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Abstract 

Background: Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological 

correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional 

connectivity (TVFC) patterns from resting-state {MRI (rfMRI) as potential biomarker for cognitive performance 

in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the 

mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) 

would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require 

extensive integration across diverse cognitive subdomains. Methods: rfMRI and behavioral data from 97 patients 

in the early phases of psychosis and 53 controls were analyzed. Positron-Emission Tomography (PET) and 

magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate 

analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive 

performance in patients. Results: Compared to HEN, LEN explained significantly more cognitive variance on 

average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. 

HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions 

were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG 

beta power. Exploratory analyses revealed a close statistical relationship between LEN and positive PSD 

symptoms. Conclusion: Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in 

PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it 

enhances our understanding of the mechanisms underlying cognitive deficits in PSDs. 
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1 Introduction 

Psychosis spectrum disorders (PSDs) are marked by positive and negative symptoms, as well as 

cognitive impairment (McTeague et al., 2017; R. M. Murray et al., 2004; Pearlson, Clementz, Sweeney, 

Keshavan, & Tamminga, 2016; Sharma et al., 2017). PSDs encompass traditionally distinct diagnostic 

categories like schizophrenia (SCZ) and bipolar disorder (BP) (Barch, 2017, Yamada, Matsumoto, 

Iyima, & Sumiyoshi, 2020), with positive symptoms like hallucinations and delusions being the 

predominant feature across these categories (van Os & Kapur, 2009). Positive symptoms have 

traditionally received a lot of attention in research on PSDs (Feinberg, 1978; Kapur, 2003; Sterzer et al., 

2018), while cognitive dysfunction is less frequently discussed (Harvey et al., 2022). However, cognitive 

impairment is predictive of developing psychosis in high-risk individuals (Carrion et al., 2016; Seidman 

et al., 2016) and is a core feature across different manifestations of PSD (Bora & Pantelis, 2015). 

Consequently, mapping the neurophysiological correlates of cognitive performance in PSDs is an 

important subject of investigation, especially since the therapeutic effects of antipsychotic medications 

on cognitive deficits are merely moderate (Keefe et al., 2007), or even entirely absent for certain 

substances (Baldez et al., 2021). This mapping can be performed with functional magnetic resonance 

imaging (fMRI), where functional connectivity (FC) changes across large-scale brain networks (NWs) 

in PSD patients have been reported (Anticevic et al., 2014; Cheng et al., 2015; Kambeitz et al., 2016; 

Ramsay, 2019; N. D. Woodward & Heckers, 2016). These changes are said to reflect dysfunctional 

integration of information between different brain systems with distinct roles in the processing hierarchy 

(Anticevic & Halassa, 2023; Friston, Brown, Siemerkus, & Stephan, 2016), ultimately giving rise to the 

diverse set of PSD symptoms. 

Besides FC, which 1s usually measured by the correlation between two blood-oxygen-level-dependent 

(BOLD) signals during rest, intrinsic properties of BOLD timeseries also reflect integrative processes 

(Garrett, Epp, Perry, & Lindenberger, 2018; Ito, Hearne, & Cole, 2020). The related concept of intrinsic 

neural timescales (INT) suggests that more self-similarity (longer INT) in a local BOLD signal reflects 

a longer temporal window for the integration of information within that brain region (Hasson, Chen, & 

Honey, 2015; Stephens, Honey, & Hasson, 2013). Fittingly, INTs have been shown to be significantly 

shortened in PSD patients compared to healthy controls (Uscatescu et al., 2023; Uscatescu et al., 2021;



Wengler, Goldberg, Chahine, & Horga, 2020), and follow a spatial gradient from primary-sensory to 

higher order regions (J. D. Murray et al., 2014; Raut, Snyder, & Raichle, 2020). Relevant to the present 

investigation, the concept of INT can be extended to the level of connections (edges), by focusing on 

time-varying aspects of FC (TVFC). Although TVFC is still a controversial topic (Liegeois, Laumann, 

Snyder, Zhou, & Yeo, 2017; Lurie et al., 2020), studying it has proven to be informative regarding 

interindividual differences (Liegeois et al., 2019; Vidaurre, Llera, Smith, & Woolrich, 2021) and disease 

states (Jia, Gu, & Luo, 2017; Kaiser et al., 2016; Sakoglu et al., 2010). Consequently, a small number 

of resting-state {MRI studies have used sample entropy (SampEn) (Richman & Moorman, 2000) to 

quantify the self-similarity of edge fluctuations (edge-SampEn [ESE]) derived from sliding-window 

analysis (Hirsch & Wohlschlaeger, 2022; Jia & Gu, 2019b, Jia et al., 2017). SampEn is one way of 

assessing INT, with higher values corresponding to shorter INT (Omidvarnia, Mesbah, Pedersen, & 

