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Abstract 11 

A key component of disease prevention is the identification of at-risk individuals. Microbial dysbiosis 12 

and microbe-derived metabolites (MDM) can influence the central nervous system, but their role in 13 

disease progression and as prognostic indicators is unknown. To identify preclinical factors associated 14 

with Alzheimer’s disease (AD), we compared gut microbiome and metabolome profiles of cognitively 15 

healthy subjects, subjective cognitive impairment (SCI) participants and mild cognitive impairment 16 

(MCI) participants (n=50 per group, matched for age, BMI and sex), targeting metabolites previously 17 

associated with cognitive health (TMAO, bile acids, tryptophan, p-cresol and their derivatives). 16S 18 

rRNA bacterial microbiome sequencing and targeted LC-MS/MS were employed for faecal 19 

microbiome speciation and serum MDM quantification. Microbiome beta diversity differed between 20 

healthy controls and SCI participants. Multiple linear regression modelling highlighted five serum 21 

metabolites (indoxyl sulfate, choline, 5-hydroxyindole acetic acid, indole-3-propionic acid (IPA) and 22 

kynurenic acid) significantly altered in preclinical AD. Neuroprotective metabolites, including 23 

choline, 5-hydroxyindole acetic acid and IPA, exhibited lower concentrations in SCI and MCI in 24 

comparison to controls, while the cytotoxic metabolite indoxyl sulfate had higher levels. A Random 25 

Forest algorithm with multiclass classification confirmed and extended our results, identifying six 26 

metabolites (indoxyl sulfate, choline, 5-hydroxyindole acetic acid, IPA, kynurenic acid, kynurenine) 27 

as predictors of early cognitive decline, with an area under the curve of 0.74. In summary, a combined 28 

statistical and machine learning approach identified MDM as a novel composite risk factor for the 29 

early identification of future dementia risk. 30 

 31 

Keywords: microbiome, indoxyl sulfate, indole-3-propionic acid, 5-hydroxyindole acetic acid, 32 
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1. Introduction 34 

Currently, an estimated 55.2 million people suffer from dementia worldwide, of which Alzheimer’s 35 

disease (AD) is the main form 1. In the absence of an effective strategy to slow or prevent disease 36 

progression, dementia incidence is expected to increase to 152.8 million by 2050. By the time AD is 37 

typically diagnosed, substantial neuronal loss will have occurred across multiple brain regions. 38 

Identifying molecular precursors and biological risk factors at preclinical disease stages would enable 39 

earlier detection and the targeting of regular monitoring and mitigating interventions while prevention 40 

is viable. 41 

The contribution of lifestyle factors to cognitive decline and dementia is well documented 2,3. Diet in 42 

particular has emerged as a key influencer of brain health and AD development, in part by modulating 43 

communication along the microbiota-gut-brain axis. This axis forms a bidirectional communication 44 

system comprising neuronal, endocrine, immune and metabolic signalling mechanisms linking the gut 45 

and the central nervous system (CNS) 4. Gut microbes regulate this communication via the breakdown 46 

of dietary compounds into bioactive metabolites. Such microbe-derived metabolites (MDM) 47 

subsequently modulate pathways affecting the CNS both directly, by crossing the blood-brain barrier 48 

and indirectly, via modulation of peripheral organ function or vagus nerve stimulation 5. In the 49 

prodromal stages of AD, for example mild cognitive impairment (MCI), the microbiota-gut-brain axis 50 

becomes dysregulated (i.e., dysbiosis), a change associated with pathological processes such as 51 

neuroinflammation and neural injury, and thought to contribute to accelerating cognitive decline 6–8. 52 

However, the mechanism(s) underlying these changes, and the role of MDM in this process remains 53 

unknown.  54 

Several examples of MDM have been linked to cognitive health 5, including trimethylamine N-oxide 55 

(TMAO) 9–12, bile acids (BAs) 13–15, tryptophan 16–19, p-cresol and its derivatives 20,21. Notably, these 56 

same MDM have been further linked to pathological processes known to be associated with AD 21–28, 57 

including neuroinflammation, synaptic damage and blood-brain barrier disruption, but whether 58 

changes in these MDM are drivers or correlates of disease processes requires comprehensive 59 

investigation. 60 

Targeted metabolomics presents a powerful tool to comprehensively assess changes in the 61 

endogenous metabolome. Here, we present a targeted metabolomics approach employing liquid 62 

chromatography-tandem mass spectrometry (LC-MS/MS) to quantify TMAO, BAs, tryptophan and p-63 

cresol metabolite profiles in the serum of healthy controls and participants in early cognitive decline. 64 

Early cognitive decline comprises individuals with subjective cognitive impairment (SCI) and mild 65 

cognitive impairment (MCI), the preclinical stages of AD progression. This study presents, for the 66 

first time, the prognostic value of key metabolites in combination and represents one of only a few 67 
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studies characterising metabolic perturbations in the early stages of cognitive decline, including 68 

participants undergoing the earliest preclinical stage of AD, SCI.  69 

2. Materials and methods 70 

2.1 Study samples 71 

Human serum samples from the baseline measurements of two previously conducted clinical studies 72 

were used: (1) the impact of Cranberries On the Microbiome and Brain in healthy Ageing sTudy 73 

