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Abstract 20 
Databases with mental and behavioral health surveys suffer from missingness when participants 21 
skip the entire survey, affecting the data quality and sample size. We investigated the missing data 22 
patterns and evaluate the imputation performance in Simons Powering Autism Research (SPARK), 23 
a large-scale autism cohort consists of over 117,000 participants. Four common methods were 24 
assessed – Multiple Imputation by Chained Equations (MICE), K-Nearest Neighbors (KNN), 25 
MissForest, and Multiple Imputation with Denoising Autoencoders (MIDAS). In a complete 26 
subset of 15,196 autism participants, we simulated three types of missingness patterns. We 27 
observed that MIDAS and KNN performed the best as the rate of random missingness increased 28 
and when blockwise missingness was simulated. The average computational times for MIDAS and 29 
KNN were 10 minutes, 35 minutes for MissForest, and 290 minutes for MICE. MIDAS and KNN 30 
both provide promising imputation performance in mental and behavioral health survey data that 31 
exhibit blockwise missingness patterns. 32 
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Introduction 41 
Large-scale biobank databases in mental and behavioral health such as Simons Powering Autism 42 
Research for Knowledge (SPARK), UK Biobank and All of Us have empowered researchers to 43 
investigate the genetic and environmental risk factors associated with mental and behavioral 44 
disorders among more than 100,000 subjects 1-3. Self-reported surveys and questionnaires such as 45 
the Social Communication Questionnaire (SCQ) 4, Repetitive Behavior Scale-Revised (RBS-R) 5 46 
and Developmental Coordination Disorder Questionnaire (DCDQ) 6 are commonly used to 47 
quantify mental and behavioral functions at scale. These questionnaires typically consist of a series 48 
of related questions and measure responses using ordinal scales with a natural order or rank to 49 
indicate level of agreement known as Likert scales 7. 50 
 51 
However, missingness commonly occurs in the responses to these surveys and questionnaires. The 52 
reasons include non-inapplicable or ambiguous questions, and characteristics of the participants 53 
themselves including reluctance to answer sensitive questions, incomplete knowledge, and lack of 54 
time. Missingness can also arise at the source level. Specifically, data may have been curated from 55 
varying sources with different administered instrument protocols. Certain questions in the survey 56 
also may not be relevant to specific demographic groups, such as those that might not apply to 57 
young children. 58 
 59 
Common types of missing data include Missing Completely at Random (MCAR) and Missing Not 60 
at Random (MNAR) with either specific parts of surveys or entire surveys being incomplete 8. In 61 
MCAR, the probability of missingness is independent of the observed and unobserved data. MAR 62 
is a broader class than MCAR in which the missing data is related to the observed but not the 63 
unobserved data. On the other hand, the probability of missingness in MNAR data depends on the 64 
unobserved missing values. Typically, participants tend to skip entire questionnaires due to 65 
unobserved factors, and a form of MNAR missingness referred to as blockwise missingness arises. 66 
Blockwise missingness occurs when all responses belonging to the same survey are missing 67 
simultaneously for the same participants, forming clustered missing blocks in the overall 68 
phenotypic data. 69 
 70 
The simplest solution to address blockwise missingness in mental and behavioral questionnaires 71 
is to drop participants with missing surveys 9. However, this option leads to a significant loss of 72 
information, reduced sample size and loss of statistical power when analyzing mental and 73 
behavioral questionnaires in biobank data. Another commonly used approach is to impute missing 74 
data using statistical and computational methods. Mean, median, and mode substitutions are basic 75 
imputation approaches that maintain the original sample size but can lead to biased inferences 10. 76 
Specifically, participants who skip certain questionnaires may exhibit different characteristics than 77 
those who complete the questionnaires 11.  78 
 79 
More advanced imputation approaches using statistical and computational methods are needed to 80 
accurately impute mental and behavioral surveys with blockwise missingness. Here, we employed 81 
four commonly used missing data imputation methods - Multivariate Imputation by Chained 82 
Equations (MICE), K-Nearest Neighbors (KNN), nonparametric missing value imputation using 83 
Random Forest (MissForest), and Multiple Imputation with Denoising Autoencoders (MIDAS) 12-84 
