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ABSTRACT 35 

Background 36 

Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification 37 

of those who are at risk of developing PIs allows preventive interventions to be focused on patients 38 

who are at the highest risk. The considerable number of risk assessment scales and prediction 39 

models available underscore the need for a thorough evaluation of their development, validation and 40 

clinical utility. 41 

Our objectives were to identify and describe available risk prediction tools for PI occurrence, their 42 

content and development and validation methods used. 43 

Methods 44 

The umbrella review was conducted according to Cochrane guidance. MEDLINE, Embase, CINAHL, 45 

EPISTEMONIKOS, Google Scholar and reference lists were searched to identify relevant systematic 46 

reviews. Risk of bias was assessed using adapted AMSTAR-2 criteria. Results were described 47 

narratively. All included reviews contributed to build a comprehensive list of risk prediction tools. 48 

Results 49 

We identified five systematic reviews describing the development and validation of risk prediction 50 

tools for pressure injuries, 16 that assessed the prognostic accuracy of the tools and 10 that assessed 51 

the clinical effectiveness. Of the five reviews of model development and validation, four included 52 

only machine learning models. One review included detail about external validation, and this was the 53 

only review to include model performance metrics. Where quality assessment was completed (3 out 54 

of 5 reviews), most prediction tools were assessed by review authors as being at high risk of bias and 55 

no tools were assessed as being at low risk of bias.  56 

Conclusions 57 

Available tools do not meet current standards for the development or reporting of risk prediction 58 

models. The majority of tools have not been externally validated. Standardised and rigorous 59 

approaches to risk prediction model development and validation are needed. 60 

Registration 61 

The protocol was registered on the Open Science Framework (https://osf.io/tepyk). 62 

 63 

  64 

https://osf.io/tepyk
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INTRODUCTION 65 

Pressure injuries (PI) carry a significant healthcare burden. A recent meta-analysis estimated the 66 

global burden of PIs to be 13%, two-thirds of which are hospital-acquired PIs (HAPI).1 The average 67 

cost of a HAPI has been estimated as $11k per patient, totalling at least $27 billion a year in the 68 

United States based on 2.5 million reported cases.2 Length of hospital stay is a large contributing 69 

cost, with patients over the age of 75 who develop HAPI having on average a 10-day longer hospital 70 

stay compared to those without PI.3  71 

PIs result from prolonged pressure, typically on bony areas like heels, ankles, and the coccyx, and are 72 

more common in those with limited mobility, including those who are bedridden or wheelchair 73 

users. PIs can develop rapidly, and pose a threat in community, hospital and long-term care settings. 74 

Multicomponent preventive strategies are needed to reduce PI incidence4 with timely 75 

implementation to both reduce harm and burden to healthcare systems.5 Where preventive 76 

measures fail or are not introduced in adequate time, PI treatment involves cleansing, debridement, 77 

topical and biophysical agents, biofilms, growth factors and dressings6 7 8, and in severe cases, surgery 78 

may be necessary.5 9 79 

A number of clinical assessment scales for assessing the risk of PI are available (e.g. Braden10 11, 80 

Norton12, Waterlow13) but are limited by reliance on subjective clinical judgment. Statistical risk 81 

prediction models may offer improved accuracy over clinical assessment scales, however appropriate 82 

methods of development and validation are required.14 15 16 Although methods for developing risk 83 

prediction models have developed considerably,14 15 17 18 methodological standards of available 84 

models have been shown to remain relatively low.17 19-22 Machine learning (ML) algorithms to 85 

develop prediction models are increasingly commonplace, but these models are at similarly high risk 86 

of bias23 and do not necessarily offer any model performance benefit over the use of statistical 87 

methods such as logistic regression.24 Methods for systematic reviews of risk prediction model 88 

studies have also improved,25-27 with tools such as PROBAST (Prediction model Risk of Bias 89 

Assessment Tool)28 now available to allow critical evaluation of study methods.  90 

Although several systematic reviews of PI risk assessment scales and risk prediction models for PI 91 

(subsequently referred to as risk prediction tools) are available29-38, these have been demonstrated to  92 

frequently focus on single or small numbers of scales or models, use variable review methods and 93 

show a lack of consensus about the accuracy and clinical effectiveness of available tools.39 We 94 

conducted an umbrella review of systematic reviews of risk prediction tools for PI to gain further 95 

insight into the methods used for tool development and validation, and to summarise the content of 96 

available tools.  97 

METHODS  98 

Protocol registration and reporting of findings 99 

We followed guidance for conducting umbrella reviews provided in the Cochrane Handbook for 100 

Intervention Reviews.40 The review was reported in accordance with guidelines for Preferred 101 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)41 (see Appendix 1), adapted for 102 

risk prediction model reviews as required. The protocol was registered on the Open Science 103 

Framework (https://osf.io/tepyk).  104 

Literature search 105 

A single sensitive search strategy, developed and tested by an experienced information specialist 106 

(AC), was conducted in January 2023. Electronic searches of MEDLINE and Embase via Ovid and 107 

https://osf.io/tepyk


4 
 

CINAHL Plus EBSCO were conducted, employing well-established systematic review and prognostic 108 

search filters42-44 combined with specific keyword and controlled vocabulary terms relating to PI 109 

appropriate to each source, without restrictions on publication year. Additional simplified searches 110 

were undertaken in EPISTEMONIKOS and Google Scholar due to the more limited search functionality 111 

of these two sources. The reference lists of all publications reporting reviews of prediction tools 112 