(COMBAT; NCT03679533) and (2) the Cognitive Ageing, Nutrition and Neurogenesis (CANN; 74 

NCT02525198) study. The COMBAT study recruited 60 adults, aged 50-80 years, with no subjective 75 

memory complaints as assessed by the Cognitive Change Index (CCI) questionnaire 29. The CANN 76 

study recruited 259 participants, aged ≥ 50 years, with subjective cognitive impairment (SCI) or mild 77 

cognitive impairment (MCI) based on criteria developed by the National Institute of Aging-78 

Alzheimers Association, with no indication of clinical dementia 30. Cognitively healthy adults were 79 

selected from the COMBAT study as a control group, with all groups (controls, SCI and MCI, n=50 80 

per group) matched for age, BMI and sex as these are key variables known to affect microbiome 81 

composition 31,32. Participants with chronic fatigue syndrome, liver disease, diabetes mellitus, or gall 82 

bladder abnormalities were excluded. 83 

Cognitive health was assessed using a variety of cognitive tests in both the COMBAT and CANN 84 

study. However, only the Trail Making Test (assessing visual processing speed, scanning, mental 85 

flexibility, as well as executive function) and the digit span test (assessing verbal short-term and 86 

working memory) were used across the COMBAT and CANN studies enabling comparisons. 87 

Participants also completed a validated, semi-quantitative Scottish Collaborative Group  (SCG) food 88 

frequency questionnaire (version 6.6) to assess background diet 33. Biochemical analyses of blood 89 

glucose, liver function (bilirubin, albumin, aspartate aminotransferase (AST), alanine 90 

aminotransferase (ALT) and AST/ALT ratio), kidney function (creatinine) and serum lipid 91 

concentrations (total-, LDL-, HDL-cholesterol and triglyceride) were conducted in all participants. 92 

The protocols were approved by the UK National Research Ethics Service (NRES) Committee, (Study 93 

ID: 14/EE/0189) for CANN and by the University of East Anglia’s Faculty of Medicine and Health 94 

Sciences Ethical Review Committee (Reference: 201819–039) and the UK Health Research Authority 95 

(IRAS number: 237251) for COMBAT. The participants provided written informed consent to 96 

participate. 97 

 98 

2.2 Microbiome Profiling 99 
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Microbiome analysis was performed by 16S rRNA sequencing as previously reported 34. In brief, 100 

DNA extraction was performed from approximately 50 mg of faecal content using the QIAamp 101 

PowerFecal Pro DNA Kit (Qiagen, Manchester, UK) as per the manufacturer's instructions. DNA 102 

quantity was evaluated using a Nanodrop 2000 Spectrophotometer (Fisher Scientific, UK). Quality 103 

assessment by agarose gel electrophoresis distinguished the DNA integrity, purity, fragment size and 104 

concentration. Illumina NovaSeq 6000 PE250 was used to amplify the V3–V4 hypervariable region. 105 

Sequence analysis was carried out using Uparse software (Uparse v7.0.1001) 35, incorporating all the 106 

effective tags. Sequences sharing a similarity of ≥97% were grouped into the same Operational 107 

Taxonomic Unit (OTU). A representative sequence for each OTU was screened for further annotation. 108 

A representative OTU sequence was further analysed using the SSUrRNA database of SILVA 109 

Database 138 36. OTU abundance data were normalised using a standard sequence number 110 

corresponding to the sample with the least sequences. Alpha diversity was assessed using both Chao1 111 

and Shannon H diversity indices, whilst beta diversity was assessed using Bray–Curtis dissimilarity. 112 

Statistical significance was determined by Kruskal–Wallis or Permutational Multivariate Analysis of 113 

Variance (PERMANOVA). Comparisons at the phylum and genus level were made using classical 114 

univariate analysis using Kruskal–Wallis combined with a false discovery rate (FDR) approach used 115 

to correct for multiple testing. P-values below 0.05 were considered statistically significant. 116 

 117 

2.3 Metabolite Profiling 118 

Serum samples were diluted with methanol at a ratio of 1:10 (v/v) and placed on dry ice for 10 min. 119 

Samples were then centrifuged (5 min, 16,000x g at room temp), supernatants filtered using a 0.45 120 

µM PTFE syringe filter and evaporated to dryness using a Savant™ SpeedVac™ High-Capacity 121 