Jackson, 2018; Sokunbi et al., 2014), and it is also significantly associated with mental abilities and 

cognitive load in healthy subjects (S. S. Menon & Krishnamurthy, 2019; Nezafati, Temmar, & Keilholz, 

2020; Omidvarnia et al., 2022; Omidvarnia et al., 2021). 

Evidence further indicates that ESE can provide complementary information to BOLD-derived SampEn 

(S. S. Menon & Krishnamurthy, 2019), suggesting potential use as a novel biomarker for 

neuropsychiatric conditions and their related symptoms. In support of this hypothesis, Jia and Gu 

(2019a) reported that ESE was significantly higher in SCZ patients at multiple spatial scales compared 

to healthy controls. However, statistical relationships between ESE and cognitive task-performance have 

not been explored in PSDs. Open questions also pertain to the possibly differential contributions of high 

and low ESE configurations to performance in patients: High ESE connections were most predictive of 

fluid intelligence in healthy subjects (S. S. Menon & Krishnamurthy, 2019). However, brain regions 

belonging to cortical NWs associated with visuospatial and language functions display the lowest ESE 

in the brain (Hirsch & Wohlschlaeger, 2022), and connectivity patterns of these NWs have been 

repeatedly associated with cognitive ability (Hearne, Mattingley, & Cocchi, 2016; Song et al., 2008; van 

den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009). To address these issues, we analyze resting-state {MRI 

and behavioral data from a clinical population (m = 97) of young adults that is within 3 years of onset of 

psychotic symptoms, as well as from healthy controls (n = 53). We contrast high and low ESE network



configurations, in terms of their ability to explain behavioral variance across cognitive tasks in patients. 

Given the evidence cited above, we hypothesize that their respective explanatory power would 

significantly depend on the specific cognitive task in question: Low ESE configurations should be more 

informative in tasks that need higher degrees of information integration. Conversely, high ESE 

configurations might better capture behavioral variance in tasks that depend more on ‘just’ the precise 

encoding of low-level stimulus features. Overall, we hope to generate new perspectives regarding the 

topography of neurophysiological correlates of cognitive performance in PSDs, through examining the 

timescales of TVFC with ESE. By combining our fMRI results with public data of neurotransmitter 

systems and brain oscillations (Hansen et al., 2022), we aim to gain more insight into the biological 

mechanisms underlying ESE configurations and their relationship with cognitive aspects of PSDs. This 

multimodal mapping of brain-behavior associations might help to generate new potential targets for 

therapeutic interventions in the cognitive domain, particularly since existing treatment options are only 

moderately effective (Vita et al., 2021). 

2 Results 

Imaging and behavioral data were taken from the Human Connectome Project for Early Psychosis 

(HCP-EP) open-source dataset (Materials and Methods). Imaging data consisted of one resting-state 

session (~6min) per subject (patients: n = 97; controls: n = 53). Behavioral data consisted of scores from 

the seven measures in the NIH-TB Cognition Battery (Weintraub et al., 2013), that capture individual 

variation across a range of cognitive subdomains. To map brain-behavior relationships in patients, we 

used multi- and univariate versions of a variance component model (Ge et al., 2016; Sabuncu et al., 

2016), that has been recently employed to study TVFC — behavior associations in healthy subjects 

(Liegeois et al., 2019). After preprocessing, the functional data were parcellated and sliding-window 

analysis (SWA) was conducted on the resulting BOLD timeseries. One SampEn value was then 

computed for each correlational timeseries, resulting in a vector with 6670 elements for each subject. In 

accordance with previous work, we then constructed high-entropy (HEN) and low-entropy (LEN) 

network-templates, by selecting edges with the highest and lowest mean ESE values across healthy



subjects (Hirsch & Wohlschlaeger, 2022). This was done for a range of different thresholds, and for 

every threshold we extracted the corresponding ESE values from the patients, which were then 

correlated across patients to derive the similarity matrices to be put into the model (Ge et al., 2016). We 

then ran the behavioral model for each similarity matrix corresponding to a given threshold, and in the 

end selected the threshold that performed best for HEN and LEN (respectively) for the final analysis 

(Section 4.3). The two resulting (97 x 97) similarity matrices Ruen and Rzen (representing shared 

variance in ESE across patients) were then used as separate inputs for the variance component model to 

predict variance across and within cognitive domains. All ensuing behavioral analyses are based on 

comparing the outcomes from running the model separately for Ryzvand Rien (Materials and Methods). 

