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Abstract

Allogeneic hematopoietic cell transplantation (HCT) is one of the
only curative treatment options for patients suffering from life-threatening
hematologic malignancies; yet, the possible adverse complications can be
serious even fatal. Matching between donor and recipient for 4 of the
HLA genes is widely accepted and supported by the literature. However,
among 8/8 allele matched unrelated donors, there is less agreement among
centers and transplant physicians about how to prioritize donor charac-
teristics like additional HLA loci (DPB1 and DQB1), donor sex/parity,
CMV status, and age to optimize transplant outcomes. This leads to
varying donor selection practice from patient to patient or via center pro-
tocols. Furthermore, different donor characteristics may impact differ-
ent post transplant outcomes beyond mortality, including disease relapse,
graft failure/rejection, and chronic graft-versus-host disease (components
of event-free survival, EFS). We develop a general methodology to iden-
tify optimal treatment decisions by considering the trade-offs on multiple
outcomes modeled using Bayesian nonparametric machine learning. We
apply the proposed approach to the problem of donor selection to optimize
overall survival and event-free survival, using a large outcomes registry of
HCT recipients and their actual and potential donors from the Center for
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International Blood and Marrow Transplant Research (CIBMTR). Our
approach leads to a donor selection strategy that favors the youngest male
donor, except when there is a female donor that is substantially younger.

1 Introduction

The discovery of stem cells in 1963 [McCulloch and Till, 2005] has lead to new
avenues of treatment for a variety of illnesses including blood-borne cancers,
auto-immune diseases and inherited newborn conditions. Allogeneic hematopoi-
etic cell transplantation (HCT) is the only curative treatment option for patients
suffering from life-threatening hematologic malignancies; yet, the possible ad-
verse complications can be serious even fatal. Stem cells are harvested from a
donor that is HLA matched to the transplant recipient. In 2021 for the United
States (US) alone, 9,349 allogeneic HSCT treatments were performed [Center
for International Blood and Marrow Transplant Research, 2024] and unrelated
volunteers donated their stem cells for 5,073 (54%) of those (the remainder of
donors were kin). The National Marrow Donor Program (NMDP) in the US
maintains the world’s largest stem cell registry of more than 9 million donors and
potential donors, and facilitates access to more then 42 million donors world-
wide through the World Marrow Donor Association. For patients without an
HLA-matched family member, a donor search is conducted by the NMDP reg-
istry. HLA matching is critical to preventing/mitigating graft vs. host disease
(GVHD) by ensuring antigen cross-compatibility with the transplanted immune
system. However, all matched unrelated donors (MUD) do not necessarily have
the same prognostic risks/benefits. Besides HLA loci, other donor character-
istics are considered including age, sex/child-bearing parity, cytomegalovirus
(CMV) serostatus. Previous research has consistently found survival benefits
associated with choosing a younger MUD [Kollman et al., 2001, 2016, Shaw
et al., 2018, Pidala et al., 2019, Logan et al., 2021]. But, the optimization po-
tential for selection of other donor factors has not been consistently shown [Shaw
et al., 2007, Fleischhauer et al., 2012, Pidala et al., 2014, Fleischhauer et al.,
2017, Shaw et al., 2017]. Therefore, donor selection practices vary from patient
to patient (or via center to center protocols), providing us with the opportunity
to utilize modern machine learning techniques to determine which factors will
yield the best possible outcomes.

Several complications arise in optimizing donor selection. First, donor selec-
tion requires consideration of multiple donor factors from a finite but sometimes
large list of potential MUDs specific to a given recipient. Therefore, practical
implementation of optimal donor selection requires a good understanding of
what donor characteristics are necessary to be considered in an optimization
algorithm. Second, donor selection should be individualized, since the impact
of donor factors may be dependent on patient or disease characteristics; this ne-
cessitates that a prediction model for patient outcomes has sufficient flexibility
to capture complex interactions. Third, selecting an optimal donor depends on
what outcome is being optimized. Overall survival is of greatest importance,
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but there are other post-transplant complications such as clinical relapse, graft
failure and/or GVHD causing severe morbidity that could be impacted by donor
characteristics.