Concentrator (Thermofisher, UK). Dried samples were resuspended in either 50 µL of methanol with 122 

the addition of 15 µL of lithocholic acid-d4 and cholic acid-d4 at 50 µg/mL for the detection of bile 123 

acids, 50 µL water with TMA-d9 N-oxide, TMA 13C 15N hydrochloride at 50 µg/mL for the 124 

detection of TMAO/TMA/choline or 50 µL water with 15 µL of L-methionine-3, 3, 4, 4 d4 and p-125 

toluenesulfonic acid at 50 µg/mL for the detection of tryptophan and p-cresol metabolites 126 

respectively. All internal standards were supplied by Thermofisher, UK. Samples were analysed using 127 

the Waters Acquity UPLC system and Xevo TQ-S Cronos mass spectrometer with MassLynx 4.1 128 

software. See supplementary methods for full details. 129 

 130 

2.4 Statistical Analyses  131 

Significant associations of metabolites with cognitive status were identified using multiple linear 132 

regression analysis. Covariates known to affect metabolome or microbiome composition, including 133 

age, BMI, diet and markers of kidney function (creatinine) and liver function (AST/ALT ratio), were 134 
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included in the model 37–41. Sex was not included as a covariate as all groups had an equal proportion 135 

of males and females. Diet was assessed using a validated, semi-quantitative Scottish Collaborative 136 

Group (SCG) food frequency questionnaire (version 6.6) 33. Participants’ dietary components were 137 

grouped (kcal, proteins, fats, carbohydrates, water, alcohol, vitamins and minerals) and analysed using 138 

hierarchical clustering via Ward’s linkage method to assemble individuals with similar dietary 139 

patterns (Supplementary Figure S1). This clustered participants into low, moderate and high intake of 140 

dietary components and was added to the model as a categorical variable, with participants with a 141 

moderate intake used as a reference group. Age, BMI, creatinine and AST/ALT ratio were added to 142 

the model as continuous variables. Finally, cognitive status (i.e., control, SCI and MCI) was added to 143 

the model as a categorical variable. Metabolite concentrations outside ± 2 standard deviations from 144 

the mean were excluded as outliers. The assumptions for multiple linear regression analysis including 145 

the existence of a linear relationship among the outcome and predictor variable, normality and 146 

homoscedasticity were assessed (Supplementary Figure S2). The model tested for significant 147 

associations between metabolite and cognitive status, adjusting for the included covariates. All 148 

multiple linear regression analyses were performed in R (v3.6.3; R Foundation: A Language and 149 

Environment for Statistical Computing). 150 

 151 

2.5 Machine Learning 152 

A Random Forest (RF) machine learning algorithm was implemented to assess whether metabolites 153 

could be predictive of preclinical AD. The RF model was constructed using 100 decision trees and 6 154 

random variables considered at each split. The number of variables considered per split corresponds to 155 

the square root of the total number of attributes in the data 42 (as 32 variables were considered, this 156 

resulted in ~6 random variables per split). To create a composite panel to predict preclinical AD, 157 

metabolites were ranked according to the mean decrease Gini. This highlights the loss in model 158 

performance when permuting the predictor values, and can provide more robust results than mean 159 

decrease accuracy 43. The metabolites with the highest mean decrease Gini score producing the 160 

highest AUC values were retained in the model. To compare our model, Naive Bayes and AdaBoost 161 

machine learning models were also constructed 44,45. AdaBoost predictions were made by using a 162 

weighted average of weak classifiers. Our model contained 50 estimators, a learning rate of 1.00 and a 163 

SAMME classification algorithm which updated the base estimator’s weights with classification 164 

results. The Naive Bayes method was applied based on applying Bayes’ theorem with the “naive” 165 

assumption of conditional independence between every pair of features given the value of the target 166 

variable. The dataset for multi-class classification was randomly divided into training and testing, 167 

with 75% of the samples allocated to the training set and 25% to the testing set. Models were assessed 168 

by the average area under the receiver operator curve (AUC) (plotting the false positive rate against 169 
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the true positive rate) over all classes (macro-average) as an indication of model performance. All 170 

machine learning models were built in Python (Python Software Foundation. Python Language 171 

Reference, version 3.8). 172 

 173 

3. Results 174 

3.1 Study population characteristics 175 

A total of 150 individuals were included in the study of which 50 (33.3%) were cognitively healthy, 176 

50 (33.3%) presented with SCI and 50 (33.3%) with MCI. The mean ± SD age of all participants was 177 

65.5 ± 5.7 years, with a mean level of education of 14.6 ± 3.5 years and 54% female (Table 1). 178 

Cognitive groups were matched for age, BMI and sex (p= 0.99). Participants in both the COMBAT 179 

and CANN study undertook several cognitive assessments at their baseline visit 29,30. Significant 180 

differences were found in the Trail Making Test B, digit span backward test and digit span total score 181 

between groups (p<0.05). There was a marginal difference between the three groups in the Trail 182 

Making Test A (p= 0.09) and no significant difference occurred in the digit span forwards test (p= 183 

0.21). The prevalence of the APO �4 was lower in controls (18%) compared to SCI (26%) and MCI 184 

(38%) participants. 185 

Albumin, bilirubin and fasting glucose (p<0.01) differed according to cognitive status. Interestingly, 186 

both albumin and bilirubin were highest in controls and lowest in SCI participants. Although 187 

participants diagnosed with diabetes mellitus were excluded, fasting glucose increased over 188 

preclinical AD, with the lowest concentrations in control individuals and the highest in MCI (Table 189 