(systematic or non-systematic) were reviewed to identify additional eligible systematic reviews and 113 

to populate a list of PI risk prediction tools. Title and abstract screening and full text screening were 114 

conducted independently and in duplicate by two of four reviewers (BH, JD, YT, KS). Any 115 

disagreements were resolved by discussion or referral to a third reviewer. 116 

Eligibility criteria for this umbrella review   117 

Published English-language systematic reviews of risk prediction models developed for adult patients 118 

at risk of PI in any setting were included. Reviews of clinical risk assessment tools or models 119 

developed using statistical or ML methods were included, both with or without internal or external 120 

validation. The use of any PI classification system6 45-47 as a reference standard was eligible. Reviews 121 

of the diagnosis or staging of those with suspected or existing PIs or chronic wounds, reviews of 122 

prognostic factor and predictor finding studies, and models exclusively using pressure sensor data 123 

were excluded. 124 

Systematic reviews were required to report a comprehensive search of at least two electronic 125 

databases, and at least one other indicator of systematic methods (i.e. explicit eligibility criteria, 126 

formal quality assessment of included studies, sufficient data presented to allow results to be 127 

reproduced, or review stages (e.g. search screening) conducted independently in duplicate. 128 

Data extraction and quality assessment 129 

Data extraction forms (Appendix 3) were developed using the CHARMS checklist (CHecklist for critical 130 

Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) and Cochrane 131 

Prognosis group template.48 49 One reviewer extracted data concerning: review characteristics, model 132 

details, number of studies and participants, study quality and results. Extractions were 133 

independently checked by a second reviewer. Where discrepancies in model or primary study details 134 

were noted between reviews, we accessed the primary model development publications where 135 

possible.  136 

The methodological quality of included systematic reviews was assessed using AMSTAR-2 (A 137 

Measurement Tool to Assess Systematic Reviews)50, adapted for systematic reviews of risk prediction 138 

models (Appendix 4). Quality assessment and data extraction were conducted by one reviewer and 139 

checked by a second (BH, JD, KS), with disagreements resolved by consensus. Our adapted AMSTAR-2 140 

contains six critical items, and limitations in any of these items reduces the overall validity of a 141 

review.50  142 

Synthesis methods  143 

Reviews were considered according to whether any information concerning model development and 144 

validation were reported. Available data were tabulated and a narrative synthesis provided. All risk 145 

prediction models identified are listed in Appendix 5 Table S4, including those for which no 146 

information about model development or validation was provided at systematic review level. Where 147 

possible, the predictors included in the tools were extracted at review level and categorised into 148 

relevant groups in order to describe the candidate predictors associated with risk of PI. No statistical 149 

synthesis of systematic review results was conducted. Reviews reporting results as prognostic 150 

accuracy (i.e. risk classification according to a binary decision) or clinical effectiveness (i.e. impact on 151 

patient management and outcomes) are reported elsewhere.39 152 
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RESULTS 153 

Characteristics of included reviews  154 

Following de-duplication of search results, 6301 unique records remained, of which 110 were 155 

selected for full text assessment. We obtained the full text of 104 publications of which 28 met all 156 

eligibility criteria for inclusion (see Figure 1). Five reviews reported details about model development 157 

and internal validation36 37 51-53, one of which also considered external validation52; 16 reported 158 

accuracy data29 31-35 38 54-62; and 10 reported clinical effectiveness data.30 54 56 59 63-68 Three reviews 159 

reported both accuracy and effectiveness data.54 56 59  160 

Table 1 provides a summary of systematic review methods for all 28 reviews according to whether or 161 

not they reported any tool development methods (see Appendix 5 for full details). The five reviews 162 

reporting prediction tool development and validation were all published within the last five years 163 

(2019 to 2023) compared to reviews focused on the clinical utility of available tools (published from 164 

2006 to 2022). Reviews about tool development focused primarily on ML-based models (one58 of the 165 

five reviews limited inclusion to empirically derived models including ML-based models, and four 166 

(80%) considered only ML models) and frequently did not report study eligibility criteria related 167 

study participants or setting. Only one review (4%) concerning the clinical utility of models included 168 

ML-based models,38 but more often restricted study inclusion by population or setting: hospital 169 

inpatients (ward or acute unit) (n = 4),33 38 63 67 acute settings (n=5),34 59 61 62 66 or surgical patients 170 

(n=1)31, or studies in long-term care settings (n=2)29 35 or the elderly (n=1).58 171 

On average reviews about tool development included more studies than reviews of clinical utility 172 

(median 22 compared to 13), more participants (median 234,105 compared to 6,106) and covered 173 

more prediction tools (median 21 compared to 3) (Table 1). Eight reviews (35%) about clinical utility 174 

included only one risk assessment scale, whereas reviews of tool development included at least 3 175 

different risk prediction models.  The PROBAST tool for quality assessment of prediction model 176 

studies was used in 60% (n=3) of tool development reviews37 52 53 compared to none of the reviews of 177 

clinical utility, however the remaining two reviews of tool development did not report any quality 178 

assessment of included studies (2 (40%) compared to 4 (17%) of reviews of clinical utility). Meta-179 

analysis was conducted in one of five (20%) reviews of tool development compared to more than 180 

half of reviews of clinical utility (13, 57%). 181 

Methodological quality of included reviews  182 

The quality of included reviews was generally low (Figure 2; Appendix 5 for detailed assessments). 183 

The majority of reviews (all five reviews about tool development and 70% (16/23) reviews of clinical 184 

utility) partially met the AMSTAR-2 criteria for the literature search (i.e. searched two databases, 185 

reported search strategy or key words, and justified language restrictions if used), with only two 186 

(both reviews of clinical utility) meeting all criteria for ‘Yes’ (i.e. searching grey literature and 187 

reference lists, with the search conducted within 2 years of publication). Nineteen reviews (68%) 188 

conducted study selection in duplicate (4/5 (80%) of review about tool development and 15/23 189 

(65%) of clinical utility reviews). Conflicts of interest were reported in all five tool development 190 

reviews and 74% of clinical utility reviews (17/23). Reviews scored poorly on the remaining AMSTAR-191 

2 items, with at most half of reviews meeting the stipulated AMSTAR-2 criteria. Seven reviews (25%) 192 

used an appropriate method of quality assessment of included studies and provided itemisation of 193 

judgements per study. No review scored ‘Yes’ for all AMSTAR-2 items in either category.   194 
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Figure 1. PRISMA41 flowchart: identification, screening and selection process 195 

 

