
 1 

Serum Potassium Monitoring using AI-enabled Smart Watch Electrocardiograms  

I-Min Chiu1,2,3, Po-Jung Wu4, Huan Zhang3, J. Weston Hughes5, Albert J Rogers6, Laleh 
Jalilian7, Marco Perez6, Chun-Hung Richard Lin3, Chien-Te Lee8, James Zou9, and David 
Ouyang1,* 

1. Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, 
CA, USA 

2. Department of Emergency Medicine, Chang Gung Memorial Hospital Kaohsiung 
Branch, Kaohsiung, Taiwan 

3. Department of Computer Science and Engineering, National Sun Yat-sen 
University, Kaohsiung, Taiwan 

4. Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung 
Memorial Hospital, Kaohsiung, Taiwan  

5. Department of Computer Science, Stanford University, Palo Alto, CA, USA 
6. Department of Medicine and Cardiovascular Institute, Stanford University School of 

Medicine, Stanford, CA, USA 
7. Department of Anesthesiology and Perioperative Medicine, University of California Los 

Angeles, Los Angeles, CA 
8. Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung 

Memorial Hospital and Kaohsiung Municipal Feng-Shan Hospital, Kaohsiung, Taiwan 
9. Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA 

 

Short title: AI-Based Smartwatch EKG for Potassium Monitoring 
 
Word count: 3,731 
 
Funding Disclosure: 
I.M.C receive funding from National Science and Technology Council in Taiwan (111-2221-E-
182A-008-); D.O and I.M.C receive funding from Apple and the NIH. 
 
Address for correspondence: 
David Ouyang, MD 
127 S. San Vicente Blvd., Suite A3600 
Los Angeles, CA 90048 
david.ouyang@cshs.org 
 
 
 
 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307064doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.05.08.24307064
http://creativecommons.org/licenses/by-nd/4.0/


 2 

Abstract 

Background 
Hyperkalemia poses a significant risk of sudden cardiac death, especially for those with end-stage 
renal diseases (ESRD). Smartwatches with ECG capabilities offer a promising solution for 
continuous, non-invasive monitoring using AI. 
 
Objectives 
To develop an AI-ECG algorithm to predict serum potassium level in ESRD patient with 
smartwatch generated ECG waveforms. 
 
Methods 
A cohort of 152,508 patients with 293,557 ECGs paired serum potassium levels obtained within 
one hour at Cedars Sinai Medical Center (CSMC) was used to train an AI-ECG model (‘Kardio-
Net’) to predict serum potassium level. The model was further fine-tuned on 4,337 ECGs from 
1,463 patients with ESRD using inputs from 12-lead and single-lead ECGs. Kardio-Net was 
evaluated in held-out test cohorts from CSMC and Stanford Healthcare (SHC) as well as a 
prospective international cohort of 40 ESRD patients with smartwatch ECGs at Chang Gung 
Memorial Hospital (CGMH). 
 
Results 
The Kardio-Net, when applied to 12-lead ECGs, identified severe hyperkalemia with an AUC of 
0.852 and a mean absolute error (MAE) of 0.527 mEq/L. In external validation at SHC, the model 
achieved an AUC of 0.849 and an MAE of 0.599 mEq/L. For single-lead ECGs, Kardio-Net 
detected hyperkalemia with an AUC of 0.876 and had an MAE of 0.575 mEq/L in the CSMC test 
cohort. Using prospectively obtained smartwatch data, the AUC was 0.831, with an MAE of 0.580 
mEq/L. 
 
Conclusions 
We validate a deep learning model to predict serum potassium levels from both 12-lead ECGs and 
single-lead smartwatch data, demonstrating its utility for remote monitoring of hyperkalemia. 
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Condensed Abstract 

Hyperkalemia significantly increases the risk of sudden cardiac death in end-stage renal disease 
(ESRD) patients. We developed 'Kardio-Net,' an AI-driven ECG model, using data from 152,508 
patients at Cedars Sinai Medical Center, and refined it with ECGs from 1,463 ESRD patients using 
inputs from 12-lead and single-lead ECGs. This model facilitates continuous and non-invasive 
potassium monitoring, leveraging both traditional and smartwatch-generated ECGs. Tested across 
various cohorts, including a prospective smartwatch group, Kardio-Net achieved an AUC range of 
0.807 to 0.876, demonstrating its effectiveness for real-time hyperkalemia monitoring. 
 