We develop optimal donor selection methodology as an individualized deci-
sion for a potential recipient while considering multiple outcomes along with the
likely trade-offs amongst them. Prior to optimization, we examine the impact
of various donor characteristics on relevant outcomes: narrowing to a relatively
parsimonious subset for the implementation of the donor search. Next, we
develop an optimal donor selection method with multiple outcomes. Qian and
Murphy [2011] show that the optimal individualized treatment rule assigns each
patient to the treatment with the optimal conditional expectation given their
patient characteristics. Following this, we propose to optimize donor selection
by directly selecting the donor whose characteristics optimize the expected out-
come for a given patient based on a prediction model. Furthermore, accurate
predictive modeling is sufficient to identify an optimal treatment rule [Qian and
Murphy, 2011]. From training data, we construct prediction models for over-
all survival (OS) and event-free survival (EFS is a composite of death, clinical
relapse, graft failure/rejection or moderate/severe chronic GVHD) with a non-
parametric machine learning framework based on Bayesian Additive Regression
Trees (BART) Chipman et al. [2010]. BART models have three key features
which make them useful in this setting: 1) excellent predictive performance; 2)
automatically incorporate complex interactions; and 3) avoiding precarious re-
strictive assumptions like linearity. On a solid foundation of Bayesian inference,
BART inherently provides uncertainty quantification of any model predictions
as well as any function of them. The development of BART models for survival
outcomes has demonstrated increasing flexibility [Bonato et al., 2011, Sparapani
et al., 2016, Henderson et al., 2020, Linero et al., 2022, Sparapani et al., 2023].
We will employ Nonparametric Failure Time BART (NFT BART) [Sparapani
et al., 2023] for predictive modeling that avoids restrictive assumptions (such
as proportionality, homoskedasticity and normality) while providing computa-
tional scalability to large data sets like we have here. After predictive modeling
is performed for each outcome, we create a weighted utility from the OS and
EFS expectations from each potential donor to a given recipient. Now, we select
the donor which optimizes the weighted utility function. Weights represent the
desired relative importance of the outcomes. We demonstrate several optimal
donor selection policies via different weights.

2 Methods

2.1 Data Sources

Clinical outcome data was obtained from the Center for International Blood
and Marrow Transplant Research (CIBMTR) research database. CIBMTR is
a research collaboration between the NMDP and the Medical College of Wis-
consin which collects outcome data for all allogeneic HSCT recipients in the
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US as the custodian of the Stem Cell Therapeutic Outcomes Database under
the C.W. Bill Young Transplantation Program of the Health Resources and
Services Administration [Stem Cell Therapeutic and Research Act Reautho-
rization, 2021]. Our cohort consisted of all HCT recipients in the US from 2016
to 2019 with 8/8 high-resolution matching at HLA-A, B, C, and DRB1 to their
unrelated donor. All patients provided informed consent for participation in
the CIBMTR Research Database and the study was approved by the NMDP
Institutional Review Board. We randomly divided our cohort into a subset
of 10,016 patients (85%) for training prediction models and 1,802 (15%) for
validation of the prediction models. Within the validation subset, 699 (39%)
had their search archive records available. The NMDP search archive database
is a snapshot of each patient’s donor search prior to transplant that includes
all of the potentially matched unrelated donors on the registry at the time of
the search. This allows us to re-conduct the donor search using our proposed
donor selection algorithms and assess how the proposed strategies will perform
in practice, compared to the real-world donor selection practice based on the
actual donor selected. Since we typically do not know the high-resolution HLA
typing and match status of all potential donors at the time of the search, we
restrict the donor list for each patient in the search archive subset to likely 8/8
matches (for volunteers whose HLA typing is ambiguous [Paunić et al., 2016],
we only consider those matches with a probability ≥ 0.9 based on HapLogic
predictions [Dehn et al., 2016]). The additional donor characteristics beyond
the requisite 8/8 HLA matching to be considered for optimal selection are age,
sex/child-bearing parity, CMV status, HLA -DPB1 and/or -DQB1.

