 

Anthropometry (height, weight, body impedance); waist and hip 
circumference; blood pressure; ECG; hand grip strength; arterial 
stiffness assessments; dermatological assessments; audiological 
assessments; exercise treadmill test 

Imaging 
3D carotid ultrasound; OCT/ OCTA retinal imaging; colon-fundus 
photography; DEXA scan (hip, lumbar and whole-body) 

Routine biochemistry 
(fasted) 

Lipid panel; glucose; HbA1c; insulin; renal panel; blood panel; C-
Reactive protein; Vitamin D; Follicle-Stimulating Hormone; 
Luteinizing Hormone; Oestrogen 

Biological samples  
Blood in EDTA, LH, clot activator, and acid citrate dextrose 
vacutainers; urine; saliva; stool (subset); skin tape 

 
Abbreviations: DEXA: dual energy X-Ray absorptiometry; ECG: electrocardiogram; EDTA: 
ethylenediamine tetra-acetic acid; LH: lithium heparin; OCT: optical coherence tomography; 
OCTA: optical coherence tomography angiography. 
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Extended Figure 1. Divergent health states across three Asian population groups in 
Singapore. Diagnosed vs. undiagnosed cases were defined as the participants with self-
reported records of diagnoses or the use of pharmacological treatment. Undiagnosed cases 
were defined as those who did not self-report the conditions but met the following criteria: 
Hypertension: blood pressure ≥140/90 mmHg; Obesity: BMI ≥30 kg/m2; Type 2 diabetes: fasting 
glucose ≥7.0mmol/L or HbA1c ≥6.5%; Cardiovascular disease: subclinical atherosclerosis 
defined as presence of atherosclerotic plaque or mean cIMT ≥0.8; depressive symptoms: PHQ-
9 score ≥10; Anxiety symptoms: GAD-7 score ≥10; Osteoporosis: lumbar spine bone mineral 
density T-score of -2.5 or below. Abbreviations: BMI: body mass index; cIMT: carotid intima-
media thickness; GAD-7: Generalised Anxiety Disorder Assessment-7; PHQ-9: Patient Health 
Questionnaire-9. 
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Extended Figure 2. Environment exposure across three populations. a) The Singapore 
population density across planning area overlayed with HELIOS study participant postcode; b) 
The distribution of diabetes cases; c) The distribution of food amenities, including hawker 
centres, shopping malls, restaurants, and convenience stores; and d) the ratio of public/ private 
residence, overlayed with public parks, connectors, and nature reserves. The built environment 
has impact health outcomes, as illustrated by the correlations of diabetes case proportions and 
e) the density of food amenities/ area, and f) the public/private residence ratio, weighted by 
population numbers. 
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Extended Figure 3. Epigenetic variation between Asian populations. a) Functional 
annotation and enrichment of ethnically differentiated CpGs across 4 blood cell types. 
Enrichment is shown as observed count vs expected background count across DNase 1 
Hotspots (DHS); five Histone 3 marks and 15 Chromatin States. b) Enrichment of ethnically 
differentiated CpGs across 1210 transcription factors (TFs) from the ReMAP database. The size 
of the circle represents the fold enrichment compared to background. c) Circos plot of the 
epigenome-wide association of DNA methylation in blood with incident T2D and BMI, along with 
methylation profile by ethnic populations and pairwise correlation between CpGs. Chromosome 
numbers and base positions are shown on the outermost ring. The second ring illustrates the 
ethnic group with the most unfavourable average methylation levels (i.e., corresponding to 
highest risk for T2D; Chinese: Green, Malay: Yellow; Indian: Red) of 314 sentinel CpG sites that 
predict T2D [P<8.62x10-8]. The next two rings show the CpG-specific association test results [-
log10(P); axis starts at P=1x10-22] ordered by genomic position (light yellow: incident T2D in 
TOAST; light blue: BMI in HELIOS). The innermost connections summarise the pairwise 
correlations between sentinel CpG sites (Gray: |Correlation| > 0.5, Blue: |Correlation| > 0.6).  
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Extended Figure 4. Enrichment of ethnically differentiated CpGs across clinical, behavioural, and genetically inferred traits. 

