Title: Unraveling the "indirect effects" of interventions against malaria endemicity: A systematic scoping review

Authors: Yura K. Ko^{1,2}, Wataru Kagaya³, Chim W. Chan⁴, Mariko Kanamori^{5,6}, Samuel M. Mbugua^{7,8,9}, Alex K. Rotich^{7,8,10}, Bernard N. Kanoi^{7,8}, Mtakai Ngara¹, Jesse Gitaka^{7,8}, Akira Kaneko^{1,4}

- 1. Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet
- 2. Department of Virology, Tohoku University Graduate School of Medicine
- 3. Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University
- 4. Department of Virology and Parasitology, Graduate School of Medicine/ Osaka International Research Center for
- Infectious Diseases, Osaka Metropolitan University
- 5. Department of Public Health Sciences, Stockholm University
- 6. Institute for the Future of Human Society, Kyoto University
- 7. Center for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University
- 8. Centre for Malaria Elimination, Mount Kenya University
- 9. School of pharmacy and health sciences, United States International University Africa
- 10. Department of Chemistry and Biochemistry, University of Eldoret

Correspondence to: Yura K. Ko

1 Summary

2	There is an urgent need to maximize the effectiveness of existing malaria interventions and optimize the
3	deployment of novel countermeasures. When assessing the effects of interventions against malaria, it is
4	imperative to consider the interdependence of people and the resulting indirect effects, without which the
5	impact on health outcomes and their cost-effectiveness may be miscalculated. Here, we conducted a
6	scoping review of existing literature on the indirect effects of malaria interventions. We observed a recent
7	increase in both the number of reports and the variety of terms used to denote indirect effects. We further
8	classified eight categories of comparative analysis to identify the indirect effects, proposed common terms
9	for the indirect effects, and highlighted the potential benefits of mathematical models in estimating
10	indirect effects. Improving the study design and reporting the indirect effects of malaria interventions will
11	lead to better informed decisions by policymakers.
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

27 Introduction

28 The global fight against malaria has become increasingly challenging in recent years. Despite concerted 29 scale-up of intervention tools, such as the widespread distribution of long-lasting insecticidal nets 30 (LLINs), rapid diagnostic tests (RDTs), and artemisinin-based combination therapies (ACTs), the 31 estimated global case incidence of malaria in the past few years has stagnated at around 58 cases per 32 1,000 population at risk, while the global mortality rate has remained at approximately 14 per 100,000 33 population at risk¹. Moreover, although malaria remains a leading cause of healthcare spending in 34 endemic countries², the amount invested in 2022 fell short of the estimated USD 7.8 billion required 35 globally to achieve the Global Technical Strategy (GTS) targets set by the World Health Organization 36 $(WHO)^{1}$. It is anticipated that high-income nations and other international funders will continue to 37 prioritize their efforts to address emerging diseases such as COVID-19 through 2024³. In this context, 38 there is an urgent need to re-evaluate existing malaria interventions for more effective deployment, along 39 with the employment of novel countermeasures to reduce the malaria burden more efficiently and cost-40 effectively.

41

42 Malaria is a vector-borne disease transmitted by Anopheles mosquitoes. When measuring the effects of 43 interventions against such diseases, it is crucial to consider the interdependence in people, often referred 44 to as "dependent happenings"⁴. For instance, in malaria-endemic settings, a decline in the number of 45 malaria-infected individuals or mosquitoes will reduce parasite reservoirs and means of transmission in a 46 community, leading a lower possibility of infection among all community members. Consequently, 47 malaria control measures implemented in a community are expected to yield direct benefits for 48 individuals receiving the interventions and indirect benefits for both individuals receiving and not 49 receiving the interventions. Indirect effects can be defined as the unintended positive or negative 50 consequences of an intervention that influences disease transmission or health outcomes. Thus, without 51 proper consideration of the indirect effects, malaria interventions' impacts on health outcomes and their 52 cost-effectiveness may be overestimated or underestimated. Therefore, adopting a comprehensive and

standardized approach to identify both direct and indirect effects is imperative to gain a detailed
understanding of intervention impacts. Moreover, evidence of indirect effects will influence policy
makers' decision making. If the direct effects are equivalent, an intervention that broadly benefits those
who do not receive the intervention is preferable to one that benefits only a limited number of people who
receive the intervention.

58

59 The concept of indirect effects of malaria intervention, especially LLINs, has long been well known. 60 Nevertheless, the description of indirect effects in the WHO guidelines for vector-borne mosquito control only briefly states that community-level effects of ITNs have not always been observed⁵. In addition, the 61 62 scientific literature on malaria interventions that explicitly differentiate and thoroughly analyze their 63 indirect effects is currently limited⁶. A recent systematic review of the indirect effects of interventions on 64 health in low- and middle-income countries by Benjamin-Chung et al⁷. included only two malaria-related 65 studies. Moreover, the methodology of measuring the indirect effects greatly varies, and the terms 66 indicating the indirect effects are not standardized (e.g., community effects, spillover effects, mass effects, 67 herd effects, area-wide effects, spatial effects, and positive externalities). To address these knowledge 68 gaps, we conducted a scoping review to summarize how the indirect effects of malaria interventions were 69 analyzed and reported.

70

71 Methods

72 Search strategy and selection criteria

We followed the recommendations of the Preferred Reporting Items for Systematic Reviews and MetaAnalysis extension for scoping reviews (PRISMA-ScR)⁸. The study protocol is available at elsewhere
(<u>https://inplasy.com/inplasy-2023-6-0025/</u>).

76

77 Literature search

78	We searched PubMed, Web of Science, and EMBASE by title and abstracts. In addition, for grey
79	literature, we searched OAIster by keywords. Searches were conducted in June 2023. We set the search
80	terms as follows: ("malaria" OR "plasmodium") AND ("indirect effect*" OR "indirect protection" OR
81	"herd effect*" OR "herd protection" OR "community effect*" OR "communal effect*" OR "community-
82	level effect*" OR "community protection" OR "communal protection" OR "community-level protection"
83	OR "peer effect*" OR "peer influence effect*" OR "mass effect*" OR "assembly effect*" OR "spillover
84	effect*" OR "contextual effect*" OR "free-rider" OR "free rider" OR "free-riding" OR "free riding" OR
85	"positive externality" OR "positive externalities" OR "dependent happenings")
86	

87 *Eligibility criteria*

88 We included studies that were conducted to quantify the indirect effects of any interventions for all 89 species of malaria infection. We excluded non-original papers such as opinions and editorials. We only 90 targeted articles written in English. We defined indirect effects as the impact accrued by either the non-91 intervention or intervention group, stemming from alterations in malaria parasite or mosquito populations 92 within a community consequent to an intervention. It should be noted that simple group comparisons 93 between treatment and control (or baseline) groups/clusters are regarded as total effects. Studies that 94 reported only total effects were excluded from our review. However, if the treatment coverage in the 95 community was considerably low, the group comparisons between treatment and control were considered 96 indirect effects and were included in our review.