15. MICE is one of the most popular methods of multiple imputation originally developed in the 85 
early 2000s 12. This approach uses a series of regression models to predict each variable with 86 
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missingness using the remaining variables in the data 13. KNN is a supervised machine learning 87 
algorithm commonly used when the distribution of the data is unknown or difficult to determine 88 
14. This method performs predictions on the missing data by averaging the k nearest data points. 89 
Nonparametric Missing Value Imputation using Random Forest (MissForest) is a missing data 90 
imputation method based on random forest developed in 2012. It predicts missing values based on 91 
random forest models trained on the complete dataset and imputes missing values iteratively 15. 92 
Multiple Imputation with Denoising Autoencoders (MIDAS) uses a type of unsupervised neural 93 
network to predict missing values in the data by reducing the dimensions in the observed data and 94 
reconstructing the missing data. MIDAS was recently developed in 2022 and has proven its high 95 
accuracy and computational efficiency through systematic tests on simulated and real social 96 
science data 16.  97 
 98 
Previous studies have not systematically reviewed new imputation methods in the databases with 99 
mental and behavioral health surveys17-21. Additionally, they have not focused on assessing 100 
imputation accuracy in surveys with blockwise missing structures17-21. This study systematically 101 
examines the imputation performance and computational time of these four commonly used 102 
missing data imputation methods (MICE, KNN, MissForest and MIDAS) in the presence of 103 
blockwise missingness in mental and behavioral surveys. It uses data from the Simons Powering 104 
Autism Research for Knowledge (SPARK), a large-scale autism research study that collects social 105 
functioning and behavioral surveys from over 117,000 participants. This study assesses imputation 106 
models on both MCAR and MNAR data, identifying the optimal method for each type of 107 
missingness pattern. This study conducts a novel exploration of these methods while also 108 
addressing the commonly encountered blockwise missingness pattern. 109 
 110 
Methods 111 
Figure 1 outlines the sample selection and workflow of the study. The four major steps included 112 
(1) preprocessing the data to generate a dataset comprised of complete observations, (2) setting up 113 
the simulation scenarios for three missing data mechanisms including random missingness, 114 
survey-specific missing rates, and blockwise missingness with survey-specific missing rates, (3) 115 
conducting the missing data imputation, and (4) evaluating the performance of each model. 116 
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 117 
Figure 1. Overview of workflow and study design. a) The full dataset refers to the original data filtered 118 
to only include ASD participants. The preprocessed complete dataset refers to the original dataset after 119 
filtering to only include ASD participants, dropping incomplete rows, removing variables with extreme 120 
rates of missingness, and conducting one-hot-encoding on the categorical variables (which increases the 121 
number of variables). b) MCAR refers to the simulation scenario which randomly converts a specified 122 
fraction of the input dataset to missing. SMR refers to the simulation environment that is tailored to the 123 
missingness of the original dataset. BSMR refers to the simulation environment that is also tailored to the 124 
missingness of the original dataset, but converts all rows of a given column to missing at once. c) MICE 125 
is an imputation method that employs a series of regression models; MissForest is an imputation method 126 
that is based on random forests; MIDAS is an imputation method that uses denoising autoencoders; KNN 127 
is an imputation method that uses neighboring data points in the feature space. d) RMSE corresponds to 128 
Root Mean Squared Error. 129 
 130 
1. Data Source and Preprocessing 131 
The dataset used in this study is based on SPARK phenotype V8, with 117,099 participants with 132 
autism and 363 variables. It contains information extracted from standardized surveys and parent-133 
reported medical history regarding children with autism. The following 8 surveys with <80% 134 
missing rates in the full dataset (Table 1) were included in missing data imputation assessment: 135 
Individuals Registration, Basic Medical Screening, Background History, Social Communication 136 
Questionnaire (SCQ), Repetitive Behavior Scale-Revised (RBS-R), Developmental Coordination 137 