 
Keywords: Potassium Monitoring, Hyperkalemia, Artificial Intelligence, Smart Watch, Apple 
Watch, Electrocardiograms 
 
 
Abbreviations:  
ESRD = End-Stage Renal Disease 
ECG = Electrocardiogram  
AI = Artificial Intelligence 
DL = Deep Learning 
SHC = Stanford HealthCare 
CGMH = Chang Gung Memorial Hospital 
CNN = Convolutional Neural Network 
AUC = Area Under the receiver operating characteristic Curve 
MAE = Mean Absolute Error 
IQR = Interquartile Range 
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Introduction 

Hyperkalemia, or elevated serum potassium, presents a severe and potentially life-threatening risk, 

in particular for patients with acute kidney injury or chronic kidney disease. Patients with end-

stage renal disease (ESRD)1 are at increased risk for sudden cardiac death due to hyperkalemia2-4 

and require vigilant electrolyte monitoring for hemodialysis3. Meanwhile, phlebotomy for serum 

potassium monitoring is resource-intensive, invasive, and limited in ability to monitor in real time. 

A noninvasive approach for potassium monitoring could greatly improve the detection of potential 

lethal electrolyte imbalances. Remote monitoring with smartwatch devices presents a potential 

solution by offering the capability for remote health monitoring.  

 

There are well known changes in electrocardiogram (ECG) with changes in serum potassium, 

including the peaking of T waves, QRS prolongation, and PR shortening5. Despite recognizable 

changes, hyperkalemia associated changes are subtle, leading to  low sensitivity of physician 

readers6. Recent advancements in artificial intelligence (AI), especially deep learning (DL), have 

shown significant promise in enhancing the analysis and interpretation of ECG signals7–13. 

Research in the past few years has been instrumental in improving the sensitivity for detecting 

hyperkalemia, demonstrating the potential of AI to augment clinical decision-making in 

identifying this dangerous electrolyte imbalance14–17. Recent work have shown the ability for AI-

ECG applications originally developed using 12-lead ECGs18 to be optimized for single lead 

smartwatch ECGs13. 

 

We hypothesized an AI-enhanced ECG model (Kardio-Net) can accurately identify hyperkalemia, 

including in patients with ERSD using ECG data collected from a smartwatch. To test our 
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hypothesis, we develop, validate, and test a model for predicting potassium levels across three 

international institutions using both 12-lead and smartwatch ECGs in ESRD patients.  
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Method 

Patient identification and data sources 

A primary cohort of patients with paired ECGs and serum potassium levels was curated from the 

CSMC between 2008 to 2022. A total of 153,971 adult patients had at least one 12-lead ECG and 

serum potassium test within one hour, leading to 297,914 twelve-lead ECGs and corresponding 

potassium values. ECGs were mapped to the temporally closest potassium test. Given an interest 

in assessing performance in the ESRD population, all recordings from non ESRD patients (n = 

152,508) were used for initial model training, and the model was then finetuned on ESRD patients 

alone (n = 1,463). The cohorts were randomly split at the patient level into 80% for training set, 

10% for validation, and 10% reserved as a held-out test set.  

 

For external validation, we identified patient cohorts from two other healthcare systems. We 

identified 7,586 ECGs among 3,107 ESRD patients at Stanford HealthCare (SHC) from 8/2005 to 

6/2018 (Figure 1). Additionally, A prospective cohort of patients with ESRD at Chang Gung 

Memorial Hospital (CGMH) were enrolling from October 2022 to July 2023 with serial 

smartwatch based ECG testing prior to hemodialysis. Prior to participation, written consent was 

secured from each individual. This study was approved by the institutional review boards of the 

CSMC, SHC, and CGMH. Patients' informed consent was waived at CSMC and SHC due to the 

retrospective nature of the study using de-identified ECG and electronic health record data. 