List of full-text articles excluded, with reasons, is given in Appendix 5. 196 
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Records identified (n = 8974): 
MEDLINE (n = 1643) 
EMBASE (n = 2060) 
CINAHL (n = 3720) 
Epistemonikos (n = 1194) 
Google Scholar (n = 357) 
Reference lists (n = 1) 

Duplicate records removed 
through automated 
deduplication (n = 2673) 

Records screened 
(n = 6302) 

Records excluded 
(n = 6191) 

Articles selected for retrieval 
(n = 111) 

Articles not retrieved 
(n = 7) 

Full-text articles assessed for 
eligibility 
(n = 104) 

Full-text articles excluded (n=76) 
Not a systematic review (n=33) 
No risk prediction models (n=14) 
Wrong research question (n=14) 
No English language translation (n=6) 
Duplicate (n=3) 
Wrong outcome (n=2) 
Updated version included (n=2) 
Wrong population (n=1) 
No results (n=1) 
 

Total reviews included (n = 28) 

Reviews reporting details about 
tool development or validation  

(n = 5) 

Reviews reporting no details 
about tool development or 

validation (n=23) 
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Table 1. Summary of included systematic review characteristics 197 

Review characteristics 

Reviews on model 

development 

and validation (N=5) 

Reviews on accuracy 

or clinical effectiveness 

(N=23) 

All included reviews 

(N=28) 

Median (range) year of publication 2021 (2019 – 2023) 2016 (2006 – 2022) 2018 (2006 – 2023) 

Eligibility criteria    

Participants    

Adults only 0 (0) 13 (57) A 13 (46) A 

Any age 0 (0) 3 (13) 3 (11) 

No age restriction reported 5 (100) 7 (30) 12 (43) 

Presence of PI at baseline    

No PIs at baseline 0 (0) 6 (26) 6 (21) 

NS 5 (100) 17 (74) 22 (79) 

Setting    

Any healthcare setting 0 (0) 10 (43) 10 (36) 

Hospital 1 (20) 4 (22) 5 (18) 

Long-term care 0 (0) 2 (9) 2 (7) 

Acute care (incl. surgical and ICU) 0 (0) 6 (26) 6 (21) 

Long-term, acute or community settings 0 (0) 1 (4) 1 (4) 

NS 4 (80) 0 (0) 4 (14) 

Risk assessment tools 
 

  

ML-based prediction models 4 (80) 1 (4) 5 (18) 

ML or statistical models 1 (20) 0 (0) 1 (4) 

Any prediction tool or scale 0 (0) 9 (39) 9 (32) 

Specified clinical scale(s) 0 (0) 10 (43) 10 (36) 

PI prevention strategies 0 (0) 1 (4) 1 (4) 

NS 0 (0) 2 (9) 2 (7) 

PI classification system    

Any 0 (0) 1 (4) 1 (4) 

Accepted standard classifications 0 (0) 2 (9) 2 (7) 

Several specified classification systems 

(NPUAP, EPUAP, AHCPR or TDCPS) 

0 (0) 3 (13) 3 (11) 

Other 0 (0) 1 (4) 1 (4) 

NS 5 (100) 16 (70) 21 (75) 

Source of data     

Prospective only 0 (0) 4.5 (20) B 4.5 (16) B 

Prospective or retrospective 1 (20) 2.5 (11) B 3.5 (13) B 

NS 4 (80) 16 (70) 20 (71) 

Study design restrictions    

Yes 1 (20) 12 (52) 13 (46) 

No 0 (0) 3 (13) 3 (11) 

NS 4 (80) 8 (39) 12 (43) 

Review methods    

Median (range) no. sourcesC searched 5 (2 – 8) 6 (2 – 14) 5 (2 – 14) 

Publication restrictions:    

End date (year)    

2000-2009 0 (0) 3 (13) 3 (11) 

2010-2019 1 (20) 16 (70) 17 (61) 

2020-2023 4 (80) 4 (17) 8 (29) 

Language    

English only 4 (80) 9 (39) 13 (46) 

2 languages 0 (0) 2 (9) 2 (7) 

>2 languages 0 (0) 3 (13) 3 (11) 

No restrictions 0 (0) 4 (17) 4 (14) 

NS 1 (20) 5 (22) 6 (21) 
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Quality assessment tool D    

PROBAST 3 (60) 0 (0) E 3 (11) E 

QUADAS 0 (0) 2 (9) 2 (7) 

QUADAS-2 0 (0) 7 (30) 7 (25) 

JBI tools 0 (0) 3 (13) 3 (11) 

CASP 0 (0) 2 (9) 2 (7) 

Other 0 (0) 6 (26) 6 (21) 

None 2 (40) 4 (17) 6 (21) 

Meta-analysis included 1 (20) 13 (57) 14 (50) 

Method of meta-analysis 

(% of reviews incl. meta-analysis) 
  

 

Univariate RE/FE model (depending on 

heterogeneity assessment) 

1 (100) F 2 (15) F 3 (21) 

Univariate RE model 0 (0) 5 (38) F 5 (36) F 

Hierarchical model (for DTA studies) 0 (0) 2 (15) 2 (14) 

Unclear/NS 0 (0) 4 (31) F 4 (29) F 

Volume of evidence    

Median (range) no. studies 22 (3 – 35) 13 (1 – 70) 16 (1 – 70) 

Median (range) no. participants 234105 (6674 – 1278148) 6106 (528 – 221541) 10044 (528 – 1278148) 

Median (range) no. tools 21 (3 – 35) 3 (1 – 28) 4 (1 – 35) 