Disorder Questionnaire (DCDQ), Child Behavior Checklist (CBCL), and Area Deprivation Index 138 
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(ADI).139 

 140 
 141 
This dataset was first filtered to remove variables with extreme rates of missingness (~90% or 142 
greater), resulting in a drop of 22 variables. The dataset was then modified to remove any rows 143 
with missing information. This resulted in 15,196 participants with autism and 347 variables. 144 
 145 
One-hot encoding was used to transform the categorical variables in this dataset, resulting in 146 
15,196 participants with autism and 431 variables. The preProcess method from the caret 147 
package in R was used to center and scale each column to have a mean of 0 and standard deviation 148 
of 1. This was mainly to allow for comparable Root Mean Squared Error (RMSE) metrics across 149 
all variables.  150 
 151 
This preprocessed complete dataset of participants with autism was used to simulate different 152 
missing data mechanisms and assess the accuracy or various imputation methods. 153 
 154 
2. Three Simulation Scenarios for Missing Data Mechanisms 155 
We simulated three simulation scenarios for missing data mechanisms in mental and behavioral 156 
surveys as outlined below and in Figure 2.  157 
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 158 
Figure 2. Visualization of the three missing data simulation scenarios explored in this study. On the 159 
left is Missing Completely at Random (MCAR) with a 40% missing rate. In the middle is Survey-Specific 160 
Missing Rate (SMR) with a 30% missing rate for Survey 1 and 50% missing rate for Survey 2. On the 161 
right is Blockwise Survey-Specific Missing Rate (BSMR) with a 30% missing rate for Survey 1 and 50% 162 
missing rate for Survey 2. 163 
 164 
Missing Completely at Random (MCAR) 165 
The first missing data simulation scenario, referred to as MCAR, introduces missingness 166 
completely at random by converting a specific percentage of the preprocessed complete dataset to 167 
missing. To observe the imputation performance as the missing rate gradually increases, MCAR 168 
was implemented with missing rates from 10% to 90% in 10% intervals for all variables in the 169 
dataset.     170 
 171 
Missing Not at Random (MNAR): Survey-Specific Missing Rate 172 
The second missing data simulation scenario is SMR, in which the proportion of missing values 173 
in each column is dependent on the survey type that it belongs to. SMR is tailored to mirror the 174 
missing rates in the full SPARK dataset by reusing the same proportions of missing values for each 175 
survey (Table 1). 176 
 177 
Missing Not at Random (MNAR): Blockwise Missingness with Survey-Specific Missing Rate 178 
The last missing data simulation scenario, referred to as BSMR, incorporates blockwise 179 
missingness with survey-specific missing rates. Instead of randomly selecting a specific portion of 180 
each column to be converted to missing as in SMR, a proportion of participants are randomly 181 
selected to have completely missing values for all surveys of a particular survey type. In other 182 
words, every column of a specific survey type contains the same missing rows. This resembles 183 
real data more closely when subjects skip the entire survey. 184 
 185 
3. Machine Learning Imputation 186 
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For each missing data simulation scenario described in the previous section, multiple machine 187 
learning models were used to impute the missing values. The generated incomplete datasets were 188 
passed through the following imputation algorithms to compute the predicted values. A separate 189 
set of 10 datasets with 20% randomly selected missing values was used to conduct hyperparameter 190 
tuning on each of these models. 191 
 192 
MICE 193 
This study used the MICE 12 (version 3.16.0) package in R which employs a multiple imputation 194 
model. It uses a concept called Fully Conditional Specification, in which each incomplete variable 195 
is imputed by a different model. It generates multiple imputed datasets that are averaged to retrieve 196 
the final imputed data. Since MICE employs a regression-based approach, hyperparameter tuning 197 
was not performed. 198 
 199 
KNN 200 
KNNImputer is a method in Python’s Scikit-learn package 22 (version 0.22) and was used to study 201 
the KNN algorithm. KNNImputer predicts each sample’s missing values by using the average 202 
value from the closest data points in the training set. Hyperparameter tuning was used to select the 203 
optimal value for the number of nearest neighbors used during imputation. 204 
 205 
MissForest 206 
MissForest 15 (version 1.5) is an R package which uses a Random Forest approach to impute 207 