 

Model Development 

We developed a convolutional neural network (CNN) designed for ECG interpretation, Kardio-

Net, with the capability to integrate digitized waveform for predicting serum potassium levels. All 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307064doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307064
http://creativecommons.org/licenses/by-nd/4.0/


 7 

ECGs obtained from CSMC were recorded using a GE machine, adhering to the standard 10-

second, 12-lead ECG protocol. These ECG waveform data were captured at a sampling rate of 500 

Hz and represented as 10-second, 12×5000 matrices of amplitude values. In external validation at 

SHC, ECGs were stored using the Phillips TraceMaster system with the same sampling rate with 

recorded also as 12×5000 matrices and were independently used as input examples for external 

validation. 

 

Kardio-Net was trained on PyTorch starting from random initialization. Training utilized a mean 

square error loss for up to 100 epochs, employing an ADAM optimizer with a starting learning 

rate of 1e-2. Early stopping based on minimizing validation cohorts mean absolute error (MAE). 

For the fine-tuning in ESRD patients, weights from the initial model were used as the starting point 

and trained using the same loss function and optimizer with a learning rate of 1e-4. To ensure 

compatibility with the smartwatch ECG data, we trained the Kardio-Net by utilized lead I from the 

12-lead ECGs, as it most closely resembles the ECG vector of smartwatch recordings. For Kardio-

Net inference on ECG waveforms smartwatch, we split the waveform data into consecutive 5-

second intervals. During the inference, a 30-second ECG waveform was split at 1-second intervals, 

yielding 26 5-second waveform data inputs. These were then averaged to formulate the final 

prediction. 

 

Validation on smartwatch ECG 

After consent and enrollment of the patients, digital ECG recordings were captured by the Apple 

Watch ECG within 5 minutes before their routine serum potassium tests prior to hemodialysis. The 

smartwatch ECG waveforms, initially recorded at a sampling rate of 512 Hz, were resized to 500 
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Hz to match the sampling rate of 12 lead ECGs. The digitized ECG waveforms stored on the 

hospital server via the Apple Developer HealthKit API for subsequent analysis20. This process 

yielded a validation dataset of 589 ECGs waveforms  paired with its corresponding potassium 

levels. Given that smartwatch waveforms can contain artifacts and baseline wandering distinct 

from 12-lead ECGs, we developed a noise ECG classifier to exclude excessively noisy waveforms 

before averaging the predictions for final analysis. 23 (3.9%) ECGs were excluded from the noise 

classifier. A domain adaptation technique was employed to facilitate the Kardio-Net’s application 

to Apple Watch ECG waveforms19. This adjustment aims to mitigate domain discrepancies, 

thereby enhancing Kardio-Net‘s performance on Apple Watch ECGs.  

 

Statistical analysis 

All analyses were conducted on the held-out test dataset, external validation set, and smartwatch 

dataset, which were not used during the model's training. The primary metric for assessing Kardio-

Net’s performance in predicting serum potassium levels was the MAE. Additionally, the model's 

ability to identify severe hyperkalemia, defined as potassium levels greater than 6.5 mEq/L, was 

evaluated using the area under the receiver operating characteristic curve (AUC). These metrics 

allow for a comprehensive assessment of the model's classification accuracy and precision in 

detecting cases of hyperkalemia. For each metric, we calculated two-sided 95% confidence 

intervals using 1000 bootstrapped samples to ensure robust statistical inference. The modeling 

pipeline was implemented using Python (3.8) with PyTorch (2.0) as the deep learning framework. 

Signal processing and data analysis were facilitated by Python libraries such as SciPy (1.11), 

Scikit-learn (1.3.2), pandas (2.0.2), and matplotlib (3.7.1). 
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Result 
Primary cohort characteristics 

We identified a total of 153,971 patients at Cedars-Sinai Medical Center who had at least one pair 

of ECG and serum potassium measurement within 1 hour, resulting in 293,557 ECG recordings. 

1,463 patients diagnosed with ESRD contributed 4,337 ECGs were selected as ESRD cohort, 

where other 293,557 ECGs from 152,508 patients formed the general cohort. The ESRD cohort 

was divided into a training set of 1,170 patients, a validation set of 146 patients, and a test set of 

147 patients. The median age within the ESRD group was 62 years (interquartile range [IQR]: 50-

72), with 57.8% (846 patients) being male. The median serum potassium level was 4.6 mEq/L 

(IQR: 4.1-5.2), with 190 ECGs (4.4%) indicating a potassium level higher than 6.5 mEq/L. 