Enrichment of ethnically differentiated CpGs for association with directly measured clinical traits (Panel a) and genetically inferred 

exposures based on PRS (Panel b). All enrichment tests are significant after multiple testing correction. 
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Extended Figure 5. Infographics of national health data linkage. NHD: national health data. 
HDL: High-density lipoproteins. WHR: Waist-hip ratio. 
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Extended Figure 6. Reproducibility of measurements in HELIOS. Spearman correlation 
analyses were used to calculate the correlation coefficients between z-scored baseline and 
retest measurements (N= 398). The measurement components for each group and the total 
number of variables per group were detailed in Supplementary Table 4. Abbreviations: BP: 
blood pressure; DEXA: dual-energy X-ray absorptiometry; ECG: electrocardiogram; FFQ, food 
frequency questionnaire; HR: heart rate; IPAQ: International Physical Activity Questionnaire. 
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Supplementary Methods 

Questionnaire. A combination of self-administered and nurse-administered questionnaires 

were applied to collect information on demographics, socioeconomic status, physical activity, 

tobacco smoking, alcohol consumption, diet, mobile phone use, sleep, mood, childhood and 

early life history, personal health status and disease history, reproductive history, cognitive 

function, medications, and health supplements. Physical activity was assessed using the 

International Physical Activity Questionnaire long form, which documented the type, frequency, 

and duration of various activities in the domains of transportation, occupation, leisure time and 

household in the last 7 days. Dietary intake (servings/day) was assessed using electronic Food 

Frequency Questionnaire (FFQ) on a range of food and beverages frequently consumed in 

multi-ethnic Singapore. Both questionnaires were validated in adult Singapore population.42,43 

Sleep was assessed using the Pittsburgh Sleep Quality Index59, and mood was evaluated with 

Patient Health Questionnaire (PHQ-9)38 and Generalised Anxiety Disorder (GAD-7)39. Cognitive 

function comprising six computerized components was performed based on UK Biobank 

cognitive test, which was proved with substantial validity and reliability for some test 

components.60  

Physiological measurements. Body weight and height were measured once using 

computerized measuring instruments with automated data capture. Chest, waist, hip 

circumference, and leg length were measured using a non-stretchable sprung measuring tape 

and manually entered in the IT system which could automatically highlight impossible or 

implausible values. Body fat composition by bioimpedance were measured using an Inbody 770 

device or equivalent. Systolic and diastolic blood pressures were measured 3 times in the right 

arm using an Omron HEM-9210T (or equivalent) blood pressure monitors. Right- and left-hand 

grip strengths were measured using a Jamar Plus Hand Dynamometer (or equivalent). Skin 

physiology measurement includes trans-epidermal water loss measured by a vapometer, 

surface hydration measured by a MoistureMeterSC and skin surface pH measured by a pH 

meter. Lung function was assessed using spirometry via MIR Spirolab monitor (or equivalent). 

Participants were asked to provide up to 4 recordings to overcome the learning effect. Cardiac 

evaluation by 12-lead electrocardiogram (ECG) recorded using a GE Healthcare CASE device 

(or equivalent) according to published international standards61 was performed to identify a wide 

variety of cardiac abnormalities, such as “silent” myocardial infarction, arrhythmia, and left 

ventricular hypertrophy. Arterial stiffness was measured using the VICORDER, a non-invasive 

device that allows pulse wave velocity to be measured simply and rapidly, or equivalent. 3-D 

carotid ultrasound scans were performed on both left and right carotid arteries with participant 
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recumbent at 45 degrees using a Philips EPIQ 7 (or equivalent) device to assess carotid plaque 

area and volume and identify subclinical atherosclerosis. Ophthalmology assessment was 

performed using optical coherence tomography angiography (OCTA), optical coherence 

tomography (OCT), and colour fundus photography. Visual acuity, refraction, intra-ocular 

pressure, and corneal biochemical properties were also assessed. All measurements will be 

made with the participant in a sitting position in a darkened room, according to internationally 

recognised protocols. Physical fitness was evaluated by a sub-maximal treadmill test comprised 

of a walk at speed of 4km/h, 5km/h and 6 km/h for 2 minutes each, and a 3% followed by a 6% 

increase in gradient at 6km/h for 2 minutes each. Heart rate was monitored throughout the test. 