missing values, building multiple decision trees to make predictions using the other remaining 208 
features. By averaging several classification or regression trees, MissForest employs out-of-bag 209 
error estimates and can capture complex, non-linear relationships. Hyperparameter tuning was 210 
used to select the optimal values for the number of trees and the maximum number of iterations. 211 
 212 
MIDAS 213 
MIDASpy 23 (version 1.3.1) is a Python package that was used to study the MIDAS algorithm. It 214 
introduces additional missing values into a given dataset and restores these values using an 215 
unsupervised neural network called a denoising autoencoder. Then, the resulting model is used to 216 
predict the values of the original missing data. Similar to MICE, MIDASpy generates multiple 217 
imputed datasets that are averaged to retrieve the final imputed data. Hyperparameter tuning was 218 
used to select the optimal values for the input drop, layer structure, and number of epochs. 219 
 220 
4. Evaluation of imputation performance 221 
For each missing data simulation scenario, we introduced missingness into the complete dataset 222 
10 different times as 10 separate trials. The values in Table 1 correspond to the percentage of 223 
subject IDs in the full dataset (with missing values among participants with autism) who are not 224 
present in each specific survey. These missing rates were used when generating the missing 225 
datasets for the SMR and BSMR simulation scenarios. 226 
 227 
The four models were used to impute the missing data, and these imputed values were compared 228 
with the true values in the preprocessed complete dataset. In each imputation trial, the RMSE 229 
values were calculated for each column using the postResample method from the caret 230 
package (Version 6.0-94) in R. The means of the RMSEs across all columns were aggregated to 231 
retrieve an overall RMSE. Then, these means were averaged across the 10 trials for each simulation 232 
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setting. This resulted in a mean overall RMSE for each simulation scenario. These error values 233 
were then compared for every simulation scenario between each imputation method. 234 
 235 
SCQ summary score, RBS-R summary score, and DCDQ summary score evaluate the social 236 
communication function, severity of repetitive behaviors, and motor functions respectively in 237 
study participants with autism. They were calculated based on corresponding questionnaires. The 238 
RMSE values of these specific mental and behavior summary scores were also compared between 239 
the four imputation methods across each simulation scenario. 240 
 241 
Lastly, the total computation time was assessed for the four imputation methods during the BSMR 242 
simulation scenario, which was chosen since it is closest in nature to missingness in real survey 243 
data. 244 
 245 
Results 246 
1. Overview of full dataset and missingness patterns  247 
The full dataset used in this study consists of 117,099 study participants with autism. 51.3% of the 248 
participants did not complete SCQ survey which screens for social functioning, 63.8% did not 249 
complete RBS-R survey on repetitive behaviors, and 72.9% did not complete DCDQ survey on 250 
motor functions (Table 1). 34,067 participants have medium missing rates between 20% and 80% 251 
among 363 total questions (Table 2). 37,710 participants exhibit low missing rates (<20%) 252 
whereas 45,322 participants exhibit high missing rates (>80%, Table 2). 253 
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 254 
 255 
When compared to female participants, there are slightly more male participants with high and 256 
low missing rates. Around 39% of male participants have high missing rates, which is slightly 257 
larger than the 37% of female participants. While 33.5% of male participants have low missing 258 
rates, only around 28% of female participants have low missing rates within this range.  259 
 260 
For individuals between ages 2 and 18, around 22% of these participants have medium missing 261 
rates. The missing rates of these individuals are more concentrated towards extreme values, since 262 
around 39% have either low or high missing rates and 22% exhibit medium missing rates. For 263 
individuals below 2 years of age, around 40% have medium missing rates. Around 62% of 264 
individuals above 18 years of age have medium missing rates, whereas nearly 0% exhibit low 265 
missing rates. 266 
 267 
Close to half of the self-reported White participants, Native Hawaiian participants, and individuals 268 
who identified as “Multiple Races” have low missing rates. The rates of missingness for self-269 