2.2 Study Endpoints

We focus on optimizing both overall survival/mortality (OS) and event-free
survival (EFS) that is defined as a composite of death, clinical relapse, graft
failure/rejection, moderate/severe chronic GVHD: whichever comes first. Since
transplant is a curative therapy with OS/EFS curves flattening substantially
by 3 years, we focus on this time horizon by optimizing OS/EFS by either the
point-wise 3 year probabilities, or the restricted mean survival time (RMST) up
to 3 years. RMST is an alternative framing of survival outcomes that may have
advantages over point-wise analysis or proportional hazards modeling, partic-
ularly in interpretation [Royston and Parmar, 2013, Pak et al., 2017, Kloecker
et al., 2020].

2.3 Statistical Analysis

We fit NFT BART prediction models to the OS and EFS data using the nft-
bart R package [Sparapani et al., 2023]. Posterior samples of survival predic-
tions are generated for a patient p with characteristics xp who is a recipient of
transplantation from donor d with characteristics zd, given by Sm(t|xp, zd,D),
for draws m = 1, . . . ,M . Here we use D in this Bayesian model to represent
that inference in the model is conditional on the observed data, including the
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event/censoring times, event indicators, and measured covariates. Similarly, we
generate posterior samples of predictions for RSMT up to time t, defined by
RMSTm(t|xp, zd,D) ≡

∫ t

0
Sm(s|xp, zd,D)ds (see Section 6 of the Supplement

for more details on these calculations). We use the posterior mean of these
samples to summarize predictions and to perform optimizations; in particu-
lar, E[S(t|xp, zd,D)] ≈ M−1

∑
m Sm(t|xp, zd,D) and E[RMST(t|xp, zd,D)] ≈

M−1
∑

m RMSTm(t|xp, zd,D). Furthermore, the posterior samples can be used
to quantify uncertainty, e.g., the (1 − q) × 100% credible interval for survival
is Sm(t|xp, zd,D) : Sm′(t|xp, zd,D) where m (m′) is the q/2× 100% (1− q/2×
100%) posterior quantile. Waterfall plots [Gillespie, 2012] were generated to
describe changes in predicted outcomes for each patient as an individual donor
characteristic was varied one at a time while holding the others fixed. For ex-
ample, the waterfall plot for donor sex in the bottom row of Figure 1 shows the
predictions (posterior means) for each transplant if the donor had been male vs.
female. Waterfall plots showing little to no impact in survival for all, or nearly
all, patients attributable to a donor characteristic change indicate a negligible
impact that can be simply ignored. We define a negligible difference of < 1 %
in predicted survival at 3 years or < 10 days in RMST as an indifference zone
[Soeteman et al., 2020]. After this donor characteristic selection was completed
the NFT BART model was refitted with the relevant donor characteristics for
further evaluation on donor optimization. Note that prediction models are built
for both OS and EFS. Notationally, we refer to the posterior mean OS or EFS
as E[OS(t|xp, zd,D] and E[EFS(t|xp, zd,D] respectively; and to posterior mean
RMST OS or EFS as E[RMOS(t|xp, zd,D)] and E[RMEFS(t|xp, zd,D)] respec-
tively.