1). 190 

 191 

3.2 Gut microbiome and metabolome shifts in preclinical AD 192 

Alpha diversity was measured using the Chao1 (p= 0.21) and Shannon H (p= 0.70) indices with no 193 

significant difference amongst groups (Figure 1A-B). Conversely, beta diversity, as measured by 194 

Bray-Curtis dissimilarity, was significantly different (PERMANOVA F-value= 1.35, p= 0.02) (Figure 195 

1C). Pairwise analysis suggested the shift was primarily driven by the differences between the control 196 

and SCI groups (FDR q= 0.03), rather than between SCI and MCI (FDR q= 0.38) or MCI and control 197 

(FDR q= 0.15) (Figure 1D). The PLS-DA plot suggested similar patterns in participants’ metabolomic 198 

profiles, with control separating from SCI and MCI (Figure 2A). The extent of this separation can be 199 

seen through the heatmap displaying shifts in metabolite concentrations between groups and 200 

clustering SCI and MCI together (Figure 2B). The similarity between microbiome and metabolomic 201 

profiles was confirmed by conducting a Procrustes analysis to evaluate the congruence of the two 202 
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datasets. The analysis revealed strong similarity between the metabolome and microbiome results in 203 

control and SCI (R= 0.21, p= 0.03), SCI and MCI (R= 0.27, p= 0.002) and MCI and control (R= 0.26, 204 

p= 0.002) groups (Supplementary Figure S3).  205 

 206 

3.3 Serum metabolites significantly associated with early cognitive decline in an adjusted 207 

multivariable model 208 

Multiple linear regression analysis adjusted for liver function (AST/ALT ratio), kidney function 209 

(creatinine), age, BMI and background diet identified five metabolites significantly associated with 210 

early cognitive decline, including choline, 5-hydroxyindole acetic acid, indole-3- propionic acid 211 

(IPA), indoxyl sulfate and kynurenic acid (Table 1). Indoxyl sulfate, choline and 5-hydroxyindole 212 

acetic acid were associated with both SCI and MCI (p<0.05). Kynurenic acid was significantly 213 

associated with SCI (β= 0.007, 95% CI: <0.001, 0.014, p= 0.037) but not MCI (β= 0.001, 95% CI: -214 

0.006, 0.007, p= 0.874). On the other hand, IPA was significantly associated with MCI (β= -0.558, 215 

95% CI: -0.910, -0.206, p= 0.002), but not SCI (β= -0.181, 95% CI: -0.536, 0.174, p= 0.316). 216 

Neuroprotective metabolites, including choline, 5-hydroxyindole acetic acid and indole propionic acid 217 

46–48, exhibited lower concentrations in SCI and MCI participants in comparison to controls, while 218 

metabolites linked to cytotoxicity, including indoxyl sulfate, showed increasing levels 49. Kynurenic 219 

acid, a typically neuroprotective metabolite 50, was higher in SCI and MCI in comparison to controls.  220 

Group means for all metabolite concentrations are given in Supplementary Table S1. 221 

 222 

3.4 Machine learning models to identify risk factors predictive of preclinical AD 223 

All 32 serum metabolites were initially evaluated as possible predictors of preclinical AD. RF 224 

achieved the highest classification AUC of 0.65, with AdaBoost and Naïve Bayes attaining 0.58 and 225 

0.63 respectively (Supplementary Table S2). Using the mean decrease Gini, the importance of each 226 

metabolite was assessed (Figure S4). Six metabolites (5-hydroxyindole acetic acid, indole-3-propionic 227 

acid, choline, indoxyl sulfate, kynurenic acid and kynurenine) produced the highest AUC of 0.74 228 

using the RF classification algorithm (Figure 4). In comparison, Naive Bayes achieved an AUC of 229 

0.72 and AdaBoost attained 0.68. The RF ROC curve indicated the model’s predictive performance 230 

was highest for controls (AUC= 0.79), followed by MCI (AUC= 0.76) and SCI (AUC= 0.64). As 231 

such, we investigated whether the model performance would be improved by predicting only healthy 232 

ageing and MCI. Using the six serum metabolites from controls and MCI participants, the RF model 233 

showed improved predictive performance (AUC= 0.84) (Supplementary Table S2). AdaBoost and 234 

Naive Bayes also demonstrated increased performance, attaining AUC of 0.87 and 0.90 respectively. 235 

 236 
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3.5 Serum dietary and MDM and gut microbiome modulation in preclinical AD are significantly 237 

linked 238 

Having identified a shift in both the microbiome and metabolome profiles, a Spearman correlation 239 

examined possible connections between the two datasets. Significantly modulated metabolites and 240 

microbiome genera between the three groups (p<0.05) were correlated, revealing bacterial–metabolite 241 

interactions. Control and SCI participants displayed a negative relationship between 5-hydroxyindole 242 

acetic acid and Lachnoclostridium (R= -0.29, p=0.004), indoxyl sulfate and Turicibacter (R= -0.21, 243 

p= 0.038), and choline and Lachnoclostridium (R= -0.36, p= 0.0002) and Ruminococcus gnavus group 244 