Figures are number (%) of reviews, unless otherwise specified. A one review58 restricted to aged >60 years; B one review 54 198 
states either prospective or retrospective data eligible for Research Question 1, but prospective only for Research Question 199 
2, hence 0.5 added to each category; C including databases, bibliographies or registries; D reviews may fall into multiple 200 
categories, therefore total number within domain not necessarily equal to N (100%); E one review38 reported use of 201 
PROBAST in methods, but did not present any PROBAST results; F one review conducts univariate meta-analysis for a single 202 
estimate, e.g. c-statistic52, AUC60, RR55, or OR.56 203 
AHCPR – Agency for Health Care Policy and Research; CASP – Critical Appraisal Skills Programme; DTA – diagnostic test 204 
accuracy; EPUAP – European Pressure Ulcer Advisory Panel; FE – fixed effects; ICU – intensive care unit; JBI – Joanna Briggs 205 
Institute; ML – machine learning; NPUAP – National Pressure Ulcer Advisory Panel; NS – not stated; PI – pressure injury; 206 
PROBAST – Prediction model Risk of Bias Assessment; QUADAS (2) – Quality Assessment of Diagnostic Accuracy Studies 207 
(Version 2); RE – random effects; TDCPS – Torrance Developmental Classification of Pressure Sore. 208 
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Figure 2. Summary of AMSTAR-2 assessment results  209 

  
Reviews reporting model development 

and/or validation (n=5) 
  

Reviews reporting prognostic accuracy 
and/or clinical effectiveness (n=23) 

ITEM 1 Research question 1 4  6 17 
 

                

ITEM 2 Protocol 1 4  6 1 16 
 

                

ITEM 3 Inclusions 1 4  2 21 
 

                

ITEM 4 Search strategy 5  2 17 4 
 

                

ITEM 5 Study selection 4 1  15 8 
 

                

ITEM 6 Data extraction 2 3  12 11 
 

                

ITEM 7 Exclusions 5  2 21 
 

                

ITEM 8 Study descriptions 1 4  10 3 10 
 

                

ITEM 9 RoB/QA 2 1 2  4 7 12 
 

                

ITEM 10 Funding of incl. studies 5  2 21 
 

                

ITEM 11 Statistical synthesis 1 4  4 10 9 
 

                

ITEM 12 RoB – impact on synthesis 1 4  4 10 9 
 

                

ITEM 13 RoB – impact on results 1 4  13 10 
 

                

ITEM 14 Heterogeneity 1 4  14 9 
 

                

ITEM 15 Conflicts of interest 5 
 

17 6 

 

  

AMSTAR – A MeaSurement Tool to Assess systematic Reviews; Item 1 – Adequate research question/ inclusion criteria?; Item 2 – Protocol and justifications for deviations?; Item 3 – Reasons 210 
for study design inclusions?; Item 4 – Comprehensive search strategy?; Item 5 – Study selection in duplicate?; Item 6 – Data extraction in duplicate?; Item 7 – Excluded studies list (with 211 
justifications)?; Item 8 – Included studies description adequate?; Item 9 – Assessment of RoB/quality satisfactory?; Item 10 – Studies’ sources of funding reported?; Item 11 – Appropriate 212 
statistical synthesis method?; Item 12 – Assessment of impact of RoB on synthesised results?; Item 13 – Assessment of impact of RoB on review results?; Item 14 – Discussion/investigation of 213 
heterogeneity?; Item 15 – Conflicts of interest reported?; N/A – not applicable; RoB – risk of bias; QA – quality assessment. Further details on AMSTAR items are given in Appendix 4, and 214 
results per review are given in Appendix 5. Note that where AMSTAR-2 assessment was applied to overlapping reviews (n=3) for prognostic accuracy and clinical effectiveness separately, and 215 
resulted in differing judgements for each review question, the judgements for the prognostic accuracy review question are displayed here for simplicity. 216 

 Yes  Partial Yes  No  N/A 

0%  20%      40%         60%            80%          100% 0%           20%               40%          60%             80%            100% 
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Table 2. Results of reviews reporting model development and validation 217 
Review author 
(publication 
year) 

DEV/ 
VAL 
(no. studies) 

Setting of included studies; data 
sources 

Model 
development 
algorithms  

Internal validation 
method  

Brief description of study quality Summary of model performance results 

Dweekat36 
(2023) 

DEV (34); 
unclear (1)A 

HAPI/CAPI n=32; SRPI n=2; 
detection of PI (effect on length 
of stay) n=1; nursing home 
residents n=2 
 
 
 

LR n=20; RF n=18; 
DT n=12; SVM 
n=12; MLP n=9; 
KNN n=4; LDA n=1; 
other n=19 
 

CV n=10; split 
sample n=10; split 
sample and CV 
n=8; NS=7 

No RoB assessment N/A 

Jiang37 (2021) DEV (9) ICU n=3; operating room n=2; 
acute care hospital n=1; 
oncology department n=1; end-
of-life care n=1; mobility-related 
disabilities n=1 
 
EHRs used in all models 

DT n=5; LR n=3; 
SVM n=2; NN n=2; 
RF n=1; MTS n=1; 
BN n=1; gradient 
boosting n=1 

Split sample n=4; 
NS n=9 

RoB assessed using PROBAST. 
Overall RoB high for all predictive 
models. All models at high RoB in 
analysis domain.  

F-score ranged between 0.377 (ML Su MTS) 
and 0.670 (ML Su LR); g-means ranged 
between 0.628 (ML Kaewprag BN) and 0.822 
(ML Su MTS); sensitivity ranged between 
0.478 (ML Kawprag) and 0.848 (ML Yang); 
specificity ranged between 0.703 (ML Deng) 
and 0.988 (ML Su LR) 

Ribeiro51 
(2021) 

DEV (3) SRPI cardiovascular n=2; SRPI 
critical care n=1 
 
EHRs used in n=2 models 

ANN n=1; XGBoost 
n=1; RF n=1 

Split sample n=2; 
NS n=1 

No RoB assessment  N/A 

Shi52 (2019) DEV (21); VAL 
(7) 

DEV 
General acute care hospital n=7; 
long-term care n=5; specific 
acute care (e.g. ICU) n=4; 
cardiovascular surgery n=2; 
trauma and burn centres n=1; 
rehabilitation units n=1; unclear 
n=1 
 
Prospective n=10; retrospective 
n=11 
 
VAL 
Long-term care n=3; specific 
acute care (e.g. ICU) n=2; general 
(acute care) hospital n=2 
 

LR n=16; cox 
regression n=5; 
ANN n=1; DT n=1; 
discriminant 
analysis n=1; C4.5 
machine learning 
(DT induction 
algorithm) n=1; NS 
n=1 
 
 

CV n=1; tree-
pruning n=1; split 
sample n=1; re-
sampling n=2; NS 
n=16 

RoB assessed using PROBAST. 
DEV 
Overall RoB unclear for two 
models. Overall RoB high for the 
remaining 19 models. Analysis and 
outcome domains were mostly at 
high RoB. 
VAL 
Overall RoB unclear for three 
validation studies. Overall RoB high 
for the remaining four validation 
studies. Analysis and outcome 
domains were mostly at high RoB. 