To optimize donor selection, we follow the approach of Qian and Murphy
[2011] who show that an optimal individualized treatment rule assigns each pa-
tient to the treatment which has the best conditional expectation given their
patient characteristics. Here we define an optimal donor selection rule by se-
lecting the donor which has the best expected outcome from our NFT BART
prediction model according to the selected donor features. To address multiple
outcomes of OS and EFS, we optimize a utility function which is a weighted
average of the OS and EFS outcomes. The weight parameter represents the rel-
ative importance of the corresponding outcome in terms of the donor selection
rule. The optimal donor for patient p among their set Dp of potential donors is
defined as

dopt
p ≡ arg max

d∈Dp

{wE[OS(t|xp, zd,D)] + (1− w)E[EFS(t|xp, zd,D)]}

for the pointwise survival probability outcome (and similarly defined for RMST).
Note that a weight of w = 1 represents donor optimization based solely on OS
as opposed to w = 0 for EFS only. Weights between 0.5 < w < 1 tend to have
greater emphasis on optimizing OS, yet still improving EFS particularly in situa-
tions where OS differences are small. The posterior mean OS and EFS probabil-
ities for this optimal donor are E[OS(t|xp, zdopt

p
,D)] and E[EFS(t|xp, zdopt

p
,D)]

respectively.
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We benchmark the optimal donor strategy performance against the actual
donor dactual

p used for each transplant in the search archive by taking the differ-
ence in posterior mean OS or EFS, according to the following.

OSdiff
p (t) ≡ E[OS(t|xp, zdopt

p
,D)]− E[OS(t|xp, zdactual

p
,D)]

EFSdiff
p (t) ≡ E[EFS(t|xp, zdopt

p
,D)]− E[EFS(t|xp, zdactual

p
,D)]

Plots of OSdiff
p (t) vs. EFSdiff

p (t) by patient for different values of w are con-
structed to show how w impacts the tradeoffs between the two outcomes.

The population level outcome for an optimal donor strategy is obtained by
averaging the optimal outcomes across a sample of patients as follows.

OSopt(t) ≡ Ep{E[OS(t|xp, zdopt
p

,D]}

EFSopt(t) ≡ Ep{E[EFS(t|xp, zdopt
p

,D]}

Population level outcomes for the actual donor strategy can be similarly defined,
as well as differences in population level outcomes between the optimal and
actual donor strategy. Note also that posterior samples of the population level
outcomes can be obtained by applying the optimization on a posterior sample
basis. Finally, we have shown an optimal donor selection rule based on the
weighted average of the OS and EFS probabilities at time t. An optimal donor
selection rule based on a weighted average of the RMST for OS and EFS up to
time t could be similarly derived.

3 Results

Among the recipients within the training (validation) set, 37.3% (38.4%) died
whereas among the censored survivors the median days of follow-up was 749
(745) with a first:third quartile of 391:1117 (390:1110). Similarly, for EFS,
61.3% (61.6%) suffered the event with median survivor days of follow-up of
741 (737) and first:third quartile 383:1107 (382:1100) for training (validation)
respectively. We summarize the collected data in a series of tables for recipi-
ents, donors and disease characteristics: the bold variables are included in the
model (additional model variables that are not shown here appear in the Sup-
plement Tables 2 through 6). The cohort of recipients consists mainly of those
40 or older: about three-quarters (74.1%); see Table 1. The donors are compar-
atively younger: 88.5% are below 40; see Table 2. Almost three-quarters of the
patients, 73%, were stricken by the three most common hematologic cancers:
acute lymphoblastic leukemia (ALL), 13%; acute myeloid leukemia (AML), 40%;
and myelodysplastic syndrome (MDS), 20%; see Table 3.

Now we turn to the decision-making process for which donor characteristics
will optimize recipient outcomes. In Supplement Table 7, you will find a list of
waterfall plots representing donor choices with respect to age, sex/parity, CMV,
DPB1 and DQB1. First, we eliminate those factors that are not promising.
Matching based on the criteria of CMV and DPB1 was not productive for either
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OS or EFS: in all cases, the expected benefit is within the indifference zone;
see Supplement Figures 12, 14, 16 and 18. With respect to DQB1, we can
see that matching is already being undertaken at a high rate (Table 2): only
4.4% are mismatched when available. Therefore, it is possible that we did
not have sufficient data to investigate matching of DQB1 due to the relatively
few mismatches; waterfall plots are provided by Supplement Figures 20 and
22. Waterfall plots for parity (parous vs. non-parous females) show that the
difference between these donors is negligible; see Supplement Figures 7 to 10.