97

98 Study selection

99 We imported the data for each relevant publication into reference software (Rayyan,

100 https://www.rayyan.ai/). Prior to the initial screening, duplicate records were deleted automatically. In the

101 first review step, two reviewers (YKK, SMM) screened all records by title and abstract according to the

102 eligibility criteria. Any discrepancies in the process were resolved by discussion between both reviewers.

103 Once a record was selected, its full text was reviewed by at least two of five reviewers (YKK, WK, CWC,

104 MK, and AKR). Specific data (see the section "Data extraction and analysis") were recorded and 105 summarized in a tabular form through this second review step. Any disagreement was addressed through 106 discussion. Additional reference and citation searches were also conducted. The reference lists of the 107 articles identified during the search were scanned manually, and eligible articles were included in the full-108 text reading. 109 110 Data extraction and analysis 111 We used a standardized data collection form that follows the PRISMA guidelines for scoping reviews⁸ to 112 obtain the following information from each record: title, name of authors, year of publication, region, 113 country, study type, malaria parasite species, type of interventions, type of outcomes, separate estimated 114 indirect effect for different conditions (yes/no), pre-specified to measure indirect effect (yes/no), 115 secondary analysis of previous study (yes/no), methods of indirect effects estimation, terms of indirect 116 effects, and if positive or negative indirect effects observed (yes/no). A detailed description of the 117 extracted data is in Supplementary Table 1. Standardized labels were made for each term for 118 inconsistencies of words, as listed in Supplementary Table 2. 119 120 *Quality of study methodology for estimating indirect effect* 121 We utilized the classification of risk of bias for indirect effect estimation proposed by Benjamin-Chung et 122 al⁷. We only assessed the risk of bias for field epidemiological studies, excluding mathematical modeling 123 studies and experimental hut trials. Each eligible study was classified as "very low", "low", "medium", or 124 "high" in terms of the reliability of indirect effects estimation. 125 126 Results 127 Study selection 128 Figure 1 illustrates a PRISMA flow diagram depicting the identification, screening, eligibility, and 129 exclusion process of the studies. A total of 664 articles were identified through database searches (n =

130 570) and other sources (n = 94). Three hundred sixty-eight duplicate articles were removed. Thirty-eight 131 articles met the eligibility criteria after review of titles and abstracts; 258 studies were excluded for one or 132 more of the four following reasons: 1) different meanings of indirect effect, 2) not malaria-specific 133 intervention, 3) not intervention study, and 4) not reporting indirect effect. Notably, among the studies 134 excluded because of different meanings of indirect effect, 14 studies evaluated the indirect relationship between COVID-19 and malaria⁹⁻²², and one study was a causal mediation analysis²³. Six articles were 135 136 added from a manual search of reference lists of the 38 eligible articles from the initial screening. Of 137 these 44 studies, 31 were included in this review after full-text reading. The reasons for exclusion in the 138 full-text reading were 1) reporting total effect only (n = 7), 2) opinion or review article (n = 3), 3) 139 estimating indirect effect in the context of mediation analysis (n = 2), and 4) not reporting indirect effect 140 (n = 1).141 142 Study characteristics 143 Details of the 31 reviewed studies are summarized in Table 1. Most studies were set in African countries 144 (n = 24; 77%) and examined the indirect effects of interventions on *P. falciparum* (n = 18; 58%). 145 Temporal trends in study types, intervention types, and terms used to describe indirect effects are 146 illustrated in Figure 2. Overall, until year 2000, very few studies purposefully reported indirect effects. 147 Subsequently, there was a sharp increase in reporting from 2001 to 2005, followed by a gradual decline. 148 Since 2016, there has been an upward trend once again (Figure 2a). The most common study type was 149 mathematical modeling (n = 9; 29%), followed by cross-sectional surveys (n = 6; 19%) and re-analysis of 150 cluster-randomized trials (n = 6; 19%) (Figure 2a). The most common interventions were insecticide-151 treated nets (ITNs) or LLINs (n = 17; 55 %). Until 2015, the focus was primarily on ITN/LLIN-related 152 interventions. However, since 2016, reports on various interventions such as house modification, 153 intermittent preventive treatment (IPT), seasonal malaria chemoprevention (SMC), and mass drug 154 administration (MDA) have emerged. (Figure 2b) The most common terms used for indirect effects were 155 "communal" or "community" effect/benefit/protection (n = 23; 74%), followed by "mass" or "mass

156	killing" effect/benefit/protection (n =11; 36%). Until 2015, the use of communal/community effect and
157	the mass effect dominated, but more recently, various terms have come into use, including herd effect,
158	indirect effect, spatial effect, and spillover effect (Figure 2c). Among 21 studies eligible for quality
159	assessment of evidence, 6 (29%) had high-quality evidence, 7 (33%) had moderate, 5 (24%) had low, and
160	3 (14%) had very low-quality evidence. Of studies with high-quality evidence, 5 (83%) used cluster-
161	randomized designs.
162	
163	Overview of methods for indirect effect analysis
164	Among all included studies, each intervention's indirect effect was evaluated in relation to reductions in
165	malaria transmission. Figure 3 shows the categories of methods for indirect effect estimation identified
166	through this review. In addition, a detailed description of the methods by intervention type is listed in
167	Supplementary Table 3.
168	
169	Field studies (epidemiological and entomological studies)
170	Among field studies, including epidemiological and entomological studies, 59% pre-specified analysis of
171	indirect effects ($n = 13$). Comparisons of non-treatment populations in intervention communities with
172	non-intervention communities or pre-post analyses of these populations ([1]-(1) and [1]-(2), respectively,
173	in Figure 3) were employed by eight studies ^{$24-31$} . On the other hand, comparison among no-intervention
174	individuals/groups according to distance to the treatment household or the treatment coverage within a
175	certain distance range were employed by 16 studies ([2] in Figure 3) ^{24,27,30,32-44} .
176	
177	Comparisons conditioned on the distance to nearest intervention were reported in five studies ^{32,34,35,38,44}
178	([2]-(1) in Figure 3), all of which evaluated the impacts of ITN. There were two analytical approaches.
179	One was to compare between groups stratified by the distance category set at $100 - 400$ m intervals, with
180	the most distant group as the reference. In all studies, households without ITNs within 300 – 400 m of
181	households with ITNs had the lowest risk of malaria-related outcomes (e.g. malaria parasitemia, mosquito

density, anemia, and all-cause mortality). Another approach to measuring indirect effects by conditioning
on distance was trend analysis, in which regression was performed with distance as an explanatory
variable. Around year 2000, researchers simply incorporated distance into the model as a continuous
variable^{32,35}, but recently, Jarvis et al. have used a quadratic term to account for the nonlinearity called
"distance decay" in spatial analysis⁴⁴. The study reported that for every additional 100 m that a control
household was from an intervention household, the all-cause mortality for children aged 6–59 months
increased by 1.7%⁴⁴.