(R= -0.28, p= 0.005) (Figure 3A). Choline and UCG-009 (R= 0.316, p= 0.002), anthranilic acid and 245 

Lactonifactor (R= 0.24, p= 0.019) and Holdemanella (R= 0.24, p= 0.02), indoxyl sulfate and 246 

Holdemania (R= 0.318, p= 0.001) and Lactonifactor (R= 0.33, p=0.0008) had a positive correlation. 247 

Between SCI and MCI participants, only IPA and Lachnospiraceae ND3007 group had a positive 248 

correlation (R= 0.26, p= 0.011) (Figure 3B).  249 

As indoxyl sulfate, choline, 5-hydroxyindole acetic acid and IPA were identified as risk factors of 250 

cognitive decline, genera correlated with these metabolites were investigated further to identify 251 

potential associations with their production. Holdemania and Lachnoclostridium genera were higher 252 

in SCI participants in comparison to controls but lower in SCI relative to MCI (Figure 3C-D). On the 253 

other hand, Turicibacter were higher in both SCI and MCI participants in comparison to controls 254 

(Figure 3E). The abundance of UCG-009 was significantly lower in both SCI and MCI participants in 255 

comparison to controls (Figure 3F). Lactonifactor and Ruminococcus gnavus were both higher in SCI 256 

in comparison to controls (Figure G-H). Finally, Lachnospiraceae ND3007 was not different between 257 

control and SCI but was lower in SCI compared to MCI (Figure 3I). 258 

 259 

4. Discussion 260 

Identification of robust, inexpensive and non-invasive markers of cognitive status and its trajectory is 261 

currently an unmet medical need in AD research, with circulating gut-derived metabolites presenting 262 

a promising area. Metabolic alterations contain rich systemic information on the underlying 263 

physiology that connects the periphery to the CNS, likely affecting numerous pathways 264 

simultaneously. Thus, the simultaneous detection of numerous perturbed metabolites can provide a 265 

powerful detection tool. However, studies investigating composite markers are lacking.  266 

16s rRNA sequencing indicated that significant shifts in gut microbiome composition occur during 267 

preclinical AD, commencing as early as SCI, suggesting changes may already be apparent when 268 

memory complaints first appear, aligning with previous studies 51,52. As cognitive decline progresses 269 

from SCI to MCI, gut microbiome modulation appears to be less significant. Circulatory metabolites 270 
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also reflect this pattern, clustering SCI and MCI participants independently from the healthy controls. 271 

Individuals with SCI are likely at a higher risk of cognitive decline progression compared to those 272 

who are cognitively healthy 53, which may lead to greater alterations in biological markers, including 273 

the gut microbiome and its metabolites. Procrustes analysis showed significant congruence of the 274 

microbiome and metabolome datasets, suggesting the two are interlinked and provides the potential 275 

for MDM predictors to be detected early in disease progression. Indeed, gut microbiome composition 276 

can account for up to 58% of the variation of circulatory metabolites communicating along the 277 

microbiota-gut-brain axis 54. 278 

Targeted metabolomics quantifies metabolites with extremely high sensitivity and accuracy, providing 279 

an advantage over the relative responses yielded by untargeted approaches. RF and multiple linear 280 

regression models both revealed indoxyl sulfate, choline, 5-hydroxyindole acetic acid, IPA and 281 

kynurenic acid as key early indicators of cognitive decline, with RF presenting an AUC predictive 282 

performance of 0.74, strongly supporting a significant link between metabolic perturbations 283 

associated with the gut microbiome and preclinical AD progression. Previous studies have 284 

predominantly concentrated on binary classification approaches, primarily utilising MRI and PET 285 

imaging modalities, to investigate AD progression 55–57. However, in clinical practice, multiclass 286 

classification of blood samples of patients with SCI, MCI and healthy controls could provide a useful 287 

approach. Tong and colleagues attained a similar predictive performance (AUC= 0.729) using RF and 288 

nonlinear graph fusion of multiple modalities (regional MRI volumes, voxel-based FDG-PET signal 289 

intensities, CSF biomarker measures and genetic information) to classify control, MCI and AD 290 

participants 58. AUC increased to 0.84 when predicting healthy ageing and MCI, likely due to the 291 

difficulty of diagnosing a patient undergoing SCI. Indeed, Purser and colleagues found no relationship 292 

between memory complaints and the progression of cognitive impairment over 10 years in individuals 293 

65 years and over 59. However, others dispute this result 60. Adjusting our statistical analysis for 294 

confounding variables that heavily influence the host, such as age, BMI, kidney function, liver 295 

function and background diet, improves analysis robustness and sensitivity. Adjusting for background 296 

diet becomes particularly vital when examining MDM as the diet can both modulate gut microbiome 297 

composition and provide a variety of bioactive precursor compounds; a factor which is often 298 

overlooked in metabolomic analyses 61. Nevertheless, our results highlight the use of profiling select 299 

circulatory MDM to identify higher-risk individuals of cognitive decline. 300 

Of the five metabolites highlighted by both machine learning and multiple linear regression, all except 301 

choline are produced from tryptophan metabolism, indicating notable alterations in tryptophan 302 

metabolism may occur in preclinical AD progression. Tryptophan metabolism has previously been 303 

well-linked to AD 18. Indeed, we find lower neuroprotective tryptophan-derived metabolites, including 304 