C-statisticsB ranged between 0.61 (interRAI 
PURS) and 0.90 (TNH-PUPP); O/E ratiosB 
ranged between 0.91 (Berlowitz MDS) and 1.0 
(prePURSE study tool) 
 
Pooled C-statisticsB  
TNH-PUPP: 0.86 (95% CI 0.81–0.90), n=2 
Fragmment scale: 0.79 (95% CI 0.77–0.82), 
n=1C 

Berlowitz 11-item model: 0.75 (95% CI 0.74–
0.76), n=2 
Berlowitz MDS model: 0.73 (95% CI 0.72–
0.74), n=2 
interRAI PURS: 0.65 (95% CI 0.60–0.69), n=3 
Compton: 0.81 (95% CI 0.78–0.84), n=2 
 
Pooled O/E ratiosB 

0.99 (95% CI 0.95–1.04), n=2 
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Review author 
(publication 
year) 

DEV/ 
VAL 
(no. studies) 

Setting of included studies; data 
sources 

Model 
development 
algorithms  

Internal validation 
method  

Brief description of study quality Summary of model performance results 

Prospective n=3; retrospective 
n=4  

Berlowitz MDS 0.94 (95% CI 0.88–1.01), n=2 

Zhou53 (2022) DEV (22) SRPI n=3; ICU n=11; hospitalised 
n=6; rehabilitation centre n=1; 
hospice n=1 
 
EHR n=18; Medical Information 
Mart for Intensive care III 
database n=4 

LR n=15; RF n=10; 
DT n=9; SVM; n=9; 
ANN n=8; BN n=3; 
XGBoost n=3; GB 
n=2; AdaBoost n=1; 
CANTRIP n=1; 
LSTM n=1; EN n=1; 
KNN n=1; MTS n=1; 
NB n=1 

CV n=12; NS n=10 RoB assessed using PROBAST. 
Overall RoB unclear for five 
studies. Overall RoB high for 15 
models. RoB not assessed in two 
studies due to use of unstructured 
data. 

F1 score ranged between 0.02 (ML Nakagami) 
and 0.99 (ML Song [2]); AUC ranged between 
0.78 (ML Delparte) and 0.99 (ML Song [2]); 
sensitivity tanged between 0.08 (ML Cai) and 
0.99 (ML Song [2]); specificity ranged between 
0.63 (ML Delparte) and 1 (ML Cai) 

A Appears to be a model validation study but the review only included model development studies. 218 
B Values from fixed-effects meta-analyses, pooling development and external validation study estimates together. 219 
C One data source but included two C-statistic values (one for model development and one for internal validation) that were subsequently pooled. 220 

AUC – area under curve; ANN – artificial neural network; BN – Bayesian network; CAPI – community-acquired pressure injury; CANTRIP - reCurrent Additive Network for Temporal RIsk 221 
Prediction; CV – cross-validation; DEV – development; DT – decision tree; EHRs – electronic health records; EN – elastic net; GB – gradient boosting; HAPI – hospital-acquired pressure injury; 222 
ICU – intensive care unit; KNN – k-nearest neighbours; LDA – linear discriminant analysis; LSTM – long short-term memory; LR – logistic regression; ML – machine learning; MLP – multilayer 223 
perception; MTS – Mahalanobis-Taguchi system; N/A – not applicable; NB – naïve Bayes; NN – neural network; O/E – observed vs expected; PI – pressure injury; PROBAST – Prediction model 224 
Risk of Bias ASsessment Tool; RF – random forest; RoB – risk of bias; SRPI – surgery-related pressure injury; SVM – support vector machine; VAL – validation.  225 
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Findings 226 

Of the 28 reviews, 23 reviews focused on the clinical utility of prediction tools provided no details 227 

about the development or validation of included models (see Appendix 5), and gave only limited 228 

detail about setting and study design. These reviews included a total of 63 different prediction tools, 229 

predominantly derived by clinical experts, as opposed to empirically-derived models. The most 230 

commonly included tools were the Braden (included in 20 reviews), Waterlow (n=14 reviews), 231 

Norton (n=11 reviews), and Cubbin and Jackson scales (n=8 reviews). 232 

The five systematic reviews that reported detailed information about model development and 233 

validation included 62 prediction models, 40 of which were unique to these five reviews (between 234 

one37 and 2052 unique models were included per review) (Table 2). Between three51 and 3536 model 235 

development studies were included; one review52 also included 7 external validation studies. 236 

Electronic health records (EHRs) were used for model development in all studies in one review37 and 237 

in 18 of 22 models (82%) in a second review.53 One review52 reported the use of prospectively or 238 

retrospectively collected data (n=10 studies and n=11 studies, respectively). No review included 239 

information about the thresholds used define whether a patient is at risk of developing PIs. Four 240 

reviews included detail about the predictors included in each model.  241 

The largest review36 reported that logistic regression was the most commonly reported modelling 242 

approach (20/35 models), followed by random forest (n=18), decision tree (n=12) and support vector 243 

machine (n=12) approaches. Logistic regression was also the most frequently used in two other 244 

reviews (16/2152 and 15/2253). Primary studies frequently compared the use of different ML methods 245 

using the same datasets, such that ‘other’ ML methods were reported with little to no further detail 246 