189

190 Regarding interventions conditional on treatment coverage, two patterns were observed: comparing 191 among intervention populations ([2]-(2) and [2]-(3) in Figure 3) and among non-intervention populations 192 ([2]-(4) and [2]-(5) in Figure 3). The definition of the areal unit for calculating intervention coverage 193 varied from study to study, with a single cutoff determined by a 100-m to 3-km radius of the subject's household^{34,36,42,43}, multiple distances used in an exploratory manner^{24,37,39}, and using primary sampling 194 195 units^{40,41}. There were also two approaches to analyzing indirect effects: one in which groups were 196 stratified by intervention coverage and the other in which regression analysis was performed by 197 incorporating intervention coverage as an explanatory variable.

198

199 Several approaches other than the above-mentioned methodology were used to evaluate the indirect 200 effects (categorized as "Others" in Table 1). Jarvis et al. (2019) showed that the treatment effects changed 201 after reallocating the treatment and control cluster assignments based on the distance to the nearest 202 treatment cluster⁴⁴. Oduor et al. (2009) suggested positive indirect effects by confirming that the direct 203 treatment effects were enhanced when spillovers to the neighboring sub-locations were accounted for⁴⁵. In 204 addition, Staedke et al. (2018) evaluated the effect of IPT in school children by comparing the reduction 205 in malaria prevalence in all age groups between the intervention and control clusters²⁹. The risk reduction 206 was regarded as a community-level effect because the treatment coverage was considerably low (only 207 school children among all age groups).

2	n	0
7	υ	o

209	Only two studies examined indirect effect heterogeneity ^{40,42} . Escamilla et al. (2017) reported that an
210	increase in community bed net coverage was significantly associated with a decrease in malaria
211	prevalence among children under five years and 5 – 19 year-olds, but no association was observed among
212	adults older than 20 years ⁴² . In another study by Larsen et al. (2014), subgroup analyses were performed,
213	stratified by rural versus urban areas and low versus high malaria transmission; however, no significant
214	effect heterogeneity was observed ⁴⁰ . In four studies, positive indirect effects were not observed, or
215	negative indirect effects were observed with increased treatment coverage ^{37,39,41,42} . All four studies were
216	observational studies. Among the field studies, 59% pre-specified analysis of indirect effects (n = 13).
217	
218	Mathematical modeling studies
219	Among nine studies employing mathematical models ^{46–54} , two-thirds ($n = 6$) aimed to estimate the
220	indirect effects of ITNs/LLINs, comparing outcomes before and after the intervention in the non-
221	intervention group or altering parameters of intervention coverage through simulation. No mathematical
222	modeling studies conducted a comparison based on distance conditioning, likely due to the infrequent use
223	of spatial data in malaria transmission models. One notable characteristic of mathematical models is their
224	ability to vary efficacy by changing more detailed parameters of interventions, such as the repellent and
225	killing effects of ITNs ⁵⁰ , vaccine target for pre-erythrocytic or blood-stage <i>P. falciparum</i> ⁵² , endemicity of
226	study area ⁵³ , and the connectedness between different areas ^{47,53} ([3] in Figure 3).
227	
228	Another distinctive method for estimating indirect effects involves using counterfactual hypothetical
229	models. Unwin et al. (2023) disentangled the direct and indirect effects of ITNs ⁵⁴ by maintaining the
230	entomological inoculation rate (EIR) over time in certain scenarios, thereby breaking the link between
231	current malaria endemicity and the human force of infection.
232	
233	Discussion

234 To our knowledge, this is the first systematic scoping review on the indirect effects of malaria 235 intervention. We reviewed studies whose titles or abstracts included terms indicative of indirect effects 236 (except some articles from manual searches) and revealed that the number of such studies has increased in 237 recent years, especially for interventions other than ITNs/LLINs. In addition, although not included in this review, an opinion piece⁶ and a methodology study⁵⁵ have recently been published relating to the indirect 238 239 effects of malaria intervention. Most recently, in 2023, a study intended to estimate both indirect and 240 direct effects of reactive, focal chemoprevention and vector control interventions was made available as a 241 preprint⁵⁶. In light of the increasing interest in the indirect effects of malaria interventions, a scoping 242 review summarizing previous studies is pertinent and salient. 243 244 Several terms have been used to convey indirect effects. Apart from the "mass/mass killing" effect, which 245 refers to the reduction of malaria transmission by decreasing the mosquito abundance or density through 246 insecticides, other terms such as community effects, spillover effects, mass effects, and herd effects have 247 been used interchangeably to denote indirect effects. Historically, indirect effects of malaria control

248 interventions have often been labeled as community effects, especially for ITNs/LLINs (Supplementary

Figure 1) and in the WHO vector control guideline⁵. In recent years, there has been more diversity in the

250 terminology, particularly for interventions other than ITNs/LLINs. This diversity of terminology may

create confusion and make it difficult for literature search on this topic. We propose using either

community effects or spillover effects, a widely used term in general epidemiology^{7,57}, when reporting

253 indirect effects in malaria control, regardless of the type of intervention.

254

We found that studies varied in their methodology for estimating indirect effects, although most can be typified into eight categories (Figure 3). Since malaria parasites are transmitted via mosquitoes, it is appropriate to make comparisons conditional on distance to account for mosquito flight range or intervention density within that range. Comparisons between non-treatment groups conditional on distance from the treatment group were only conducted in studies on vector control such as ITNs/LLINs,

while studies on interventions against parasites such as MDA, IPT/SMC, and vaccine were conditioned
by treatment coverage (Supplementary Table 3). Future studies investigating the effectiveness of malaria
interventions could draw on these methods, taking into account geographical characteristics and the
feasibility of each study.

264

When comparing the non-treated within intervention clusters, double-randomized trials⁵⁸, which allow for 265 266 the strongest inference by minimizing selection bias and unmeasured confounding, are considered the recommended approach^{7,57}. However, we did not find any studies in our review that performed two-stage 267 268 randomization. One possible reason is that a double-randomized trial is not always feasible, especially in 269 the evaluation of malaria interventions. Because of the additional allocation of controls within the 270 intervention cluster, more samples or reduced intervention coverage are needed to obtain sufficient power 271 for the estimation of the indirect effect. In addition, in malaria, there are interventions that target 272 subpopulations in the community, such as IPT, SMC, and vaccination targeting children or pregnant 273 women. In these interventions, untargeted individuals in the treatment group and their counterparts in the 274 control group (i.e., individuals who would be ineligible if they were assigned to the treatment group) may 275 be comparable, effectively emulating a cluster-randomized trial design, which would not necessarily 276 require a two-stage randomization. If using a cluster-randomized design or analyzing observational 277 studies in which ineligible populations are not comparable to eligible populations, matching should be 278 considered. It should be noted, however, that even with matching, unmeasured confounding may remain, and external validity may be reduced^{57,59}. 279

280

Other than changes in the number of malaria-infected individuals (drug or vaccine administration) or mosquitoes (vector control), indirect effects of interventions can manifest in two ways⁷: 1) individuals change their behavior because of the intervention and, in turn, influence the behavior of non-recipients in neighbors (social proximity), and 2) if a household member receives additional resources through the