This leaves us with just age and sex. So, we refit the models narrowing the
donor characteristics to age and sex for optimization predicting OS and EFS
outcomes for each patient in the validation set. The plot for age shows that
choosing a younger donor is beneficial for OS and to a lesser extent EFS: gen-
erally, a donor aged 30 or less is preferable with marginal gains achieved going
further than that; see the upper half of Figure 1. For OS, the choice of sex
(male vs. female) is indifferent as seen in the bottom right of Figure 1. But,
on the contrary for EFS, the choice of sex is quite important: males are gen-
erally preferable to females, with the effect of sex being larger than the donor
age effect for EFS; see the bottom left of Figure 1. Putting this together for
both age and sex across both EFS and OS endpoints, we see that the youngest
male is generally preferable due to EFS benefit except when a much younger
female is available. In the latter case the OS benefit from younger age may
be more clinically important than an EFS benefit from the male donor. As
we might expect, this story is largely the same if we are considering differ-
ences in RMST rather than survival probabilities; see Figure 2. In Figure 3,
we see scatter-plots for OS(3) vs. EFS(3) differentials with three donor choice
strategies. Also shown in the figure is the number of female and male donors
selected outside and inside the indifference zone. Optimizing OS(3) favors the
youngest female (355 females and 103 males outside the indifference zone). Op-
timizing EFS(3) favors the youngest male (2 females and 280 males outside
the indifference zone). Finally, optimizing 2OS(3):1EFS(3) generally favors the
youngest male except when there is a considerably younger female available (35
females and 253 males outside the indifference zone). In Figure 4, we plot the
population-level value function with respect to these donor choice strategies;
optimizing 2OS(3):1EFS(3) provides near-optimal performance for OS(3) and
EFS(3) differentials respectively.

4 Conclusions

In this article, we proposed a novel approach to optimize treatment across multi-
ple outcome variables, using a weighted utility function, to prioritize treatments
having the best results for the most important clinical outcomes. We used a
flexible machine learning approach for survival data called NFT BART to build
prediction models. This model makes minimal assumptions, while automatically
handling complex relationships with non-linearity and interactions, allowing for
patient specific predictions of survival probabilities, or restricted mean survival

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.09.24307134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24307134
http://creativecommons.org/licenses/by-nc-nd/4.0/


times, for different treatment choices. Flexibility to generate patient specific
predictions are important in this setting to allow for personalized treatment
selection. As a Bayesian approach, NFT BART offers posterior uncertainty
summaries for the prediction inference, a benefit that may not be available with
other machine learning approaches. We applied the proposed approach to the
problem of optimal donor selection for a MUD HCT. Our approach can be
readily extended to a general setting with a large number of patient specific
treatment options. In the donor selection application patients have different
sets of potential donors due to their different HLA typing, and some patients
may have a very long list of potential donors to choose from. The main clini-
cal conclusions of this study are that the youngest available male donor should
generally be prioritized for all patients, except when there is a female donor
considerably younger who would likely have better overall survival outcomes
despite lower event-free survival. No other donor factors were important for ei-
ther overall survival or event-free survival, acknowledging that there was lesser
power for determining the impact of HLA-DQB1 due to limited numbers of
mismatches on this locus. Although some patients may have many donors to
choose from, the monotone effect of donor age and the reduced set of impor-
tant donor characteristics simplified the optimal donor choice to just selecting
between two donors (youngest male and youngest female). However, in general
the framework that we used can be implemented even when the decision process
does not simplify like this.