Moreover, we performed basic topological analyses at the node-level, based on binarized versions of the 

(group-level) HEN and LEN templates, derived from the controls. This was done to replicate our 

previous finding that ESE is topographically organized along a subcortical (SC) to cortical axis in 

healthy subjects (Hirsch & Wohlschlaeger, 2022). Finally, to gam more insight into the neurobiological 

mechanisms underlying HEN and LEN configurations at the cortical level, we analyze their spatial 

correspondence with neurotransmitter maps derived from positron emission tomography (PET) and the 

topography of brain rhythms from magnetoencephalography (MEG). We use high-quality open-source 

data that combines the results from different studies (Hansen et al., 2022). We apply rigorous control for 

statistical dependencies between spatially adjacent brain regions through the employment of null-models 

matching the spatial autocorrelation of the empirical maps (Burt, Helmer, Shinn, Anticevic, & Murray, 

2020). 

2.1 LEN encodes more information across cognitive domains in patients 

On average, similarity in the HEN explained significantly less behavioral variance (26%; SE = 16%), 

compared to the LEN (36%; SE = 20%), bias-corrected bootstrap confidence-interval (BS-CI) of the 

difference [-26%, -4%], Bonferrom corrected (Figures 1-2). There was reasonable evidence for the 

average explanatory variance to be significantly different from zero for both LEN (p-Wald = 0.0387, p- 

Perm = 0.034), and HEN (p-Wald = 0.0443, p-Perm = 0.045). Running the model after shuffling the 

original edges (independently for each patient) or selecting random edges (consistently across patients)



resulted in higher p-values for both HEN (shuffled-edges: p-Wald = 0.4477, p-Perm = 0.4270; random- 

edges: p-Wald = 0.1602, p-Perm = 0.1560) and LEN (shuffled-edges: p-Wald = 0.4858, p-Perm = 

0.4610; random-edges: p-Wald = 0.1665, p-Perm = 0.1650).
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Figure 1. Left: Average variance explained across all cognitive measures is significantly lower for the High-entropy 

(red), compared to the Low-entropy (blue), in patients. Error-bars represent parametric SEs. Right: Explained 

variance in patients, stratified by cognitive measure for High-entropy (top-row) and Low-entropy (bottom-row). Error- 

bars represent SEs derived from a bootstrapping procedure. SE = Standard error, EF = Executive functions.



2.2 Explanatory power is domain specific 

On the level of single measures, we observed significant interactions in subdomains of Executive 

Function (EF): HEN (39%, SE = 14%) explained more variance in Inhibition (INH), compared to LEN 

(19%; SE = 12%), BS-CI [16%, 66%]. HEN (46%; SE = 11%) also explained significantly more 

variance in Working-memory (WM), compared to LEN (32%; SE = 12%), BS-CI [9%, 49%]. 

Conversely, HEN (33%; SE = 13%) explained significantly less variance in Flexibility, compared to 

LEN (71%; SE = 10%), BS-CI [-92%, -48%] (Figure 2). Additionally, HEN was significantly less 

informative in Reading (20%, SE = 14%), compared to LEN (50%; SE = 11%), BS-CI [-76%, -29%]. 

Finally, HEN was also significantly less informative in Vocabulary comprehension (20%; SE = 14%), 

compared to LEN (44%; SE = 12%), BS-CI [-65%, -22%]. All BS-CIs were (Bonferroni) adjusted for 

multiple comparisons, and the results were insensitive to the choice of resampling method (Section 4.6).
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Figure 2. Jop. Bias-corrected bootstrap Cls for the patients’ difference in variance explained (High-entropy — Low- 

entropy), stratified by cognitive measure. Dashed line denotes zero-cifference. Bottom: Confirmatory jackknife Cls 

for the patients’ difference in variance explained (High-entropy — Low-entropy), stratified by cognitive measure. 

Dashed line denotes zero-difference.Cl = Confidence interval, EF = Executive functions.