285 intervention, other household members will benefit because additional resources are available to the 286 household (substitution). These indirect effects may not be trivial, and their relative magnitude may vary 287 from setting to setting, which would necessitate intervention deployment plans tailor-made to suit area 288 specificity, a lesson learned from the first Global Malaria Eradication Programme. We did not find studies 289 reporting the indirect effects through these mechanisms that met our inclusion criteria. We excluded one 290 study estimating the association between the proportion of nearby households receiving ITN subsidies 291 and the probability of ITN use⁶⁰ because net usage was the only outcome reported. Future research on the impact of changes in individual behavior through programs such as conditional cash transfers⁶¹ and 292 293 subsidies based on malaria infection, morbidity, and mortality, especially when implemented alongside 294 other malaria interventions, is warranted. 295 Four studies either did not identify a positive indirect effect or reported a negative indirect effect^{37,39,41,42}. 296 297 There are several reasons for not observing positive indirect effects. First, indirect effects, in general, tend 298 to be smaller than direct effects, studies designed to detect direct effects as primary objectives are often 299 underpowered to detect indirect effects⁷. For instance, vector control measures reduce malaria 300 transmission by reducing EIR in the community, but EIR and parasite prevalence are not linearly related⁶², 301 and a substantial EIR reduction would be required to reduce malaria prevalence among non-recipients. 302 Second, there is the potential confounder of residents' behavior associated with both intervention 303 compliance and the outcome. Residents' compliance with interventions may depend on their perception of 304 the risk of malaria transmission in the community and mosquito density⁶³. For example, increasing community net usage is often associated with increasing mosquitos and malaria risk⁶⁴. So, comparisons 305 306 between non-recipients, especially when conditioned on coverage, may underestimate indirect effects. In 307 addition, characteristics of non-recipients such as socio-economic status, healthcare access, and malaria 308 preventive behavior may be different according to community treatment coverage, especially in an 309 observational study setting⁶⁵. Third, migration of infected individuals and mosquitoes between targeted

310 and untargeted areas may have reduced the impact of the intervention in targeted areas³¹. No field studies 311 conducted to date have taken into account these human and mosquito mobility to estimate indirect effects. 312

313 Recently, there has been a substantial upsurge in the number of mathematical modeling studies on malaria⁶⁶. In agent-based models, estimating the impact of an intervention in the non-intervention 314 315 population is straightforward within any simulation, thus we had expected a greater number of modeling 316 studies that estimated indirect effects. However, only nine mathematical modeling studies were included 317 in our review. It is possible that our screening, based on keywords in titles and abstracts, excluded many 318 of these studies. This also supports the importance of our proposal on standardizing the terms used to 319 refer to an indirect effect. An advantage of mathematical modeling is the ability to examine changes in 320 indirect effects not only by varying the coverage of the intervention but also by adjusting other parameters, 321 such as deterrent and insecticidal effects in the case of ITNs/LLINs, simultaneously. It would be 322 beneficial to take advantage of mathematical models and consider parameters for which data are not 323 reliably quantified. For example, the main advantage of house modification is that once installed, it remains semi-permanent. Therefore, its effect is less susceptible to variations in human behavior⁶⁷, such 324 as repurposing and inconsistent uses of LLINs⁶⁸. Incorporating such behaviors into the model and 325 326 estimating the indirect effects on those who do not receive the intervention will have important 327 implications for the widespread implementation of the intervention.

328

One limitation of our study is that the search strategy may not have captured all relevant articles. We searched for keywords in the titles and abstracts, potentially missing studies that only reported the indirect effects of malaria interventions within the full text of the article. While efforts were made to manually include references cited for indirect effects, they were unlikely to be complete. Additionally, Benjamin-Chung et al. noted evidence of publication bias reporting for indirect effects⁷. Nonetheless, this review aimed to pave the way for improved design and reporting of future research on the indirect effects of

malaria interventions. By highlighting this critical area, we hope to contribute to a more appropriateevaluation of intervention effectiveness.

337

•••	
338	In conclusion, our review notes an increase in the number of studies that measured the indirect effects of
339	malaria interventions in recent years. We outline eight comparative schemes by which indirect effects of
340	malaria interventions can potentially be quantified, and propose standardized terms for describing indirect
341	effects. We further support the use of mathematical models to inform the evaluation of indirect effects of
342	malaria interventions. Incorporating assessment of indirect effects in future trials and studies may provide
343	insights to optimize the deployment of existing and new interventions, a critical pillar in the current fight
344	against malaria globally. In addition, evidence about the cost-effectiveness of interventions, taking into
345	account the indirect effects, will lead to better-informed decisions by policymakers.
346	
347	Declarations
348	Acknowledgments
349	We are grateful to Dr. Masaru Nagashima for his thoughtful input from his expertise in development
350	economics research.
351	
352	Contributions
353	YKK developed the original concept. YKK and SMM conducted the first literature screening. YKK, WK,
354	CWC, MK, and AKR conducted the full-text reading. YKK drafted the first draft of the manuscript and
355	YKK, WK, CWC, MK, AKR, BNK, MN, JG, and AK contributed to the revisions. All authors reviewed
356	and approved the final manuscript.
357	
358	Funding

359 YKK and MK were financially supported by the Japan Society for the Promotion of Science. AK and JG

360	received support from JICA/AMED joint research project (SATREPS) (Grant no. 20JM0110020H0002),				
361	Hitachi Fund Support for Research Related to Infectious Diseases, and Sumitomo Chemical Corporation.				
362	The	funding bodies play no role in the study.			
363					
364	Con	npeting Interests			
365	The	authors declare no competing interests.			
366					
367	Ref	erences			
368	1	World Health Organization. World malaria report 2023. 2023.			
369	2	Patel D, Patel KF, Patel K, Patel P, Patel S, Bansal R. Assessment of out of pocket expenditure for			
370		treatment of malaria in Surat city. National journal of community medicine 2016; 7: 741-4.			
371	3	Rannan-Eliya RP. Financing malaria. PLOS Glob Public Health 2022; 2: e0000609.			
372	4	Halloran ME, Hudgens MG. Dependent Happenings: A Recent Methodological Review. Curr			
373		<i>Epidemiol Rep</i> 2016; 3 : 297–305.			
374	5	World Health Organization. GUIDELINES FOR MALARIA VECTOR CONTROL. 2019.			
375	6	McCann RS, Cohee LM, Goupeyou-Youmsi J, Laufer MK. Maximizing Impact: Can Interventions			
376		to Prevent Clinical Malaria Reduce Parasite Transmission? Trends Parasitol 2020; 36: 906–13.			
377	7	Benjamin-Chung J, Abedin J, Berger D, et al. Spillover effects on health outcomes in low- and			
378		middle-income countries: a systematic review. Int J Epidemiol 2017; 46: 1251–76.			
379	8	Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR):			
380		Checklist and Explanation. Ann Intern Med 2018; 169: 467–73.			