There are some limitations to this study. Our study focused on MUD trans-
plants only, and the cohort had limited use of post-transplant cyclophosphamide
(PTCy) as a GVHD prophylaxis strategy. PTCy is surging in popularity due
to its successful use in matched and mismatched donor transplants. The main
benefit of PTCy is in reduced acute and chronic GVHD leading to improvements
in EFS, but with limited impact on OS. Future studies using our general strat-
egy should expand to include mismatched donor transplants and consider the
impact of PTCy in donor selection strategies. Additionally, there may be other
donor factors to be considered in a selection algorithm; as data on these become
available, their contribution to donor selection algorithms could be examined
using our approach. Finally, we have focused here on an approach of weighting
hierarchically ordered survival outcomes for optimization. Future work could in-
vestigate a multi-state prediction model with utilities for each state. This would
help our understanding of the contribution of different donor characteristics to
each of the components for the EFS endpoint.
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Table 1: Recipient demographic characteristics. Training and validation sets are mutually exclusive while search archive is
a subset of validation. Within the total rows, we present Pearson’s Chi-squared test p-values for the comparisons between
training with validation and training with search archive: missing values excluded. Bold variables are included in the model.

Training set Validation set Search archive Overall total

Recipient age 10016 1802 0.0107 699 0.2030 11818
0:19 1159 11.6% 179 9.9% 73 10.4% 1338 11.3%
20:39 1470 14.7% 255 14.2% 112 16.0% 1725 14.6%
40:59 3167 31.6% 537 29.8% 200 28.6% 3704 31.3%
60:82 4220 42.1% 831 46.1% 314 44.9% 5051 42.7%

Recipient sex 10016 1802 0.6451 699 0.6712 11818
F 4188 41.8% 743 41.2% 298 42.6% 4931 41.7%

Race 9667 1745 0.7780 675 0.3677 11412
White 8993 93.0% 1619 92.8% 636 94.2% 10612 93.0%
Black 307 3.2% 57 3.3% 17 2.5% 364 3.2%
Asian 281 2.9% 56 3.2% 15 2.2% 337 3.0%
Other 86 0.9% 13 0.7% 7 1.0% 99 0.9%
Missing 349 57 24 406

Hispanic ethnicity 9657 1721 0.5746 669 0.7742 11378
Yes 764 7.9% 143 8.3% 55 8.2% 907 8.0%
Missing 359 81 30 440

HCT-CI 9932 1785 0.0608 694 0.5969 11717
0 2093 21.1% 333 18.7% 135 19.5% 2426 20.7%
1:3 4736 47.7% 868 48.6% 337 48.6% 5604 47.8%
4+ 3103 31.2% 584 32.7% 222 32.0% 3687 31.5%
Missing 84 17 5 101

KPS 9807 1764 0.3545 688 0.2613 11571
10:70 1412 14.4% 247 14.0% 100 14.5% 1659 14.3%
80 2896 29.5% 557 31.6% 226 32.8% 3453 29.8%
90 3971 40.5% 701 39.7% 257 37.4% 4672 40.4%
100 1528 15.6% 259 14.7% 105 15.3% 1787 15.4%
Missing 209 38 11 247

Median income (ZCTA) 9813 1751 0.7223 679 0.0016 11564
<25000 33 0.3% 5 0.3% 4 0.6% 38 0.3%
25000, <50000 2619 26.7% 471 26.9% 210 30.9% 3090 26.7%
50000, <75000 3910 39.8% 707 40.4% 279 41.1% 4617 39.9%
75000, <125000 2858 29.1% 510 29.1% 175 25.8% 3368 29.1%
125000+ 393 4.0% 58 3.3% 11 1.6% 451 3.9%
Missing 203 51 20 254

F: female, HCT-CI: hematopoietic cell transplant comorbidity index [Sorror et al., 2015],
KPS: Karnofsky perfomance score [Karnofsky et al., 1948], ZCTA: ZIP code tabulation area
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Table 2: Donor matching characteristics. Training and validation sets are mutually exclusive while search archive is a subset
of validation. Within the total rows, we present Pearson’s Chi-squared test p-values for the comparisons between training with
validation and training with search archive: missing values excluded. Bold variables are included in the model.