2.3 Explanatory power is NW specific 

To evaluate behavioral variance explained for HEN and LEN at the level of NWs, a univariate version 

of the multivariate variance component model was used, which resulted in an edgewise estimate 

quantifying the average amount of variance explained across all dependent variables (Material and 

Methods). We averaged edges-values within- and between the boundaries of seven established cortical 

resting-state NWs (Yeo et al., 2011), plus a SC NW. The cortical NWs pertained to the Visual NW (VIS), 

Somatomotor NW (SM), Dorsal Attention NW (DAT), Salience/Ventral Attention NW (SAL), Limbic 

NW (LIM), Cognitive Control NW (CC), as well as Default-mode NW (DMN). To determine 

significance, we compared these empirical values against a series of values derived from 10000 

iterations of different null-models (Materials and Methods). We found that for the HEN, the average 

variance explained within SC was significantly higher than what would be expected based on a series 

of size- and density-matched random NWs (p-Perm = 0.0014) (Figure 3; top left). The same was true 

for SC interactions with VIS (p-Perm = 0.0014), LIM (p-Perm = 0.0014), CC (p-Perm = 0.0257), and 

DMN (p-Perm = 0.0014) (Figure 3; top left). When compared to degree- and strength-matched random 

NWs, only SC interactions with CC (p-Perm = 0.0072) remained significant (Figure 3; bottom left). For 

the LEN, the average variance explained within DMN was significantly higher than what would be 

expected based on series of size and density-matched random NWs (p-Perm = 0.0261), as well as DMN 

interactions with DAT (p-Perm = 0.0456) (Figure 3; top right). The same was true for SM interactions 

with SAL (p-Perm = 0.0014), and DAT interactions with CC (p-Perm = 0.0252) (Figure 3; top right). 

When compared to degree- and strength-matched random NWs, no NW (or between-NW interaction) 

in the LEN explained significantly more behavioral variance across behavioral measures than expected 

(on average) (Figure 3; bottom right). All reported p-values were controlled with FDR (Benjamini & 

Hochberg, 1995)
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Figure 3. fop-row: NW-interactions explaining significant behavioral variance across all cognitive measures in 

patients, for High-entropy (left) and Low-entropy (right). Significance was determined by randomly shuffling edges 

(random-null; 10000 permutations) before averaging within/between NWs. Significant within-NW explanatory 

variance is denoted by magenta colors. Bottom-row: NW-interactions explaining significant behavioral variance 

across all cognitive measures in patients, for High-entropy (left) and Low-entropy (right). Significance was 

determined by shuffling edges while matching the initial degree- and strength distributions (matched-null; 10000 

permutations) before averaging within/between NWs. CC = Cognitive control NW, DAT = Dorsal attention NW, DMN 

= Default-mode NW, LIM = Limbic NW, SAL = Salience NW, SC = Subcortical NVV, SM = Sensorimotor NW, VIS = 

Visual NW, NW = Network .



2.4 Spatial layout of ESE recapitulates SC-cortical axis in controls 

We assessed the relative importance of single regions to HEN and LEN configurations by computing 

the (binary) degree centrality (DC) for each node in the respective templates (Section 2). Each node’s 

DC value was normalized by the mean DC value from a series of size- and density-matched random 

NWs. For the HEN, highest DC values were localized in SC, with left hemispheric nodes in the posterior 

thalamus, amygdala, and hippocampus at the top (Figures 4-5). Cortical nodes with the highest DC 

values were found in LIM regions of the temporal lobes (bilaterally), as well as n areas belonging to 

VIS (Figure 6). For the LEN, highest DC values belonged to pre- and postcentral SM and DAT regions 

(bilaterally), as well as to bilateral prefrontal- and cingulum areas of the CC (Figure 6). Overall, the DC 

values were spatially organized in strong correspondence with our previous results in large sample of 

young and healthy subjects (Hirsch & Wohlschlaeger, 2022).
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Figure 4. fop-row: Normalized degree-centrality of all nodes for High-entropy (req), stratified by localization (Cortex 

= dark red; Subcortex = light red). Normalization was done via randomly shuffling edges (10000 permutations), 

dashed line denotes significance. Botfom-row: Normalized degree-centrality of all nodes for Low-entropy (blue), 

stratified by localization (Cortex = dark blue; Subcortex = light blue). Normalization was cone via randomly shuffling 

edges (10000 permutations), dashed line denotes significance.
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Figure 5. Normalized degree-centrality of subcortical nodes for High-entropy (red) and Low-entropy (blue), depicted 

on representative slices of a structural image in MNI space. Normalization was cone via randomly shuffling edges 