reported African American, Asian, and Native American individuals are concentrated toward the 270 
extreme values, with more than 30% exhibiting high missing rates while less than 25% of the 271 
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participants who were self-identified as White or “Multiple Races” reported high missing rates. 272 
Those who self-reported themselves as an “Other” race exhibit large amounts of missingness, since 273 
around 66% have missing rates larger than 80%. 274 
 275 
2. Sample Characteristics of Complete Dataset and Simulation of Three Missingness 276 
Patterns 277 
To assess the imputation performance of the four popular missing data imputation methods (MICE, 278 
KNN, MissForest and MIDAS), we first obtained a preprocessed complete dataset with 15,196 279 
participants with autism (Table 3, details in Methods). Around 78% of participants with complete 280 
data are male and 22% are female. The male to female ratio is 3.5:1, which aligns with the sex 281 
ratio among subjects with autism in the general population. About half of the individuals with 282 
complete data are between 6-11 years of age. Only 0.4% of subjects are under 2 years of age while 283 
none are above 18. 79% of participants were self-identified as White. The category with the second 284 
largest number of participants is “Multiple Races” (10.9%), followed by African American (4.3%), 285 
followed by “Other” (3.5%), followed by Asian (2.2%). The number of participants who are Native 286 
American or Native Hawaiian are below 1%. In the preprocessed complete dataset, the SCQ, RBS-287 
R, and DCDQ scores have average values of 21.72, 35.16, and 37.87 respectively.  288 
 289 
 290 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.13.24307231doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.13.24307231
http://creativecommons.org/licenses/by-nd/4.0/


 291 
To assess the performance of the missing data imputation methods, missing values were introduced 292 
to the preprocessed complete dataset with 15,196 participants with autism. First, to simulate the 293 
scenario on MCAR, a random subset of values across the entire dataset were converted to missing 294 
values. 10 incomplete datasets were generated for each missingness percentage (10%-90%). 295 
Second, to examine the performance of the imputation methods on MNAR patterns, 10 incomplete 296 
datasets were randomly generated for the SMR and BSMR simulation scenarios separately. When 297 
doing so, the missing rates in the original SPARK dataset were used (Table 1) to reflect the 298 
missingness distribution present in the real data.  299 
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 300 
2. Performance of Imputation on Overall Dataset 301 
The four imputation methods were applied to the incomplete datasets in each of the three 302 
simulation scenarios (Figure 3). The imputed values were compared with the actual values in the 303 
complete dataset, and the RMSE values were calculated. Lower RMSE values correspond to higher 304 
accuracy in missing value imputation. 305 

 306 
Figure 3. Evaluation of imputation performance based on overall RMSE. Values across the 10 trials 307 
using the MCAR simulation scenario (left). Overall RMSE values across the 10 MNAR trials in the 308 
Survey-Specific Missing Rate (SMR) and Blockwise Missingness with Survey-Specific Missing Rate 309 
(BSMR) simulation scenarios (right).  310 
 311 
In the MCAR scenario, the imputation error for all models generally rose as the missing rate 312 
increased. MissForest has the lowest overall RMSE (ranging between 0.73 and 1.0), outperforming 313 
the other methods especially when missing rate was low (Figure 3, left panel). However, as the 314 
percentage of missing values increased, the performance of KNN and MIDAS became comparable 315 
to that of MissForest. MICE outperformed KNN and MIDAS between 20% to 60% of random 316 
missingness but performed considerably worse than all other models for the remaining missing 317 
rates.  318 
 319 
In the MNAR scenarios, all models exhibited an increase in imputation error in the BSMR scenario 320 
when compared to SMR. MissForest produced the lowest error rate in the SMR scenario, with an 321 
RMSE of 0.83, but did not perform as well during the BSMR scenario that simulated blockwise 322 
missingness. MissForest also exhibited larger variations in RMSE (standard deviation = 0.056) in 323 
the BSMR scenario than in the SMR scenario (standard deviation = 0.0043). For the BSMR 324 
scenario, KNN and MIDAS performed the best with an average RMSE of 0.96. The variability of 325 
the RMSE was also relatively low for both methods, with a standard deviation of 0.0066 for KNN 326 
and 1e-6 for MIDAS. MICE performed worse than the other imputation methods in both SMR and 327 