(e.g. 19 studies in the review by Dweekat and colleagues36).   247 

Approaches to internal validation were not well reported in the primary studies. One review52 found 248 

no information on internal validation for 76% (16/21) of studies; with re-sampling reported in two 249 

and tree-pruning, cross-validation and split sample reported in one study each. Another36 reported 250 

no information about internal validation for 20% of studies (7/35) and the use of cross-validation 251 

(n=10), split sample (n=10) techniques, or both (n=8) for the remainder. Cross-validation was used in 252 

more than half (12/22) of studies in another.53 Only one review reported any detail about methods 253 

for selection of model predictors52: 29% (6/21) selected predictors by univariate analysis prior to 254 

modelling and 9 used stepwise selection for final model predictors; 11 (52%) clearly reported 255 

candidate predictors, and all 21 clearly reported final model predictors. The same review52 reported 256 

15 models (71%) with no information about missing data, and only two using imputation techniques.  257 

Model performance measures were reported by three reviews37 52 53, all of which noted considerable 258 

variation in reported metrics and model performance including C-statistics (0.71 to 0.89 in 10 259 

studies53), F1 score (0.02 to 0.99 in 9 studies53), G-means (0.628 to 0.822 in four studies37), and 260 

observed versus expected ratios (0.97 to 1 in 3 studies52). Two reviews reported accuracy metrics 261 

associated with included models: sensitivity ranged between 0.48 and 0.85 and specificity between 262 

0.70 and 0.99 for 7 models in one review,37 compared to sensitivity 0.08 to 0.99 (for 19 studies52) and 263 

specificity 0.63 to 1.00 (for 18 studies52) in another.  AUC ranged between 0.78 and 0.99 for 16 264 

studies52. 265 

Shi and colleagues52 included 7 external validations using data from long-term care (n=3) or acute 266 

hospital care (n=4) settings. All were judged to be at unclear (n=3) or high (n=4) risk of bias using 267 

PROBAST. Model performance metrics for five models (TNH-PUPP69, Berlowitz 11-item model70, 268 

Berlowitz MDS adjustment model71, interRAI PURS72, Compton ICU model73) included C-statistics 269 

between 0.61 and 0.9 and reported observed versus expected ratios were between 0.91 and 0.97. 270 
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The review also reported external validation studies for the ‘SS scale’ and the prePURSE study tool, 271 

but no model performance metrics were given.  A meta-analysis of C-statistics and O/E ratios was 272 

performed, including values from both development and external validation cohorts (Table 2). 273 

Parameters related to model development were not consistently reported: C-statistics ranged 274 

between 0.71 and 0.89 (n = 10 studies); observed versus expected ratios ranged between 0.97 and 1 275 

(n=3 studies). For more detailed information about individual models, including predictors, specific 276 

model performance metrics and sample sizes (Appendix 5). 277 

Included tools and predictors 278 

A total of 116 risk prediction tools were identified (Table 3); 103 were identified from the 28 included 279 

systematic reviews and 13 were identified from screening the reference lists of the ‘non-systematic’ 280 

reviews that were considered during full text assessment. Full details obtained at review-level are 281 

reported in Appendix 5 Table S4. 282 

Tools were categorised as having been developed with (52/116, 45%) or without (64, 55%) the use of 283 

ML methods. Prospectively collected data was used for model development for 19% of tools 284 

(22/116), retrospectively collected data for 40% (46/116), including 18 ML-based models using EHRs, 285 

or was not reported (48/116). Information about the study populations was poorly reported, 286 

however study setting was reported for 102 prediction tools. Thirty-four tools were reported to have 287 

been developed in hospital inpatients, and 20 were developed in long-term care settings, 288 

rehabilitation units or nursing homes or hospices. Where reported (n=92), sample sizes ranged from 289 

1574 to 1,252,313.75-82 The approach to internal validation used for the prediction tools (e.g. cross-290 

validation versus split sample) was not reported at review-level for almost three quarters of tools 291 

(81/116, 70%). 292 

We could extract information about the predictors for only 53 of the 116 tools (Table 4 and Appendix 293 

5). The most frequently included predictor was mobility (27/53, 51%), followed by pre-disposing 294 

diseases/conditions (26/53, 49%), medical treatment/care received (22/53, 42%) and continence 295 

(22/53, 42%). Tools often (23/53, 45%) included multiple pre-existing conditions or comorbidities and 296 

multiple types of treatment or medication as predictors. Other common predictors include age, 297 

nutrition, mental status, activity, skin conditions and laboratory values (34% to 40% of models). 298 

Seven tools incorporated scores from other established risk prediction scales as a predictor, with six 299 

including Braden scores and one including the Norton score. 300 

Only one review52 reported the presentation format of included tools, coded as ‘score system’ 301 

(n=11), ‘formula equation’ (n=3), ‘nomogram scale’ (n=2), or ‘not reported’ (n=6).  302 

 303 

  304 
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Table 3. Summary of tool characteristics, extracted at review-level  305 

Tool characteristics 
ML-based models 

(N=52, 45%) 

Non-ML tools 

(N=64, 55%) 

Total 

(N=116) 

No. of included reviewsA considered in    

0 0 (0) 13 (20) 13 (11) 

1 30 (58) 23 (36) 53 (46) 

2 8 (15) 9 (14) 17 (15) 

>2 14 (27) 19 (30) 33 (28) 

Development study details    

Median (range) year of publication 2020 (2000 – 2022) 1998 (1962 – 2015) 2006 (1962 – 2022) 

Source of data    

Prospective 4 (8) 18 (28) 22 (19) 

Retrospective 36 (69) 10 (16) 46 (40) 

NS 12 (23) 36 (56) 48 (41) 

Setting    

Hospital 13 (25) 11 (17) 24 (21) 

Long-term care (incl. end-of-life and rehab) 6 (12) 14 (22) 20 (17) 

Acute care (incl. surgical and ICU) 28 (54) 24 (38) 52 (45) 

Mixed settings 1 (2) 1 (2) 2 (2) 