IPA and 5-hydroxyindole acetic acid, as cognitive decline progresses from controls to SCI and MCI. 305 

IPA is produced in the gut by the microbial conversion of tryptophan via the indole pathway and has 306 
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previously been investigated as a possible treatment for AD 62 due to its potent antioxidant effect 307 

against Aβ 1-42 in vitro 63 and its ability to prevent aggregation and deposition of Aβ monomers 64. 308 

IPA is anti-inflammatory, reducing the concentration of the proinflammatory TNF-α in activated 309 

microglia 65, lowering the expression of chemokine (CC Motif) ligand 2 (CCL2) and nitric oxide 310 

synthase 2 (NOS2) in interferon-beta (IFN-β) activated murine astrocytes 66 and preventing increases 311 

in cytokines in LPS-induced human primary astrocytes 67, and has previously been identified as a 312 

predictor of AD progression 68. 5-hydroxyindole acetic acid is often used as a surrogate marker for 313 

serotonin due to serotonin’s rapid degradation. As such, our findings indicate lower peripheral 314 

serotonin breakdown as early cognitive decline progresses. Approximately 95% of all serotonin is 315 

localised in peripheral compartments where it is involved in the modulation of the enteric nervous 316 

system (ENS) development and neurogenesis, gut motility, secretion, inflammation, and epithelial 317 

development, suggesting these processes may be disrupted in early cognitive decline 69. Indeed, MCI 318 

and AD patients have often been reported to suffer from gastrointestinal symptoms 70 and ENS 319 

dysregulation in AD has previously been described 71. Decreased concentrations of 5-hydroxyindole 320 

acetic acid also suggest a shift in tryptophan metabolism towards the kynurenine pathway, reducing 321 

the availability of tryptophan for serotonin synthesis. This is supported by higher serum kynurenine 322 

concentrations in SCI and MCI participants in comparison to controls (Supplementary Table S1) and 323 

has previously been found in AD participants, linked to poor memory, executive function and global 324 

cognition 72. The kynurenine pathway is activated by an inflammatory stimulus, promoting 325 

indoleamine 2,3-dioxygenase, the rate-limiting enzyme that initiates the kynurenine pathway. 326 

Increased inflammation is a common feature of AD and as such may play a role in modulating 327 

tryptophan catabolites. 328 

Both indoxyl sulfate and kynurenic acid concentrations were increased as cognitive decline 329 

progressed, even after adjusting for measures of liver and kidney function. As a uremic toxin, indoxyl 330 

sulfate can disrupt neuronal efflux transport systems, promote the production of free radicals, 331 

inflammation, endothelial cell dysfunction and disturb the circadian rhythm involved in clearing renal 332 

and CNS toxins 73,74, likely contributing to cognitive decline. Serum levels of indoxyl sulfate, as well 333 

as albumin, have previously been identified as predictive of cognitive impairment in participants with 334 

end-stage renal disease 75. End-stage renal disease patients have also been reported to have an 335 

increased abundance of the gut bacteria Holdemania, in line with our results, suggesting his genera 336 

may be underlying the changes between control and SCI 76. Rodent studies show increased kynurenic 337 

acid concentrations can impair cognitive function, including spatial working memory, and broad 338 

monitoring deficits 77,78. However, data regarding this relationship in human studies is inconsistent 339 

79,80. Kynurenic acid can play a protective role against the cytotoxic product of the kynurenine 340 

pathway, quinolinic acid, by acting as an NMDA antagonist for both glycine and glutamate 341 

modulatory sites 81. However, abnormal accumulation has previously been found to induce 342 
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glutamatergic hypofunction and subsequently disrupt cognitive function 82. In AD, increased blood 343 

concentrations of kynurenic acid have been hypothesised to relate to neuroinflammatory processes 344 

and may be produced as a protective response to neuronal damage 83. 345 

Choline is required for numerous biological functions in the body 84, notably including hallmark AD-346 

associated processes such as acetylcholine synthesis 85. As choline readily crosses the blood-brain 347 

barrier, peripheral concentrations typically mirror concentrations in the brain 86, thus lower 348 

concentrations in early cognitive decline may indicate decreased central acetylcholine production. 349 

Acetylcholine is intricately connected to neural networks regulating memory, and a reduction in this 350 

system is closely associated with learning and memory deficits in AD 87. Lachnoclostridium and 351 

Lactonifactor were inversely correlated with choline levels, suggesting changes in these genera may 352 

modulate blood concentrations. Indeed, previous research has found L. saccharolyticum WM1, a 353 

representative strain of Lachnoclostridium, to be an efficient converter of choline to TMA in vitro, 354 

transforming at a rate near 100% 88. This metabolic process in vivo also elevated serum TMAO levels 355 