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BSMR scenarios. Especially in the BSMR scenario, the RMSE value was significantly higher at 328 
2.64 with a relatively large standard deviation of 0.098. 329 
 330 
For every simulation scenario, the difference in imputation performance on overall RMSE between 331 
KNN and MIDAS was marginal. Both models produced very similar results throughout the 332 
experiment and for each simulation scenario besides BSMR, they typically performed slightly 333 
worse than MissForest. 334 
 335 
3. Performance of Imputation on Mental and Behavioral Summary Scores 336 
For every simulation scenario, the mean and standard deviations of RMSE values for the SCQ, 337 
RBS-R, and DCDQ scores were computed across the ten trials as displayed in Figure 4. The 338 
relative performance of the four models was generally consistent across the three summary scores.  339 
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 340 
Figure 4. Imputation performance on summary scores from mental health surveys. Root Mean 341 
Squared Error (RMSE) values for imputing the Social Communication Questionnaire (SCQ) score across 342 
the MCAR and MNAR trials (top).  RMSE values for the Repetitive Behavior Scale-Revised (RBS-R) 343 
score across the MCAR and MNAR trials (middle).  RMSE values for the Developmental Coordination 344 
Disorder Questionnaire (DCDQ) score across the MCAR and MNAR trials (bottom). 345 
 346 
In the MCAR scenario, MissForest consistently outperformed KNN and MIDAS when imputing 347 
all three summary scores. The MICE model exhibited a steep incline in error as the missing rate 348 
was incremented. It performed the best until the missing rate was increased to 50%, after which it 349 
was surpassed by the remaining models. MICE is ideal for lower rates of random missingness but 350 
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begins to perform exponentially worse as the rate gets larger. In fact, the MICE model produced 351 
the largest RMSE among the four methods at a 90% missing rate. For missing rates that are 50% 352 
and above, MissForest is the ideal model since it had the lowest errors among the four methods. 353 
 354 
The MissForest model performed the best in the SMR scenario. However, each method, especially 355 
MICE and MissForest, exhibited error rates that rose sharply when the missing values became 356 
blocked by survey type in the BSMR scenario. In the BSMR scenario, KNN and MIDAS exhibited 357 
the lowest error rates with MissForest performing slightly worse. MICE performed considerably 358 
worse than the remaining models in the BSMR scenario. 359 
 360 
4. Computational Time 361 
When comparing the computational times of the four models, the BSMR simulation scenario was 362 
used since this environment most closely resembles the missingness patterns in the real data when 363 
participants skip an entire survey in SPARK. 364 
 365 
As shown in Figure 5, MIDAS and KNN not only had similar overall error rates, but also exhibited 366 
comparable imputation times of around 10 to 13 minutes. MissForest had a median imputation 367 
time of slightly less than 30 minutes. On the other hand, MICE had a median imputation time of 368 
around 285 minutes, which was significantly larger than those of the remaining models. 369 

 370 
Figure 5. Total imputation times (in minutes) and standard deviations of each model for the 10 trials in 371 
the Blockwise Missingness with Survey-Specific Missing Rate (BSMR) scenario. Total sample size is 372 
15,196. 373 
 374 
Discussion 375 
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The establishment of biobank databases has enabled the collection of self-reported mental and 376 
behavioral surveys at scale1-3. SPARK has gathered social and behavioral survey data from about 377 
100,000 individuals1 and there is ongoing collection of more survey data on existing participants. 378 
UK Biobank has measurements on lifetime depressive disorder, cognitive function, attention, and 379 
impulsivity from about 150,000 participants 2,24,25. All of Us also has strategic plans to collect 380 
mental and behavioral surveys at scale3. However, the data quality and statistical power are 381 
compromised by missing data. Recent advances in machine learning methods have inspired novel 382 
missing data imputation approaches with increased accuracy and computational efficiency 12-15. 383 
Previous studies either have not reviewed these newly developed imputation methods or have not 384 
focused on assessing imputation accuracy in mental and behavioral surveys that exhibit blockwise 385 
missing structures 17-21.  386 
 387 
Our study provided insights on the missingness pattern in SPARK, a large-scale cohort with 388 