381	9	Feldman M, Vernaeve L, Tibenderana J, et al. Navigating the COVID-19 Crisis to Sustain
382		Community-Based Malaria Interventions in Cambodia. Glob Health Sci Pract 2021; 9: 344–54.
383	10	Fleischman E, Hutchinson AH, Paracha NZ, Kumarasinghe C, Patel E. The Indirect Costs of the
384		SARS-CoV-2 Pandemic: A Case of Severe Malaria in Brooklyn. Cureus 2020; 12: e12331.
385	11	Langdon A, Abdlaziz I, Rhodes K, Clarke J. Case of myocarditis secondary to severe Plasmodium
386		falciparum infection. BMJ Case Rep 2022; 15. DOI:10.1136/bcr-2022-249363.
387	12	Weiss DJ, Bertozzi-Villa A, Rumisha SF, et al. Indirect effects of the COVID-19 pandemic on
388		malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis.
389		<i>Lancet Infect Dis</i> 2021; 21 : 59–69.
390	13	Velavan TP, Meyer CG, Esen M, Kremsner PG, Ntoumi F, PANDORA-ID-NET and CANTAM
391		consortium. COVID-19 and syndemic challenges in "Battling the Big Three": HIV, TB and malaria.
392		Int J Infect Dis 2021; 106 : 29–32.
393	14	Heuschen A-K, Lu G, Razum O, et al. Public health-relevant consequences of the COVID-19
394		pandemic on malaria in sub-Saharan Africa: a scoping review. Malar J 2021; 20: 339.
395	15	Heuschen A-K, Abdul-Mumin A, Abubakari A, et al. Effects of the COVID-19 pandemic on
396		general health and malaria control in Ghana: a qualitative study with mothers and health care
397		professionals. <i>Malar J</i> 2023; 22 : 78.
398	16	Buonsenso D, Iodice F, Cinicola B, Raffaelli F, Sowa S, Ricciardi W. Management of Malaria in
399		Children Younger Than 5 Years Old During Coronavirus Disease 2019 Pandemic in Sierra Leone:
400		A Lesson Learned? Front Pediatr 2020; 8: 587638.
401	17	Burt JF, Ouma J, Lubyayi L, et al. Indirect effects of COVID-19 on maternal, neonatal, child, sexual
402		and reproductive health services in Kampala, Uganda. BMJ Global Health 2021; 6: e006102.

403	18	Baral S Rao A	Twahirwa Rwema	IO et al	Competing	Health Risks	Associated wit	th the COVID-
705	10	Data D. Rao D.		JO. ci ui	Compoune	i noann mono i	issociated wi	m m c c c r m

- 404 19 Pandemic and Early Response: A Scoping Review. *medRxiv* 2021; published online Dec 15.
- 405 DOI:10.1101/2021.01.07.21249419.
- 406 19 Altare C, Kostandova N, Gankpe GF, et al. The first year of the COVID-19 pandemic in
- 407 humanitarian settings: epidemiology, health service utilization, and health care seeking behavior in
- 408 Bangui and surrounding areas, Central African Republic. *Confl Health* 2023; **17**: 24.
- 409 20 Druetz T, Cooper S, Bicaba F, et al. Change in childbearing intention, use of contraception,
- 410 unwanted pregnancies, and related adverse events during the COVID-19 pandemic: Results from a
- 411 panel study in rural Burkina Faso. *PLOS Glob Public Health* 2022; **2**: e0000174.
- 412 21 Menendez C, Gonzalez R, Donnay F, Leke RGF. Avoiding indirect effects of COVID-19 on
- 413 maternal and child health. *The Lancet Global Health* 2020; **8**: e863–4.
- 414 22 Bertoli F, Veritti D, Danese C, *et al.* Ocular Findings in COVID-19 Patients: A Review of Direct
 415 Manifestations and Indirect Effects on the Eye. *J Ophthalmol* 2020; **2020**: 4827304.
- 416 23 Okoh OM, Olapeju B, Oyedokun-Adebagbo F, et al. The role of ideation on the effect of an SBC
- 417 intervention on consistent bed net use among caregivers of children under 5 years in Nigeria: a

418 multilevel mediation analysis. *BMC Public Health* 2021; **21**: 1660.

- 419 24 Howard SC, Omumbo J, Nevill C, Some ES, Donnelly CA, Snow RW. Evidence for a mass
- 420 community effect of insecticide-treated bednets on the incidence of malaria on the Kenyan coast.
- 421 *Trans R Soc Trop Med Hyg* 2000; **94**: 357–60.
- 422 25 Maxwell CA, Msuya E, Sudi M, Njunwa KJ, Carneiro IA, Curtis CF. Effect of community-wide use
- 423 of insecticide-treated nets for 3-4 years on malarial morbidity in Tanzania. *Trop Med Int Health*
- 424 2002; **7**: 1003–8.

425	26	Charlwood JD, Alcântara J, Pinto J, et al. Do bednets reduce malaria transmission by exophagic
426		mosquitoes? Trans R Soc Trop Med Hyg 2005; 99: 901–4.

- 427 27 Killeen GF, Tami A, Kihonda J, et al. Cost-sharing strategies combining targeted public subsidies
- 428 with private-sector delivery achieve high bednet coverage and reduced malaria transmission in
- 429 Kilombero Valley, southern Tanzania. *BMC Infect Dis* 2007; 7: 121.
- 430 28 Cissé B, Ba EH, Sokhna C, *et al.* Effectiveness of Seasonal Malaria Chemoprevention in Children
 431 under Ten Years of Age in Senegal: A Stepped-Wedge Cluster-Randomised Trial. *PLoS Med* 2016;
- **13**: e1002175.
- 433 29 Staedke SG, Maiteki-Sebuguzi C, Rehman AM, et al. Assessment of community-level effects of
- 434 intermittent preventive treatment for malaria in schoolchildren in Jinja, Uganda (START-IPT trial):

435 a cluster-randomised trial. *The Lancet Global Health* 2018; **6**: e668–79.

- 436 30 Mwanga EP, Mmbando AS, Mrosso PC, *et al.* Eave ribbons treated with transfluthrin can protect
 437 both users and non-users against malaria vectors. *Malar J* 2019; **18**: 314.
- 438 31 Hast MA, Chaponda M, Muleba M, et al. The Impact of 3 Years of Targeted Indoor Residual
- 439 Spraying With Pirimiphos-Methyl on Malaria Parasite Prevalence in a High-Transmission Area of
 440 Northern Zambia. *Am J Epidemiol* 2019; **188**: 2120–30.
- 32 Binka FN, Indome F, Smith T. Impact of spatial distribution of permethrin-impregnated bed nets on
 child mortality in rural northern Ghana. *Am J Trop Med Hyg* 1998; **59**: 80–5.
- 443 33 Ilboudo-Sanogo E, Cuzin-Ouattara N, Diallo DA, *et al.* Insecticide-treated materials, mosquito
- 444 adaptation and mass effect: entomological observations after five years of vector control in Burkina
- 445 Faso. *Trans R Soc Trop Med Hyg* 2001; **95**: 353–60.