88, which is supported by our results displaying a 1.6-fold higher TMAO in MCI compared to 356 

controls. It is likely that increases in Lachnoclostridium abundance may increase the metabolism of 357 

choline to TMAO, decreasing its concentration in circulation.  358 

Our study has major strengths including simultaneously targeting some of the top microbial and 359 

metabolic metabolites associated with cognitive decline, whilst matching our participants and 360 

adjusting our analysis for key factors known to influence the metabolome (age, BMI, sex, liver 361 

function, kidney function and background diet), factors rarely accounted for in marker studies. 362 

Furthermore, our study highlights key microbiota underlying these metabolic changes, as well as 363 

investigating participants from the earliest stage of decline (SCI) and validating our results through 364 

machine learning and adjusted statistical approaches. However, some limitations should be stressed. 365 

Despite our study adjusting results for key covariates, host metabolome profiles are influenced by a 366 

plethora of additional largely environmental and biological factors. Thus, although our findings 367 

suggest relationships between the variables, we cannot infer causal relationships from this analysis 368 

alone. Moreover, participants’ background diet was adjusted for using data collected by food 369 

frequency questionnaires, which can be prone to measurement error and may introduce inaccuracies 370 

due to recall bias and self-reporting issues. Furthermore, like all studies utilising machine learning 371 

models, the larger the dataset, the more robust the predictive performance. With the current dataset 372 

including 150 individuals and 32 metabolites, we achieved significant predictive performance. 373 

However, our findings will require external validation in larger independent cohorts to improve the 374 

model.  375 

Pathophysiological progression of AD is apparent up to 20 years prior to clinical symptom onset, 376 

making it vital for prevention research to focus on uncovering novel preclinical risk factors. Scalable 377 
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markers that enable the early detection of at-risk persons could permit the targeting of lifestyle 378 

interventions to lessen future risk and uncover novel mechanisms underpinning dementia. Our 379 

findings present new insights into the preclinical progression of cognitive decline and dementia. We 380 

signify a major role for the gut in connection to the brain through the modulation of key MDM. 381 

Furthermore, we lend strength to the hypothesis that individuals with higher risks of cognitive decline 382 

can be identified via a targeted metabolomic approach in the preceding stages of AD.   383 
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Data availability 384 

The 16S rRNA gene sequence data have been deposited in the NCBI BioProject database 385 

(https://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA1109848. Other data that 386 

support the findings of this study are available from the corresponding authors upon reasonable 387 

request. 388 
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Figure Legends 397 

Figure 1: Microbiome beta diversity is significantly altered in early cognitive decline. Alpha 398 

diversity measured by Chao1 (A) and Shannon H (B) index. (C) Beta diversity as measured by Bray-399 

curtis; p-value generated from PERMANOVA. (D) Pairwise comparisons of the beta diversity 400 

analysis. 401 

Figure 2: Metabolic shift occurs in early cognitive decline. (A) Partial least squares-discriminant 402 

analysis (PLS-DA) plot of the metabolomic profiles. (B) Heatmap displaying changes in 403 

concentrations of metabolites between the groups, with hierarchical clustering.  404 

Figure 3: Serum metabolome and gut microbiome profiles are linked. Spearman rank correlation 405 

analysis between metabolite and microbiome genera that are significantly modulated in early 406 

cognitive decline (A) between control and SCI and (B) between SCI and MCI. (C-H) Abundance 407 

counts of microbiome genera correlated with our metabolites of interest (indoxyl sulfate, choline and 408 

5-hydroxyindole acetic acid) between control and SCI participants. (I) Abundance count of 409 

microbiome genera correlated with metabolite of interest (indole-3-propionic acid) between SCI and 410 

MCI, *=p<0.05, **=p<0.01. 411 

Figure 4: Six circulatory metabolites are predictive of preclinical AD. Receiving Operating 412 

Characteristic (ROC) curve illustrating the performance of the Random Forest model for classifying 413 

controls, SCI and MCI participants with average area under the curve (AUC) of the multilevel 414 

classifier.  415 
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Table 1: Baseline characteristics of the participants. Mean (SD). P-value calculated using one-way ANOVA. 629 

Significant values at p<0.05 are in bold. SCI: subjective cognitive impairment, MCI: mild cognitive impairment, 630 

TMT: Trail Making Test A or B.  Bold p-values represent p<0.05. 631 

 632 

 Control 
(N=50) 

 

SCI 
(N=50) 

MCI 
(N=50) 

P-value 

Sex, M/ F (%F) 23/27 (54) 23/27 (54) 23/27 (54) - 
Age (years) 65.6 (5.3) 65.5 (6.1) 65.5 (5.8) 0.999 
BMI (kg/m2) 25.1 (3.1) 25.0 (2.9) 25.0 (2.8) 0.993 
Education (years) 14.4 (2.6) 14.6 (4.0) 14.6 (3.9) 0.968 
% APOE4 18 26 38 0.079 
     