Blood pressure was measured at the beginning and end of the treadmill test. A continuous 3-

lead ECG was captured for non-diagnostic purposes to provide additional cardiovascular 

phenotypes. Wrist-based accelerometer devices were worn for 7-days to monitor physical 

activity. Dual energy X-ray absorptiometry (DEXA) scan for whole body, hip and lumbar spine 

was used to measure bone mineral density and body composition. Audiological assessments 

were performed via tympanometry twice per ear, followed by pure-tone audiometry once. 

Collection and storage of biological materials. Blood was collected from all participants at a 

single time point by a certified phlebotomist during the baseline assessment visit and processed 

according to well established protocols, complying with international best practice. The blood 

samples were either analysed immediately for haematology, coagulation and biochemistry tests 

or stored at -80°C for future research use. A morning sample of middle stream urine and 24h 

fasting saliva were also be collected for each participant. Stool collection is optional. The stool 

samples were collected in a specimen container with lid tightly closed. The urine and saliva 

samples were immediately placed on ice and aliquoted within half an hour of collection and 

stored in -80°C freezers. Two skin tapes per body site were collected using aseptic technique by 

tape stripping the antecubital fossa, upper back, and volar forearm. These tape specimens do 

not require immediate processing but will be stored at -80°C as soon as possible but no longer 

than 30 minutes. All biological samples were processed manually, by one or two technicians 

using a Laboratory Information Management System. Biological samples were prepared and 

stored in the freezers of Nanyang Technological University Lee Kong Chian School of Medicine. 

Quality management. To guarantee a high-quality data, a proven and comprehensive study IT 

system developed by Imperial College London with computerized data entry, direct equipment 

interface and automated alarming system for impossible or implausible values were employed 

to prevent manual data input errors. The computerised direct data entry facilitates the collection 

of accurate and complete data by allowing internal quality check, automated coding, and 
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immediate access. Where participants are unable to complete the computerised questionnaire, 

an adult relatives or trained staff assisted in the completion (no assistance was allowed in the 

cognitive test). This system has successfully supported the Qatar Biobank study for delivering 

an 18-month pilot study with over 2,500 participants. For physiological measurements, all 

examinations were undertaken by trained and accredited nurses or technicians under 

internationally accepted protocols using standardised instruments and overseen by clinical 

scientists. The data management teams will also assess the completeness and quality of the 

data on a regular basis. A quality control report will be generated and discussed internally.  

Return of findings. The HELIOS is committed to return assessment results and written 

feedback to all participants. The baseline screening data in the format of structured report, 

including height, weight, waist circumference and body composition e.g. body fat percentage, 

blood pressure, ECG, DEXA scan, full blood count, lipid profile, glucose and HbA1c, uric acid, 

active smoking status, self-reported medical history and list of medications, along with a booklet 

explaining the meaning of the tests and the interpretation of the results within 4 weeks of the 

assessment date. In addition, a written protocol is established to describe what represents a 

clinically significant abnormality requiring clinical action. Participants with non-urgent clinical 

findings will receive a report within approximately four weeks to advise them to see their own 

doctor for further advice. Major clinical findings are discussed with a senior NHG physician on 

the same day for a decision on appropriate action. Clinical findings of immediate significance 

will be referred immediately to Accident & Emergency (A&E). All other measurements 

conducted in the course of the HELIOS study are being done for research purposes only and 

will not therefore be fed back to participants routinely. 

Ethics and data security. The HELIOS study fully complies with the Personal Data Protection 

Act (PDPA) requirements.62 Use of the research data and samples is regulated by the HELIOS 

Study “Scientific and Data Access Committee”. Permission to Access to use the data is 

evaluated based on written applications, according to scientific merit. All research data are de-

identified. The personal details of participants are stored separately from the research database 

to enhance data security. The codes that match the personal and research identifiers are held 

separately from both the personal and research data.  
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