autism, and assessed the imputation accuracy and computational time of four popular missing data 389 
imputation methods – MICE, KNN, MissForest and MIDAS. We did this by simulating three 390 
missingness scenarios in mental and behavioral surveys, including SCQ, RBS-R and DCDQ.   We 391 
observed that 50%-70% of participants with autism did not complete SCQ, RBS-R and DCDQ 392 
surveys and the dataset exhibited blockwise missing structures. The missing rates also varied by 393 
sex, age, and race. Overall, KNN and MIDAS showed relatively stable performance with 394 
increasing missing rate in the MCAR scenario and slightly higher imputation error when blockwise 395 
missingness is introduced in the MNAR scenarios. The error rate increased more significantly in 396 
MICE and MissForest in both MCAR and MNAR scenarios, with a particularly notable surge in 397 
error rate for MICE when blockwise missing structures were introduced. When imputing SCQ, 398 
RBS-R and DCDQ summary scores in the MCAR scenario, MICE had the lowest error rate when 399 
the missing rate was low, while MissForest had the lowest error rate when the missing rate was 400 
high. However, in the presence of blockwise missingness in the MNAR scenario, MIDAS was 401 
consistently the best performing model across all three summary scores, with KNN and MissForest 402 
having similar or slightly higher error rates. Our results suggested that some models like MICE 403 
are sensitive to high missing rates and blockwise missing structures, while MIDAS and KNN may 404 
perform better in the overall dataset and specific summary scores in the presence of blockwise 405 
missingness. The average computational times for MIDAS and KNN to impute 15,196 subjects 406 
with blockwise missingness were about 10 minutes, about 35 minutes for MissForest, and about 407 
290 minutes for MICE. These results highlight the computational efficiency in machine learning 408 
imputation algorithms even in highly complex neural network models in MIDAS. Newly 409 
developed imputation models have better optimization in their algorithms and take advantage of 410 
parallel computing to reduce the computational time. 411 
 412 
Our results show the potential to impute missing data in large-scale databases with mental and 413 
behavioral surveys, especially imputing summary scores based on medical history and 414 
neurodevelopmental measures. When the data exhibits blockwise missingness, the imputation 415 
error increases but models such as MIDAS and KNN can still provide imputed results that are 416 
relatively stable and accurate. This shows that when a block of correlated variables in one survey 417 
is completely missing, other related surveys or medical history can also provide relevant 418 
information for imputation. The choice of imputation methods may depend on the overall missing 419 
rate and missingness patterns in a dataset.  420 
 421 
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The strength of our study is that we utilize a large-scale collection of mental and behavioral surveys 422 
in SPARK to simulate the missingness patterns, particularly with blockwise missing structures that 423 
are commonly observed in mental health databases. We also systematically assessed the latest 424 
missing data imputation approaches like MIDAS. Our limitation is that the complete data with 425 
missing data simulation primarily comes from adolescents. Despite the inclusion of various racial 426 
groups in the simulation, most participants are white. Assessment in other types of large-scale 427 
mental and behavioral surveys with adults and minority groups is warranted for future studies.  428 
 429 
Missing data imputation is widely used in national surveys with mental and behavioral surveys. 430 
For example, the National Survey on Drug Use and Health (NSDUH) has been providing 431 
imputation-revised variables by the predictive mean neighborhood methods since 199926. There is 432 
also the recent phenotype imputation model developed in the UK Biobank, which has shown 433 
increased power for genetic studies 27. As biobanks and national surveys collect more large-scale 434 
data on mental and behavioral surveys, missing data imputation will produce more accurate 435 
imputed values and become an integral part of analysis to maximize the use of the data.  436 
 437 
Our study underscores the efficacy of advanced imputation techniques, such as MIDAS and KNN, 438 
in addressing missing data within large-scale mental and behavioral surveys. Our findings 439 
showcase that for similar databases with mental and behavioral surveys on autism, dementia and 440 
other disorders, machine learning-based imputation methods can be leveraged to effectively 441 