Other 2 (4) 2 (3) 4 (3) 

NS 2 (4) 12 (19) 14 (12) 

Study population age    

Adults 31 (60) 34 (53)  65 (56) 

Any 5 (10) 3 (5) 8 (7) 

NS 16 (31) 27 (42) 43 (37) 

Baseline condition    

PIs at baseline 1 (2) 0 (0) 1 (1) 

No PIs at baseline 11 (21) 19 (30) 30 (26) 

NS 40 (77) 45 (70) 85 (73) 

Development methods    

Development method/algorithmB    

ML algorithms 52 (100) 0 (0) 52 (45) 

Logistic regression 35 (67) 15 (23) C 50 (43) 

Cox regression 0 (0) 5 (8) 5 (4) 

Clinical expertise 0 (0) 2 (3) 2 (2) 

NS 0 (0) 44 (69) D 44 (38) 

Internal validation method    

Cross-validation 21 (40) 3 (5) G 24 (21) 

Data splitting 11 (21) 0 (0) 11 (9) 

Not done / NS 20 (38) F 61 (95) 81 (70) 

Median (range) no. of final predictorsE 6 (3 – 23) 8 (2 – 15) 7 (2 – 23) 

Study cohort    

Median (range) total sample size 3000 (27 – 1252313) 320 (15 – 31150) 686 (15 – 1252313) 

Median (range) number of events 206 (8 – 86410) 51 (9 – 1350) 94 (8 – 86410) 

Median (range) proportion of events 

(% of sample size) 

10.65% (0.42% – 

80.00%) 

14.84% (1.18% – 

46.67%) 

14.40% (0.42% – 

80.00%) 
A the 28 included systematic reviews; B tools use multiple methods, therefore total number not equal to N (100%); C one 306 
study also used discriminant analysis for model development; D many seemed to use clinical expertise, but development 307 
methods were not clearly reported; E counting of final predictors may vary between models: some authors may count 308 
individual factors, while others consider domains or subscales; F one review36 implies 5 models did not implement internal 309 
validation; G ‘resampling’ (not described further) was used for the development of 2 models; ML – machine learning; NS – 310 
not stated; ICU – intensive care unit; PI – pressure injury. 311 

 312 
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Table 4. Predictor categories and frequency (%) of inclusion in N=53 models. 313 

Predictor category 
No. of tools 

predictor appears in 
Mobility 27 (51) 

Pre-disposing conditions 26 (49) 

Continence 22 (42) 

Receiving medical treatment/care 22 (42) 

Age 21 (40) 

Mental Status 20 (38) 

Nutrition 20 (38) 

Activity 19 (36) 

Laboratory values 18 (34) 

Skin 18 (34) 

General Health 16 (30) 

Body 13 (25) 

Gender 11 (21) 

Surgery duration 7 (13) 

Ability to ambulate 6 (11) 

Braden score 6 (11) 

Pressure injury 6 (11) 

Friction, shear, pressure 5 (9) 

Medical unit, ward, visit 5 (9) 

Length of stay 4 (8) 

Hygiene 3 (6) 

Ethnicity 2 (4) 

Pain 2 (4) 

Smoking 2 (4) 

'Special' (not explained) 2 (4) 

Isolation 1 (2) 

Norton score 1 (2) 

Figures are given as count (% out of 53 tools with information on predictors). Note that multiple predictors may fall within 314 
the same predictor category. For instance, the category ‘skin’ may encompass both 'skin moisture' and 'skin integrity’, with 315 
the frequency count reflecting the entire predictor category rather than individual predictors.  316 

DISCUSSION 317 

This umbrella review summarises data from 28 eligible systematic reviews of PI risk prediction tools. 318 

Quality assessment using an adaptation of AMSTAR-2 revealed that most reviews were conducted to 319 

a relatively poor standard. Critical flaws were identified, including inadequate or absent reporting of 320 

protocols (23/28, 82%), inappropriate meta-analysis methods (11/15, 73%) and lack of consideration 321 

for risk of bias judgements when discussing review results (14/28, 50%). Despite the large number of 322 

risk prediction models identified, only five reviews focused on the development and validation of 323 

predominantly ML-based prediction models. The remaining reviews aimed to summarise evidence 324 

for the accuracy (sensitivity and specificity) or effectiveness of identified models. For many (44/64, 325 

69%) prediction tools that were developed without the use of ML, we were not able to determine 326 

whether reliable and robust statistical methods were used or whether models were essentially risk 327 

assessment tools developed based on expert knowledge. For over half (63/116, 54%) of the 328 

identified tools, predictors included in the final models were not reported. Details of study 329 

populations and settings were also lacking. It was not always clear from the reviews whether the 330 

poor reporting occurred at review level or in the original primary study publications.  331 

A recent systematic review of risk of bias in machine learning developed prediction models found 332 

that most models are of poor methodological quality and are at high risk of bias.23 In our set of 333 

reviews, of the three reviews that conducted a risk of bias assessment using the PROBAST tool, all 334 

models were found to be at high or unclear risk of bias.52  335 
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Where the method of internal validation was reported, split-sample and cross-validation were the 336 

most commonly used techniques, however, detail was limited, and it was not possible to determine 337 

whether appropriate methods had been used. Although split-sample approaches have been favoured 338 

for model validation, more recent empirical work suggests that bootstrap-based optimism 339 

correction83 or cross-validation84 are preferred approaches. None of the included reviews reported 340 

the use of optimism correction approaches. 341 

Model development algorithms included logistic regression, decision trees and random forests, with 342 

a vast number of ML-based models having been developed in the last five years. In contrast to 343 

logistic regression approaches, decision trees and random forests while providing valuable risk 344 

classification, may not give a proper risk probability. Instead, they commonly categorise patients into 345 

binary ‘at risk’ or ‘not at risk’ groups. Although the risk probabilities generated in logistic regression 346 

prediction models can be useful for clinical decision making, it was not possible to derive any 347 

information about thresholds used to define ‘at risk’ or ‘not at risk’, and for most reviews, it was 348 