Training set Validation set Search archive Overall total

Donor age 9941 1791 0.9524 698 0.3400 11732
17:29 6499 65.4% 1176 65.7% 479 68.6% 7675 65.4%
30:39 2291 23.0% 411 22.9% 146 20.9% 2702 23.0%
40:49 855 8.6% 148 8.3% 52 7.4% 1003 8.5%
50:60 296 3.0% 56 3.1% 21 3.0% 352 3.0%
Missing 75 11 1 86

Donor sex 9957 1794 0.5212 698 0.0059 11751
M 6985 70.2% 1245 69.4% 524 75.1% 8230 70.0%
Missing 59 8 1 67

Donor parity 9957 1794 0.1666 698 <0.0001 11751
M 6985 70.2% 1245 69.4% 524 75.1% 8230 70.0%
F Nonparous 1886 18.9% 370 20.6% 137 19.6% 2256 19.2%
F Parous 1086 10.9% 179 10.0% 37 5.3% 1265 10.8%
Missing 59 8 1 67

Sex match 9957 1794 0.8539 698 0.7195 11751
Yes 5751 57.8% 1032 57.5% 408 58.5% 6783 57.7%
Missing 59 8 1 67

CMV match 9962 1786 0.7653 691 0.4890 11748
Yes 5560 55.8% 990 55.4% 395 57.2% 6550 55.8%
Missing 54 16 8 70

DPB1 match 8526 1535 0.4652 603 0.3261 10061
M/P 6430 75.4% 1171 76.3% 444 73.6% 7601 75.5%
Missing 1490 267 96 1757

DQB1 match 9810 1773 0.6492 689 0.1282 11583
Yes 9377 95.6% 1699 95.8% 667 96.8% 11076 95.6%
Missing 206 29 10 235

CMV: cytomegalovirus, F: female, M: male,
M/P: either a match or a permissive mismatch [Zino et al., 2004]

14

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 9, 2024. 
; 

https://doi.org/10.1101/2024.05.09.24307134
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.05.09.24307134
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Disease and transplant characteristics. Training and validation sets are mutually exclusive while search archive is
a subset of validation. Within the total rows, we present Pearson’s Chi-squared test p-values for the comparisons between
training with validation and training with search archive: missing values excluded. Bold variables are included in the model.

Training set Validation set Search archive Overall total

Disease 10016 1802 0.0380 699 0.1416 11818
ALL 1290 12.9% 251 13.9% 102 14.6% 1541 13.0%
AML 3956 39.5% 746 41.4% 290 41.5% 4702 39.8%
MDS 1988 19.8% 362 20.1% 139 19.9% 2350 19.9%
Other 2782 27.8% 443 24.6% 168 24.0% 3225 27.3%

ALL/AML/MDS status 6947 1306 0.9271 505 0.0398 8253
Early 4159 59.9% 775 59.3% 279 55.2% 4934 59.8%
Intermediate 1360 19.6% 261 20.0% 99 19.6% 1621 19.6%
Advanced 1428 20.6% 270 20.7% 127 25.1% 1698 20.6%
Missing 287 53 26 340

Graft type 10016 1802 0.3259 699 0.8784 11818
Bone marrow 2239 22.4% 384 21.3% 158 22.6% 2623 22.2%
Peripheral blood 7777 77.6% 1418 78.7% 541 77.4% 9195 77.8%

Total body irradiation 9925 1781 0.9647 695 0.3402 11706
Yes 2397 24.2% 431 24.2% 179 25.8% 2828 24.2%
Missing 91 21 4 112

Conditioning regimen 10016 1802 0.7367 699 0.4458 11818
Myeloablative 4974 49.7% 885 49.1% 364 52.1% 5859 49.6%
Non-myeloablative 1122 11.2% 213 11.8% 77 11.0% 1335 11.3%
Reduced intensity 3920 39.1% 704 39.1% 258 36.9% 4624 39.1%