Additional demographic and clinical characteristics are detailed in Table 1. 

Kardio-Net performance in the primary cohort 

The initial deployment of our 12-lead Kardio-Net model, which was pre-trained on a general 

cohort, yielded an MAE of 0.593 mEq/L in the test set of ESRD cohort, with predictions 

concentrating around the 4.0 - 5.0 mEq/L level (Extended Figure 1). Upon fine-tuning this model 

with training set in ESRD cohort, there was a notable improvement in prediction accuracy, with 

the MAE reducing to 0.527 mEq/L. Kardio-Net achieved discrimination of hyperkalemia 

(potassium > 6.5 mEq/L) with an AUC of 0.852 (95% CI 0.745–0.956) (Figure 2). 

 

To adapt to apple watch, we trained a single-lead ECG model using only lead I data through the 

same process. The model achieved an AUC of 0.876 (95% CI 0.765–0.987) on hyperkalemia 

detection and MAE of 0.575 mEq/L. Further evaluation of Kardio-Net’s performance across 

various patient subgroups, including older individuals and those with diabetes, hypertension, atrial 
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fibrillation, heart failure, and coronary artery disease, was conducted. These groups are generally 

considered high-risk or exhibit ECG morphology changes. The model's discrimination AUC for 

detecting hyperkalemia varied from 0.725 to 0.983 across these subgroups. Detailed subgroup 

results are shown in figure 3. 

 

Kardio-Net performance in the external validation dataset. 

The external validation cohort in SHC consisted of a total of 7,586 ECGs among 3,107 patients. 

The median age was 60 years (IQR: 49-70), with 58.6% (1,820 patients) being male. Atrial 

fibrillation is present in 25.3% of cases, heart failure in 37.0%, CAD in 35.0%, hypertension in 

70.1%, and diabetes mellitus in 48.7%. The median serum potassium level was 4.5 mEq/L (IQR: 

4.0-5.1), with 340 ECGs (4.5%) mapping to a severe hyperkalemia result. Other demographic and 

clinical characteristics are presented in Table 1. 

 

In the external validation dataset, the performances of our 12-lead and single-lead Kardio-Net were 

consistent with the primary cohort. The 12-lead model demonstrated an AUC of 0.849 (95% CI 

0.823-0.875) for hyperkalemia discrimination and achieved an MAE of 0.599 mEq/L. The single-

lead model yielded an AUC of 0.807 (95% CI 0.778–0.835) and an MAE of 0.740 in predicting 

potassium levels. Further analysis in external validation was also conducted using the same 

subgroup to primary cohort. Kardio-Net’s discrimination AUC for detecting hyperkalemia varied 

from 0.780 to 0.860 across these subgroups with consistent performance. 

 

Validation in Smartwatch ECG Waveforms 
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In the prospective international cohort, 589 ECG waveforms were collected from 40 CGMH 

patients. The median age was 65 years ([IQR]: 58-71), with 16 male patients (40.0%). The median 

serum potassium level was 4.9 mEq/L (IQR: 4.4-5.3), with 8 ECGs (1.5%) associated with severe 

hyperkalemia. 23 (3.9%) ECGs were excluded for excessive noise and baseline wander. Single-

lead Kardio-Net demonstrated an MAE of 0.580 mEq/L in predicting serum potassium base on 

smartwatch ECG. The model achieved an AUC of 0.831 (95% CI 0.693–0.975) for hyperkalemia 

detection using smartwatch ECG waveforms. 
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Discussion 

Hyperkalemia is a serious, potentially life-threatening electrolyte disturbance that significantly 

increases the risk for patients with ESRD, tripling their odds of mortality within one day when 

compared to those with normal potassium levels21,22. In this study, we developed a deep learning 

model, Kardio-Net, to estimate serum potassium levels using both standard 12-lead ECGs and 

single-lead ECGs including those from wearable devices like the Apple Watch. Across three 

geographically distinct institutions, our model was able to detect hyperkalemia in ESRD patients. 