unclear what the final model comprised of. This lack of transparency poses potential hurdles in 349 

applying these models effectively in clinical settings. 350 

Only one review included external validations of previously developed models52, however limited 351 

details of model performance were presented. External validation is necessary to ensure a model is 352 

both reproducible and generalisable85 86, bringing the usefulness of the models included in these 353 

reviews into question. The PROGRESS framework suggests that multiple external validation studies 354 

should be conducted using independent datasets from different locations.15 In the only review that 355 

included model validation studies52, it is unclear whether these studies were conducted in different 356 

locations, and all were conducted in the same setting. PROGRESS also suggests that external 357 

validations are carried out in a variety of relevant settings. Four out of eight validations were 358 

described as using ‘temporal’ data, which suggests that the validation population is largely the same 359 

as the development population but with use of data from different timeframes. This approach has 360 

been described as ‘between’ internal and external validation, further emphasising the need for well-361 

designed external validation studies.85 Furthermore, none of the eight external validations reported 362 

model recalibration. Recent evidence suggests focus should be placed on large, well-designed 363 

external validation studies to validate and improve promising models (using recalibration and 364 

updating87), rather than developing a multitude of new ones.18 15 Model validation and recalibration 365 

should be a continuous process, and this is something that future research should address. Following 366 

external validation, the PROGRESS framework15 suggests that effectiveness studies should be 367 

conducted following external validation to assess the effect of the model on decision making, patient 368 

outcomes and costs. 369 

Despite the advances in methods for developing risk prediction models, scales developed using 370 

clinical expertise such as the Braden Scale, Norton Scale, Waterlow Score and Cubbin-Jackson Scale 371 

are extensively discussed in numerous clinical practice guidelines for patient risk assessment, and are 372 

commonly used in clinical practice.6 88 Although guidelines recognise their low accuracy, they are still 373 

acknowledged, while other risk prediction models are not even considered. This may be due to the 374 

availability of at least some clinical trials evaluating the clinical utility of scales.39 Some scales, such as 375 

the Braden scale, are so widely used that they have become an integral component of risk 376 

assessment for PI in clinical practice, and have even been incorporated into EHRs. Their widespread 377 

use may impede the progress towards development, validation and evaluation of more accurate and 378 

innovative risk prediction models. Striking a balance between tradition and embracing advancements 379 

is crucial for effective implementation in healthcare settings and improving patient outcomes. 380 
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Other existing evidence 381 

We are aware of one additional systematic review of ML prediction models for PIs published after 382 

our search was conducted.89 Pei and colleagues included 18 models, all of which were already 383 

included in our list of identified models. The aim of the review was to assess risk factors related to 384 

HAPIs, rather than assess tools to predict PIs and only ML-based models were included. A meta-385 

analysis was conducted by pooling prognostic accuracy measures across all models that provided 2x2 386 

data (n=14 models). The pooled AUC across the 14 models was 0.94, pooled sensitivity was 0.79 387 

(95% CI 0.78–0.80) and pooled specificity was 0.87 (95% CI 0.88–0.87).89 A meta-regression was 388 

conducted to investigate whether these values differed by machine learning algorithm; no difference 389 

based on algorithm was found. Review authors found 16/18 studies at high risk of bias based on 390 

PROBAST. We had low confidence in the review itself, through applying our adapted AMSTAR-2 391 

criteria; one critical flaw was their use of inappropriate meta-analysis methods (not using a 392 

hierarchical model for pooling sensitivity and specificity). 393 

Strengths and limitations 394 

Our umbrella reviews were conducted to a high standard, following Cochrane guidance40, and with a 395 

highly sensitive search strategy designed by an experienced information specialist. Although we 396 

excluded non-English publications due to time and resource constraints, where possible these 397 

publications were used to identify additional eligible risk prediction models. To some extent our 398 

review is limited by the use of AMSTAR-2 for quality assessment of included reviews. AMSTAR-2 was 399 

not designed for assessment of diagnostic or prognostic studies and, although we made some 400 

adaptations, many of the existing and amended criteria relate to the quality of reporting of the 401 

reviews as opposed to methodological quality. There is scope for further work to establish criteria for 402 

assessing systematic reviews of prediction models.  403 

The main limitation, however, was the lack of detail about risk prediction models and risk prediction 404 

model performance that could be determined from the included systematic reviews. To be as 405 

comprehensive as possible in model identification, we were relatively generous in our definition of 406 

‘systematic’, and this may have contributed to the often poor level of detail provided by included 407 

reviews. It is likely, however, that reporting was poor in many of the primary studies contributing to 408 

these reviews. Excluding the ML-based models, more than half of available risk prediction scales or 409 

tools were published prior to the year 2000. The fact that the original versions of reporting 410 

guidelines for diagnostic accuracy studies90 and risk prediction models91 were not published until 411 

2003 and 2015 respectively, is likely to have contributed to poor reporting. In contrast, the ML-based 412 

models were published between 2000 and 2022, with a median year of 2020. Reporting guidelines 413 

for development and validation of ML-based models are more recent92 or still in development93, but 414 

aim to improve the reporting standards and understanding of evolving ML technologies in 415 

healthcare.  416 

CONCLUSIONS 417 

There is a very large body of evidence reporting various risk prediction scales, tool and models for PI 418 

which has been summarised across multiple systematic reviews of varying methodological quality. 419 

Only five systematic reviews reported the development and validation of models to predict risk of 420 

PIs. It seems that for the most part, available models do not meet current standards for the 421 

development or reporting of risk prediction models. Furthermore, most available models, including 422 

ML-based models have not been validated beyond the original population in which they were 423 

developed. Identification of the optimal risk prediction model for PI from those currently available 424 

would require a high-quality systematic review of the primary literature, ideally limited to studies 425 
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conducted to a high methodological standard. It is evident from our findings that there is still a lack 426 

of consensus on the optimal risk prediction model for PI, highlighting the need for more standardised 427 

and rigorous approaches in future research. 428 

  429 
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