GVHD prophylaxis 10016 1802 0.0676 699 0.0026 11818
CSA+MMF 430 4.3% 84 4.7% 40 5.7% 514 4.3%
CSA+MTX 356 3.6% 61 3.4% 30 4.3% 417 3.5%
CSA only 65 0.6% 14 0.8% 7 1.0% 79 0.7%
Cyclophosphamide 1130 11.3% 216 12.0% 49 7.0% 1346 11.4%
FK506+MMF 1097 11.0% 209 11.6% 89 12.7% 1306 11.1%
FK506+MTX 5425 54.2% 965 53.6% 377 53.9% 6390 54.1%
FK506 only 1020 10.2% 196 10.9% 82 11.7% 1216 10.3%
Other 493 4.9% 57 3.2% 25 3.6% 550 4.7%

Year of transplant 10016 1802 0.3262 699 <0.0001 11818
2016 2347 23.4% 419 23.3% 336 48.1% 2766 23.4%
2017 2527 25.2% 438 24.3% 324 46.4% 2965 25.1%
2018 2593 25.9% 450 25.0% 33 4.7% 3043 25.7%
2019 2549 25.4% 495 27.5% 6 0.9% 3044 25.8%

ALL: acute lymphoblastic leukemia, AML: acute myelogenous leukemia, CSA: Ciclosporin A,
FK506: tacrolimus, GVHD: graft vs. host disease, MDS: myelodysplastic syndrome,
MMF: mycophenolate mofetil, MTX: methotrexate
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Figure 1: Waterfall plots of EFS and OS differentials based on predictions for
the validation set. In the first (second) column, we have EFS (OS) differentials
on the vertical axis, with an Indifference Zone in grey, and percentile of benefit
on the horizontal axis. In the top row, differentials for an older donor vs. an
18 year-old; donor ages (lines) in ascending sequence: 22 (dashed yellow), 26
(solid magenta), 30 (dashed green), 34 (solid blue), 38 (dashed red) and 42
(solid black). In the bottom row, differentials for a male donor vs. a female;
recipient male (female) with a solid blue line (dotted red line): in the left panel,
the percentage of those that benefit from a male vs. female donor for recipient
males (females) in blue (red).
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Figure 2: Waterfall plots of EFS and OS differentials based on RMST predic-
tions in days for the validation set. In the first (second) column, we have EFS
(OS) RMST differentials on the vertical axis, with an Indifference Zone in grey,
and percentile of benefit on the horizontal axis. In the top row, differentials
for an older donor vs. an 18 year-old; donor ages (lines) in ascending sequence:
22 (dashed yellow), 26 (solid magenta), 30 (dashed green), 34 (solid blue), 38
(dashed red) and 42 (solid black). In the bottom row, differentials for a male
donor vs. a female; recipient male (female) with a solid blue line (dotted red
line): in the left panel, the percentage of those that benefit from a male vs.
female donor for recipient males (females) in blue (red).
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Figure 3: Optimal donor selection for OS and EFS among search archive re-
cipients. In each row of the figures, optimal is determined by OS (top), EFS
(middle) and weighted 2OS:1EFS (bottom) respectively for survival probability
differentials at 3 years. On the y-axis (x-axis), we have OS (EFS) differentials
of the optimal matching donor vs. the actual donor. At the bottom of each
plot, we have a summary of the youngest female (F) donor vs. youngest male
(M) chosen: beyond (within) the Indifference Zone is the first summary (second
summary in parentheses). Red (blue) circles represent females (males) beyond
the Indifference Zone circle boundary (grey line); red (blue) dots are females
(males) within the Indifference Zone.

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.09.24307134doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24307134
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

D
en

si
ty

0

50

100

150

−0.04 −0.02 0.00 0.02 0.04

OS(3) diff.

0

50

100

150

EFS(3) diff.

Optimal
OS(3)
EFS(3)
2OS(3):1EFS(3)

Figure 4: Population-level value function for optimal donor selection survival
probability differentials among search archive recipients. The top (bottom) row
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