These findings suggest potential for ongoing potassium monitoring in the periods between regular 

hemodialysis (Central Illustration). 

 

Deep learning models have previously shown proficiency in detecting alterations in ECGs that 

indicate electrolyte imbalances9,14,15,23,24. Our research builds on existing studies that have used 

ECG data to predict potassium levels in patients with poor kidney function, who are particularly 

susceptible to the dangerous effects of hyperkalemia4,21,25. Earlier studies have suggested that 

certain ECG features can indicate potassium changes. However, these signs are often not as clear 

or accurate in patients with ESRD that their cardiac myocyte are less sensitive to changes in 

potassium, making the usual signs of high potassium less apparent26–28. Our study applying a deep 

learning approach that improves the precision of these predictions by training in a general patient 

and then finetune to enhanced performance specifically in the ESRD population. The transfer 

learning approach allows the model to retain what it learns from the much larger general population 

while adjusting its focus toward the ESRD population. This strategy is well documented in deep 

learning applications in biomedical research, where medical data are often sparse and more 

challenging to collect29. 
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Previous studies have shown the ability of DL models to detect hyperkalemia, but they also found 

that as the number of input leads decreased, the overall performance deteriorated14. Furthermore, 

the efficacy of algorithms specifically designed for wearable devices like the Apple Watch, where 

the signal-to-noise ratio is typically lower, had not been extensively tested30. Nevertheless, we 

adopted several approaches to enhance single-lead Kardio-Net performance as cited in previous 

literature, including a moving window average prediction from 5-s ECG31, and noise detection and 

removal32. These methods contributed the consistency of performance transit from 12-lead ECG 

to single lead ECG. This approach ensured the Kardio-Net’s prediction of serum potassium levels 

remained stable, with the MAE only slightly higher comparing 12-lead to single-lead ECGs.  

 

Study Limitations 

Several limitations of the study merit consideration. First, the retrospective design of training data 

cohort may introduce selection bias of individuals who would receive 12-lead ECGs and serum 

electrolyte checks within 1 hour. This clinical setting might not reflect the variability found in 

broader outpatient settings or during daily activities where wearable technologies are used. 

However, we were able to evaluate the model’s performance on a prospectively collected cohort 

of patients immediately prior to hemodialysis. The prospective international cohort, which utilized 

smartwatch-generated waveforms from diverse racial groups, supports the generalizability of 

Kardio-Net. The use of real-world clinical data and the innovative application of deep learning 

techniques to a critical clinical biomarker substantially increase the relevance and potential impact 

of our findings in patient care management. 
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Conclusion 

Our research proposed a deep learning model, Kardio-Net, is capable of accurately predicting 

serum potassium levels in ESRD patients by analyzing both standard 12-lead ECGs and single-

lead ECG data from wearable devices like the Apple Watch. The ability of this model to 

consistently identify hyperkalemia and its minimal increase in prediction error when moving from 

multi-lead to single-lead data supports its potential as a practical tool for continuous monitoring. 

Such technology could markedly enhance patient outcomes by facilitating the immediate detection 

of electrolyte imbalances, bridging the monitoring gap for patients undergoing regular 

hemodialysis. 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307064doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307064
http://creativecommons.org/licenses/by-nd/4.0/


 15 

Perspectives 

Competency in Medical Knowledge: 

The validation of an AI-ECG algorithm for real-time hyperkalemia monitoring via smartwatches 

offers a non-invasive, continuous potassium level assessment for high-risk patients. 

 

Translational Outlook: 

Translating this AI-ECG innovation into clinical practice requires efficacy evaluations across 

diverse populations and integration with healthcare systems to better patient outcomes.  
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Figure Legend 

Central Illustration: Kardio-Net is a convolutional neural network (CNN) designed to predict 

serum potassium levels in patients with end-stage renal disease (ESRD) using ECG data. Capable 

of processing both 12-lead and single-lead ECGs, this model adapts to traditional and smartwatch-

based systems to provide continuous monitoring. Evaluated on retrospective and prospective 

cohorts, including smartwatch ECGs, Kardio-Net demonstrates robust performance with an AUC 

ranging from 0.807 to 0.876 in detecting hyperkalemia. 