- 446 34 Hawley WA, Phillips-Howard PA, ter Kuile FO, et al. Community-wide effects of permethrin-
- treated bed nets on child mortality and malaria morbidity in western Kenya. *Am J Trop Med Hyg*2003; 68: 121–7.
- Gimnig JE, Kolczak MS, Hightower AW, *et al.* Effect of permethrin-treated bed nets on the spatial
 distribution of malaria vectors in western Kenya. *Am J Trop Med Hyg* 2003; **68**: 115–20.
- 451 36 Abdulla S, Gemperli A, Mukasa O, *et al.* Spatial effects of the social marketing of insecticide452 treated nets on malaria morbidity. *Trop Med Int Health* 2005; 10: 11–8.
- 453 37 Gosoniu L, Vounatsou P, Tami A, Nathan R, Grundmann H, Lengeler C. Spatial effects of mosquito
 454 bednets on child mortality. *BMC Public Health* 2008; 8: 356.
- Klinkenberg E, Onwona-Agyeman KA, McCall PJ, *et al.* Cohort trial reveals community impact of
 insecticide-treated nets on malariometric indices in urban Ghana. *Trans R Soc Trop Med Hyg* 2010; **104**: 496–503.
- 458 39 Komazawa O, Kaneko S, K'Opiyo J, *et al.* Are long-lasting insecticidal nets effective for preventing
 459 childhood deaths among non-net users? A community-based cohort study in western Kenya. *PLoS*460 *One* 2012; **7**: e49604.
- 461 40 Larsen DA, Hutchinson P, Bennett A, *et al.* Community coverage with insecticide-treated mosquito
 462 nets and observed associations with all-cause child mortality and malaria parasite infections. *Am J*463 *Trop Med Hyg* 2014; **91**: 950–8.
- 464 41 Buchwald AG, Coalson JE, Cohee LM, *et al.* Insecticide-treated net effectiveness at preventing
 465 Plasmodium falciparum infection varies by age and season. *Malar J* 2017; 16: 32.
- 466 42 Escamilla V, Alker A, Dandalo L, *et al.* Effects of community-level bed net coverage on malaria
 467 morbidity in Lilongwe, Malawi. *Malar J* 2017; 16: 142.

468	43	Parker DM, Tun STT, White LJ, et al. Potential herd protection against Plasmodium falciparum
469		infections conferred by mass antimalarial drug administrations. <i>Elife</i> 2019; 8: e41023.
470	44	Jarvis CI, Multerer L, Lewis D, et al. Spatial Effects of Permethrin-Impregnated Bed Nets on Child
471		Mortality: 26 Years on, a Spatial Reanalysis of a Cluster Randomized Trial. Am J Trop Med Hyg
472		2019; 101 : 1434–41.
473	45	Oduor J, Kamau A, Mathenge E. Evaluating the impact of microfranchising the distribution of anti-
474		malarial drugs in Kenya on malaria mortality and morbidity. Journal of Development Effectiveness
475		2009; 1: 353–77.
476	46	Struchiner CJ, Halloran ME, Robins JM, Spielman A. The behaviour of common measures of
477		association used to assess a vaccination programme under complex disease transmission patternsa
478		computer simulation study of malaria vaccines. Int J Epidemiol 1990; 19: 187–96.
479	47	Killeen GF, Knols BGJ, Gu W. Taking malaria transmission out of the bottle: implications of
480		mosquito dispersal for vector-control interventions. Lancet Infect Dis 2003; 3: 297–303.
481	48	Killeen GF, Smith TA, Ferguson HM, et al. Preventing childhood malaria in Africa by protecting
482		adults from mosquitoes with insecticide-treated nets. PLoS Med 2007; 4: e229.
483	49	Killeen GF, Smith TA. Exploring the contributions of bed nets, cattle, insecticides and
484		excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and
485		mortality. Trans R Soc Trop Med Hyg 2007; 101: 867–80.
486	50	Killeen GF, Chitnis N, Moore SJ, Okumu FO. Target product profile choices for intra-domiciliary
487		malaria vector control pesticide products: repel or kill? Malar J 2011; 10: 207.

- 488 51 Okumu FO, Kiware SS, Moore SJ, Killeen GF. Mathematical evaluation of community level impact
- 489 of combining bed nets and indoor residual spraying upon malaria transmission in areas where the
- 490 main vectors are Anopheles arabiensis mosquitoes. *Parasit Vectors* 2013; **6**: 17.
- 491 52 Wenger EA, Eckhoff PA. A mathematical model of the impact of present and future malaria
- 492 vaccines. *Malar J* 2013; **12**: 126.
- 493 53 Tun STT, Parker DM, Aguas R, White LJ. The assembly effect: the connectedness between
 494 populations is a double-edged sword for public health interventions. *Malar J* 2021; 20: 189.
- 495 54 Unwin HJT, Sherrard-Smith E, Churcher TS, Ghani AC. Quantifying the direct and indirect
- 496 protection provided by insecticide treated bed nets against malaria. *Nat Commun* 2023; **14**: 676.
- 497 55 Multerer L, Glass TR, Vanobberghen F, Smith T. Analysis of contamination in cluster randomized
 498 trials of malaria interventions. *Trials* 2021; 22: 613.
- 499 56 Benjamin-Chung J, Li H, Nguyen A, *et al.* Targeted malaria elimination interventions reduce
- 500 Plasmodium falciparum infections up to 3 kilometers away. *medRxiv* 2023; published online Nov 30.
 501 DOI:10.1101/2023.09.19.23295806.
- 502 57 Benjamin-Chung J, Arnold BF, Berger D, *et al.* Spillover effects in epidemiology: parameters, study
 503 designs and methodological considerations. *Int J Epidemiol* 2018; 47: 332–47.
- 504 58 Clemens J, Shin S, Ali M. New approaches to the assessment of vaccine herd protection in clinical
 505 trials. *Lancet Infect Dis* 2011; 11: 482–7.
- 506 59 Freemantle N, Marston L, Walters K, Wood J, Reynolds MR, Petersen I. Making inferences on
- 507 treatment effects from real world data: propensity scores, confounding by indication, and other
- 508 perils for the unwary in observational research. *BMJ* 2013; **347**: f6409.