Cognitive tests     
TMT A 30.7 (6.2) 29.3 (8.1) 33.3 (12.1) 0.088 
TMAT B 66.4 (20.4) 62.3 (16.5) 74.9 (27.3) 0.015 
Digit Span Forwards 11.1 (2.2) 11.2 (1.8) 10.5 (2.6) 0.211 
Digit Span Backwards 7.7 (2.0) 7.2 (1.8) 6.5 (2.1) 0.011 
Digit Span Total 18.8 (3.8) 18.4 (3.0) 17.0 (4.2) 0.039 
     
Biochemistry     
Creatinine (µmol/L) 73.90 (13.5) 72.5 (12.3) 73.5 (14.1) 0.871 
Albumin (g/L) 40.4 (2.4) 30.0 (2.4) 39.4 (2.3) <0.001 
Bilirubin (µmol/L) 12.8 (4.7) 8.9 (5.1) 9.1 (4.4) <0.001 
AST (µL) 21.7 (3.9) 20.6 (5.9) 24.0 (13.1) 0.141 
ALT (µL) 16.9 (5.4) 16.7 (9.0) 18.3 (11.3) 0.621 
AST/ALT 1.4 (0.3) 1.4 (0.4) 1.4 (0.4) 0.548 
Fasting Glucose (mmol/L) 4.8 (0.4) 5.0 (0.5) 5.3 (1.0) <0.001 
Triglyceride (mmol/L) 1.1 (0.5) 1.1 (0.4) 1.2 (0.5) 0.368 
Cholesterol (mmol/L) 5.6 (1.1) 5.2 (1.1) 5.2 (1.0) 0.174 
HDL Cholesterol (mmol/L) 1.6 (0.4) 1.5 (0.5) 1.5 (0.4) 0.297 
LDL Cholesterol (mmol/L) 3.4 (0.1) 3.2 (0.9) 3.1 (0.8) 0.182 
 633 
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Table 2: Multiple linear regression model (adjusted for age, BMI, liver function (AST/ALT ratio), kidney function (creatinine) and diet) showing metabolites significantly 634 

associated with early cognitive decline. Diet was analysed using hierarchical clustering, ‘Ward’ method, to group individuals with similar dietary patterns. This grouped 635 

participants into three dietary groups (low, moderate and high intake of dietary components (Kcal, carbohydrates, fats, protein, water, alcohol, minerals, vitamins). Healthy 636 

controls and diet group 2 (moderate intake) were used as reference groups in the model. Bold p-values represent p<0.05. 637 

 Metabolite 

Explanatory 
Variable 

Indoxyl Sulfate Choline 5-Hydroxyindole Acetic Acid Indole Propionic Acid Kynurenic Acid 

Beta P-
value 

95% CI 
 

Beta P-
value 

95% CI Beta P-
value 

95% CI Beta P-
value 

95% CI Beta P-value 95% CI 

Low High Low High Low High Low High Low High 

Constant -2.288 0.482 -8.705 4.128 29.690 0.011 6.938 52.443 0.068 0.020 0.011 0.125 3.094 0.009 0.790 5.397 0.017 0.448 -0.027 0.062 

Age 0.057 0.115 -0.014 0.128 0.100 0.434 -0.152 0.351 0.001 0.058 0.000 0.001 -0.007 0.568 -0.033 0.018 <0.001 0.314 -0.001 <0.001 

BMI 0.064 0.378 -0.079 0.207 -0.328 0.202 -0.835 0.178 -0.001 0.063 -0.003 0.000 -0.026 0.308 -0.077 0.025 0.001 0.039 <0.001 0.002 

Creatinine 0.036 0.028 0.004 0.067 0.105 0.063 -0.006 0.217 0.000 0.493 0.000 0.000 -0.004 0.452 -0.016 0.007 0.001 <0.001 <0.001 0.001 

AST/ALT -1.437 0.011 -2.541 -0.332 0.812 0.681 -3.082 4.706 -0.002 0.710 -0.012 0.008 0.213 0.289 -0.182 0.607 -0.009 0.023 -0.017 -0.001 

Diet Group 1 0.354 0.445 -0.559 1.267 1.247 0.445 -1.972 4.466 -0.002 0.690 -0.010 0.006 0.204 0.221 -0.124 0.532 -0.003 0.408 -0.009 0.004 

Diet Group 3 0.130 0.829 -1.052 1.311 -0.706 0.740 -4.897 3.486 -0.001 0.826 -0.012 0.009 -0.128 0.568 -0.570 0.314 -0.003 0.450 -0.011 0.005 

SCI 1.650 0.001 0.674 2.625 -5.635 0.002 -9.084 -2.187 -0.011 0.012 -0.020 -0.002 -0.181 0.316 -0.536 0.174 0.007 0.037 <0.001 0.014 

MCI 1.308 0.008 0.342 2.274 -5.217 0.003 -8.645 -1.789 -0.015 0.001 -0.024 -0.007 -0.558 0.002 -0.910 -0.206 0.001 0.874 -0.006 0.007 

Overall 
change in 

early 
cognitive 
decline 

Increased Decreased Decreased Decreased Increased 
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