 

Figure 1: Selection of study subjects in the primary and external validation cohorts. 

 

Figure 2: Deep learning model performance in internal and external validations. Figure 2A displays 

a scatter plot of serum potassium predictions from the 12-lead ECG model alongside the ROC 

curve for hyperkalemia recognition. Figure 2B presents the results from the single-lead ECG 

model. 

 

Figure 3: Subgroup analysis of hyperkalemia detection performance. Figure 3A illustrates the AUC 

for different subgroups within CSMC, and Figure 3B for SHC. 

 

Figure 4. Correlated of ECG Waveforms with Serum Potassium Levels. Figure 4A shows mean 

ECG waveforms associated with measured serum potassium concentrations. The graph displays 

waveforms for potassium levels categorized into four ranges: 3.5 to 4.5 mEq/L (blue), 4.5 to 5.5 

mEq/L (orange), 5.5 to 6.5 mEq/L (green), and >6.5 mEq/L (red), demonstrating the expected ECG 
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changes corresponding to each potassium range. Figure 4B shows mean ECG waveforms 

corresponding to serum potassium level as predicted by Kardio-Net.  

 

Extended Figure 1: Scatter plots and MAE illustrating improved performance of the model in 

predicting serum potassium levels in the primary ESRD patient cohort after fine-tuning 

compared to the pre-training phase, using data from 12-lead (A) and single-lead (B) ECGs. 
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Table 1.  Baseline Characteristics of Patients 

 CSMC   

Characteristic Train Val Test Apple watch Stanford 

Number of 

patients 

1,170 146 147 40 3107 

Number of ECGs 3,451 421 465 566 7586 

Sex (% Male) 682 (58.3%) 81 (55.5%) 83 (56.5%) 16 (40.0%) 1820 

(58.6%) 

Age, median 

(IQR), y 

62 (50-72) 61 (50-69) 60 (50-72) 65 (58-71) 60 (49-70) 

Race      

    Caucasian, n 

(%) 

621 (53.1%) 76 (52.1%) 73 (49.7%) 0 1147 

(36.9%) 

    Black, n (%) 304 (26.0%) 39 (26.7%) 41 (27.9%) 0 308 (9.9%) 

    Asian, n (%) 140 (12.0%) 19 (13.0%) 24 (16.3%) 40 (100%) 542 (17.4%) 

    Others, n (%) 105 (9.0%) 12 (8.2%) 9 (6.1%) 0 1110 

(35.7%) 

Clinical       

    Atrial 

Fibrillation 

47 (4.0%) 6 (4.1%) 7 (4.8%) 3 (7.5%) 786 (25.3%) 

    Heart Failure 222 (19.0%) 16 (11.0%) 26 (17.7%) 4 (10.0%) 1149 

(37.0%) 
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    CAD 334 (28.5%) 37 (25.3%) 42 (28.6%) 9 (22.5%) 1087 

(35.0%) 

    Hypertension 534 (45.6%) 63 (43.2%) 79 (53.7%) 26 (65.0%) 2179 

(70.1%) 

    Diabetes 

Mellitus 

401 (34.3%) 45 (30.8%) 56 (38.1%) 15 (37.5%) 1542 

(48.7%) 

Potassium 

(mEq/L) 

     

    median (IQR) 4.6 (4.1-5.2) 4.5 (4.0-5.2) 4.5 (4.0-5.1) 4.9 (4.4-5.3) 4.5 (4.0-5.1) 

    >6.5, n (%) 161 (4.7%) 12 (2.9%) 17 (3.7%) 8 (1.5%) 340 (4.5%)  
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Figure 1. 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307064doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307064
http://creativecommons.org/licenses/by-nd/4.0/


 26 

Figure 2.  
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Figure 4. 
 
A         B 

 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307064doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307064
http://creativecommons.org/licenses/by-nd/4.0/


 30 

Extended Figure 1 

A B 

  
 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.08.24307064doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307064
http://creativecommons.org/licenses/by-nd/4.0/


CENTRAL ILLUSTRATION: AI-enabled Smartwatch EKG for Potassium Monitoring 
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