509	60	Bhattacharya D, Dupas P, Kanaya S. Estimating the Impact of Means-tested Subsidies under
510		Treatment Externalities with Application to Anti-Malarial Bednets. https://www.nber.org >
511		papershttps://www.nber.org > papers. 2013; published online Feb. DOI:10.3386/w18833.
512	61	Matsumoto T, Nagashima M, Kagaya W, Kongere J, Gitaka J, Kaneko A. Evaluation of a financial
513		incentive intervention on malaria prevalence among the residents in Lake Victoria basin, Kenya:
514		study protocol for a cluster-randomized controlled trial. <i>Trials</i> 2024; 25 : 165.
515	62	Amoah B, McCann RS, Kabaghe AN, et al. Identifying Plasmodium falciparum transmission
516		patterns through parasite prevalence and entomological inoculation rate. <i>Elife</i> 2021; 10.
517		DOI:10.7554/eLife.65682.
518	63	Koenker HM, Loll D, Rweyemamu D, Ali AS. A good night's sleep and the habit of net use:
519		perceptions of risk and reasons for bed net use in Bukoba and Zanzibar. <i>Malar J</i> 2013; 12 : 203.
520	64	Msellemu D, Shemdoe A, Makungu C, et al. The underlying reasons for very high levels of bed net
521		use, and higher malaria infection prevalence among bed net users than non-users in the Tanzanian
522		city of Dar es Salaam: a qualitative study. <i>Malar J</i> 2017; 16 : 423.
523	65	Larsen DA, Keating J, Miller J, et al. Barriers to insecticide-treated mosquito net possession 2 years
524		after a mass free distribution campaign in Luangwa District, Zambia. PLoS One 2010; 5: e13129.
525	66	Smith NR, Trauer JM, Gambhir M, et al. Agent-based models of malaria transmission: a systematic
526		review. <i>Malar J</i> 2018; 17 : 299.
527	67	Kagaya W, Chan CW, Kongere J, et al. Evaluation of the protective efficacy of Olyset®Plus ceiling
528		net on reducing malaria prevalence in children in Lake Victoria Basin, Kenya: study protocol for a
529		cluster-randomized controlled trial. Trials 2023; 24: 354.

- 530 68 Larson PS, Minakawa N, Dida GO, Njenga SM, Ionides EL, Wilson ML. Insecticide-treated net use
- 531 before and after mass distribution in a fishing community along Lake Victoria, Kenya: successes
- and unavoidable pitfalls. *Malar J* 2014; **13**: 466.

533

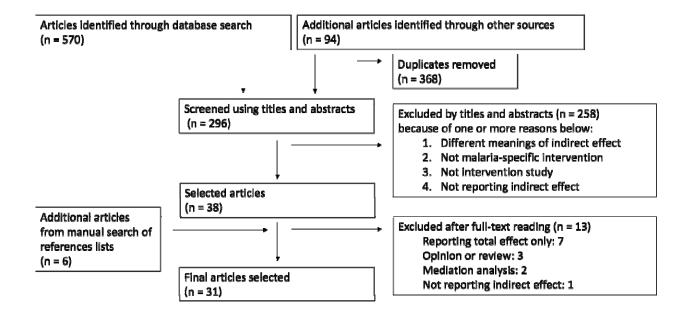


Figure 1: PRISMA flowchart of study selection

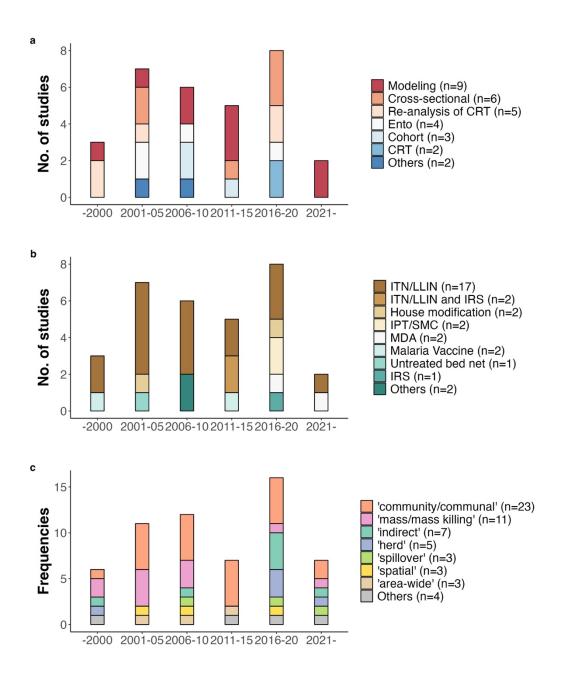
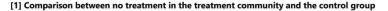
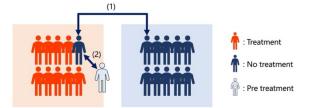
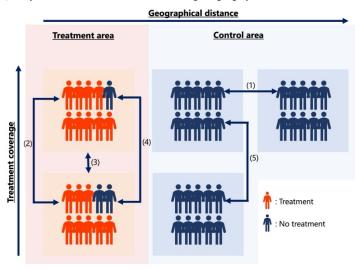





Figure 2: Time trend of study characteristics; a) study type, b) intervention type, c) term used to describe the concept of indirect effects. Note that for c), the total number of terms in the graph does not correspond to the total number of studies (n=31), as multiple terms can be used in a single paper. CRT: cluster randomized trial, Ento: entomological survey, ITN: insecticide-treated net, LLIN: long-lasting insecticide-treated net, IRS: indoor residual spray, IPT: intermittent preventive treatment, MDA: mass drug administration. For the study type, "Others" included analysis of passive case detection using surveillance data. For intervention type, "Others" included access to free antimalarials and target subsidies of ITNs. Regarding indirect effects terminology, "Others" included assembly effects, population effects, group-level effects, positive externality, and dependent happenings.

[2] Comparison conditional on treatment coverage or geographical distance

[3] Comparison conditional on other factors (modeling study)

Figure 3: Categories of indirect effect analysis methods. [1] comparison between no treatment in the treatment community and the control group, (1) comparison not conditional on treatment density nor geographical distance, (2) pre-post comparisons among those who did not receive the treatment, [2] Comparison conditional on treatment coverage or geographical distance, (1) comparisons within the control area according to distance to the treatment cluster. (2) comparisons within the treatment area according to the coverage among those who received the treatment. (3) comparisons within the treatment area according to the coverage, including both those who received treatment and those who did not. (4) comparisons within the treatment area according to the coverage, including both those who received treatment and those who did not receive the treatment. (5) comparisons within the control area according to the coverage of the nearest treatment clusters, [3] comparisons conditional on other factors such as the repellent and killing effects of ITNs, pre-erythrocytic or blood-stage vaccine efficacy, endemicity of study area, and the connectedness between different areas. Type [3] only applies to mathematical modeling studies. If one of these did not apply, it was recorded as "Others".

Table 1: Characteristics of 31 included studies.

Authors,	Type of	Study type	Intervention	Pre-specified	Term of indirect effct		Methods	Indirect effect	Quality
country of interest	malaria			indirect effects [*]	Title and Abstract	Main text			
Binka et al. 1998, Ghana	P.f	Re-analysis of CRT	ITN/LLIN	У	-	mass effect	[2]-(1)	Positive	high
Howard et al. 2000, Kenya	-	Re-analysis of CRT	ITN/LLIN	n	mass community effect, mass effect	mass effect, mass community effect, mass killing effect	[1]-(1), [2]-(3), [2]-(4)	Positive	high
Ilboudo- Sanogo et al. 2001, Burkina Faso	P.f	Ento	House modification	n	mass effect	mass killing effect, mass effect	[2]-(3)	Positive	low
Maxwell et al. 2002, Tanzania	P.f	Cross- sectional	ITN/LLIN	у	mass killing benefit, community-wide effects	mass effect, community benefit, the effect of mass mosquito killing	[1]-(1)	Positive	low
Hawley et al. 2003, Kenya	P.f, P.m, P.o	Re-analysis of CRT	ITN/LLIN	n	community wide effects, community effect, area-wide effects	beneficial community effect, coomunity wide effect, area-wide effects	[2]-(1), [2]-(5)	Positive	high
Gimnig et al. 2003, Kenya	P.f, P.m, P.o	Ento	ITN/LLIN	n	community-wide suppression	community effect	[2]-(1)	Positive	high