recover missing information. This study demonstrates that machine learning methods offer 442 
increased performance and faster computation times over traditional algorithms. The performance 443 
of these advanced imputation techniques demonstrates their potential to optimize analyses and 444 
advance research in mental and behavioral disorders. 445 
 446 
Figure Legends 447 
Figure 1. Overview of workflow and study design. a) The full dataset refers to the original 448 
data filtered to only include ASD participants. The preprocessed complete dataset refers to the 449 
original dataset after filtering to only include ASD participants, dropping incomplete rows, 450 
removing variables with extreme rates of missingness, and conducting one-hot-encoding on the 451 
categorical variables (which increases the number of variables). b) MCAR refers to the 452 
simulation scenario which randomly converts a specified fraction of the input dataset to missing. 453 
SMR refers to the simulation environment that is tailored to the missingness of the original 454 
dataset. BSMR refers to the simulation environment that is also tailored to the missingness of the 455 
original dataset, but converts all rows of a given column to missing at once. c) MICE is an 456 
imputation method that employs a series of regression models; MissForest is an imputation 457 
method that is based on random forests; MIDAS is an imputation method that uses denoising 458 
autoencoders; KNN is an imputation method that uses neighboring data points in the feature 459 
space. d) RMSE corresponds to Root Mean Squared Error. 460 
 461 
Figure 2. Visualization of the three missing data simulation scenarios explored in this 462 
study. On the left is Missing Completely at Random (MCAR) with a 40% missing rate. In the 463 
middle is Survey-Specific Missing Rate (SMR) with a 30% missing rate for Survey 1 and 50% 464 
missing rate for Survey 2. On the right is Blockwise Survey-Specific Missing Rate (BSMR) with 465 
a 30% missing rate for Survey 1 and 50% missing rate for Survey 2. 466 
 467 
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Figure 3. Evaluation of imputation performance based on overall RMSE. Values across the 468 
10 trials using the MCAR simulation scenario (left). Overall RMSE values across the 10 MNAR 469 
trials in the Survey-Specific Missing Rate (SMR) and Blockwise Missingness with Survey-470 
Specific Missing Rate (BSMR) simulation scenarios (right).  471 
 472 
Figure 4. Imputation performance on summary scores from mental health surveys. Root 473 
Mean Squared Error (RMSE) values for imputing the Social Communication Questionnaire 474 
(SCQ) score across the MCAR and MNAR trials (top).  RMSE values for the Repetitive 475 
Behavior Scale-Revised (RBS-R) score across the MCAR and MNAR trials (middle).  RMSE 476 
values for the Developmental Coordination Disorder Questionnaire (DCDQ) score across the 477 
MCAR and MNAR trials (bottom). 478 
 479 
Figure 5. Total imputation times (in minutes) and standard deviations of each model for the 10 480 
trials in the Blockwise Missingness with Survey-Specific Missing Rate (BSMR) scenario. Total 481 
sample size is 15,196. 482 
 483 
Table Legends 484 
Table 1. Percentage of subjects who did not complete each individual survey among all 485 
117,099 participants with autism in SPARK. Social Communication Questionnaire (SCQ), 486 
Repetitive Behavior Scale-Revised (RBS-R), and Developmental Coordination Disorder 487 
Questionnaire (DCDQ) are surveys commonly used to quantify the mental and behavioral 488 
functions at scale. 489 
 490 
Table 2. Sample characteristics by low (<20%), medium (20%-80%), and high (>80%) 491 
missing rate in SPARK. Proportion of missing variables for each subject was calculated in the 492 
full dataset of this study containing 117,099 total participants with autism. Organized by 493 
different demographics including sex, age, and race. 494 
 495 
Table 3. Sample characteristics in the preprocessed complete dataset containing 15,196 496 
participants. This table includes the number of observations and percentage breakdowns of sex, 497 
age, and race as well as means and standard deviations of the Social Communication 498 
Questionnaire (SCQ), Repetitive Behavior Scale-Revised (RBS-R), and Developmental 499 
Coordination Disorder Questionnaire (DCDQ) summary scores. 500 

Data availability 501 

SPARK Phenotype Dataset is accessible through application at SFARI Base 502 
(https://base.sfari.org) 503 

Code availability 504 

All software used in this study is publicly available. The code for simulations and analysis can be 505 
found at https://github.com/AprilShuLab/MissingDataImputation.  506 
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