Charlwood et al. 2005, Sao Tome and Principe	P.f, P.m, P.v, P.o	Others (Passive surveillance)	Untreated bed net	n	mass effect	community-wide effect	[1]-(2)	Positive	very low
Abdulla et al. 2005, Tanzania	P.f	Cross- sectional	ITN/LLIN	n	spatial effects	spatial effect, coverage effect	[2]-(3)	Positive	moderate
Killeen et al. 2007, Tanzania	P.f	Ento	Target subsidies of ITN	у	community-level protection	community-level effects, mass effects, communinal protection	[1]-(2), [2]-(5)	Positive	moderate
Gosoniu et al. 2008, Tanzania	P.f	Cohort	ITN/LLIN	у	Spatial effects, community effect benefit, community effect	indirect effects, spatital effects, community effects, community-wide effect, mass effect, community-level protection	[2]-(4)	No positive	low
Oduor et al. 2009, Kenya	-	Others (Passive surveillance)	Access to free antimalarials	у	spillover effects	spillover effects	Others	Positive	low
Klinkenberg et al. 2010, Ghana	P.f	Cohort	ITN/LLIN	у	community impact, commuinty effect, mass effect	commuinty effect, mass effect, spatial protective effect, spatial effect, community protective effect	[2]-(1)	Positive	moderate

Komazawa et al. 2012, Kenya	-	Cohort	ITN/LLIN	У	community effects	community effects, communal effects	[2]-(4)	Negative	very low
Larsen et al. 2014, 17 African countries	-	Cross- sectional	ITN/LLIN	у	community-level protection	commuinty-wide protection, community-level protection, area- wide effects	[2]-(2), [2]-(4)	Positive	moderate
Cisse et al. 2016, Senegal	P.f	CRT	IPT/SMC	у	-	indirect effects, herd effect	[1]-(1)	Positive	high
Buchwald et al. 2017, Malawi	P.f	Cross- sectional	ITN/LLIN	n	community-level effect	community effect	[2]-(3)	No positive	very low
Escamilla et al. 2017, Malawi	P.f	Cross- sectional	ITN/LLIN	у	community-level effects, indirect preotective effects	community-level effects, herd effects, indirect preotective effects, community protective effect, community-wide benefts	[2]-(2), [2]-(3), [2]-(4)	Positive/ No positive	low
Staedke et al. 2018, Uganda	P.f	CRT	IPT/SMC	У	community-level effects, community- level benefits	community-level benefits	Others, [1]-(1)	Positive	moderate
Parker et al. 2019, Myanmar	P.f	Re-analysis of CRT	MDA	n	herd protection, herd effect	population-level effect, community-level effect, group-level effect, herd effect	[2]-(2), [2]-(4)	Positive	moderate

Mwanga et al. 2019, Tanzania	-	Ento	House modification	у	communal protection	communal protection, community level protection, communal benefit, communal level benefit	[1]-(1), [2]-(4)	Positive	-
Hast et al. 2019, Zambia	P.f	Cross- sectional	IRS	у	indirect effects	indirect effects	[1]-(2)	Positive	moderate
Jarvis et al. 2019, Ghana	-	Re-analysis of CRT	ITN/LLIN	у	Spatial Effects, spatial indirect effects, spillover, spillover effect, spatial spillover effect, indirect benefit	positive spillovers, spatial indirect effects, spatial effects, spillover effect, indirect benefit, spatial spillovers, positive spatial spillover effect, mass killing effects	[2]-(1), Others	Positive	high
Struchiner et al. 1990	-	Modeling	Malaria Vaccine	-	dependent happenings, indirect effects	indirect effects, dependent happenings, the secondary effects of herd immunity	[1]-(1)	Positive	-
Killeen et al. 2003, Tanzania	-	Modeling	ITN/LLIN	-	community-level protection	community-level protection, community-level effect, communal effects, mass effect	[2]-(3), [2]-(5), [3]	Positive	-

Killeen et al. 2007, Tanzania	-	Modeling	ITN/LLIN	-	community-level impacts, community- level protection, community-wide benefits, communal benefits	community-wide benefits, communal benefits	[2]-(2), [2]-(4)	Positive
Killeen et al. 2007	-	Modeling	ITN/LLIN	-	-	Community-level effect, community-level protection, communiy-wide protection, communal protection	[2]-(2), [2]-(4)	Positive
Killeen et al. 2011	-	Modeling	ITN/LLIN and IRS	-	communal protection	positive externality, community-level impact, communal protection, community-level benefits	[2]-(2), [2]-(4), [3]	Positive/Negative
Okumu et al. 2013, Tanzania	-	Modeling	ITN/LLIN and IRS	-	community-level protection, communal protection, community protection	community-levels effect, community-level protection, communal protection, community level impact	[1]-(1)	Positive
Wenger et al. 2013	P.f	Modeling	Malaria Vaccine	-	community-level protection	community-level effect, community effect,	[1]-(2), [2]-(3), [3]	Positive

_

_

_

-

-

Tun et al. 2021	-	Modeling	MDA ·	-	assembly effect, herd effect, community effect	community-level effect, herd effect, spill-over effect, assembly effect	[1]-(2), [2]-(3), [3]	Positive	-
Unwin et al. 2023	P.f	Modeling	ITN/LLIN	-	indirect protection, community protection, indirect benefits	indirect protection, community protection, indirect benefits, community effect, community benefits, mass community effect, indirect effect	Others, [2]-(3)	Positive	-

P.f: *Plasmodium falciparum*, P.m: *Plasmodium malariae*, P.o: *Plasmodium ovale*, P.v: *Plasmodium vivax*, CRT: cluster randomized trial, Ento: entomological survey, ITN: insecticide-treated net, LLIN: long-lasting insecticide-treated net, IRS: indoor residual spray, IPT: intermittent preventive treatment, MDA: mass drug administration.

For categories of indirect effect estimation methods, [1] comparison between no treatment in the treatment community and the control group, (1) comparison not conditional on treatment density nor geographical distance, (2) pre-post comparisons among those who did not receive the treatment, [2] Comparison conditional on treatment coverage or geographical distance, (1) comparisons within the treatment area according to the coverage among those who received the treatment. (2) comparisons within the treatment area according to the coverage among those who did not receive the treatment cluster (3) comparisons within the control area according to the coverage of the nearest treatment clusters. (5) comparisons within the treatment area according to the coverage, including both those who received treatment and those who did not, [3] comparisons conditional on other factors such as the repellent and killing effects of ITNs, pre-erythrocytic or blood-stage vaccines, endemicity of study area, and the connectedness between different areas. Type [3] only applies to mathematical modeling studies. If one of these did not apply, it was recorded as "Others".

*y: yes, n: no