(10000 permutations), darker colors denote higher degree-centrality. Data are the same as in Figure 4.
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Figure 6. Jop-row: Normalized degree-centrality of cortical nodes for High-entropy (red colormap), projected onto 

an inflated representation of the cortical surface. Darker colors denote higher normalized degree. Normalization 

was done via randomly shuffling edges (10000 permutations). Data are the same as in Figure 4. Bottom-row: 

Normalized degree-centrality of cortical nodes for Low-Entropy (blue colormap), projected onto an inflated 

representation of the cortical surface. Darker colors denote higher normalized degree. Normalization was done via 

randomly shuffling edges (10000 permutations). Data are the same as in Figure 4.



2.5 Topography of ESE mirrors macroscale patterns of cortical organization 

We combined the normalized HEN/LEN DC estimates for each cortical node by subtracting them from 

each other (HEN — LEN) before rescaling them to the interval [0, 1] (Figure 7, top). The resulting node- 

entropy (NE) value captures a region’s trend towards being central in either HEN or LEN, at the 

behaviorally most informative density of these respective configurations (Section 2). NE values were 

then correlated with the corresponding values of a series of spatial maps denoting densities of different 

neurotransmitter receptors (from PET) and oscillatory power within predefined frequency bands (from 

MEG), see Hansen et al. (2022) for details (Figure 8). We restricted our analyses to maps for which the 

absolute Pearson correlation with NE was at least 0.2. For each map, significance was determined by 

comparing the empirical correlation value to a corresponding distribution derived from 10000 surrogate 

maps preserving the spatial autocorrelation of the mitial map (Burt et al., 2020), and finally these p- 

values were controlled with FDR. We found that NE was significantly anticorrelated with MEG beta- 

power (r= -0.51, p = 0.001) and receptor density for the norepinephrine transporter (NET; r= -0.4, p = 

0.012) (Figure 7). NE was also significantly correlated with receptor density for the serotonin transporter 

(5-HTT; r= 0.4, p = 0.012) (Figure 7). These results mdicate that ESE at the node level tracks spatial 

gradients related to large-scale neuronal dynamics and neurotransmission. Importantly, they also offer 

valuable additional information to properly interpret the relationships between ESE and different 

cognitive domains in PSD we have described above.
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Figure 7. fop-row: Cortical Node-entropy, obtained by subtracting the normalized-degree centralities (High-entropy 

— Low-entropy), projected onto an inflated representation of the cortical surface and z-scored for visualization 

purposes. Darker red colors denote higher Node-entropy, darker blue colors lower Node-entropy. Botfom-row: 

Scatterplots depicting the relationship between Node-entropy (x-axis), and Beta-power (y-axis; left), 5-HTT density 

(y-axis; middle), and NET density (y-axis; right), for cortical nodes. Red lines denote least-square fits from linear 

regression. All variables were z-scored for visualization. P-values were derived with spatial-surrogate testing and 

then controlled with FDR (see Section 2.5). 5-HTT = Serotonin-transporter, NET = Norepinephrine-transporter.



Beta Power (MEG) 

CAa&, 
2.31 0 2.32} 

5HT-Transporter Density 

@a& 
2.32 0 3.66 

NE-Transporter Density 

Figure 8. Jop-row: MEG-beta power, projected onto an inflated representation of the cortical surface and z-scored 

for visualization purposes, lighter colors denote higher beta power. Middle-row: 5HTT-density, projected onto an 

inflated representation of the cortical surface and z-scored for visualization purposes, warmer colors denote higher 

density. Bottom-row: NET-cdensity, projected onto an inflated representation of the cortical surface and z-scored for 

visualization purposes, lighter colors denote higher density. Data were taken from a public repository (see Section 

4.1). 5-HTT = Serotonin-transporter, NET = Norepinephrine-transporter.



2.6 Additional analyses 

2.6.1 LEN maps integration 

Our pattern of results 1s compatible with the hypothesis that LEN configurations preferentially encode 

behavioral information on tasks that require extensive information-integration (such as language- and 

knowledge-based tasks), while HEN tends to explain more variance on tasks geared more towards quick 

and reliable extraction of stimulus features (EF tasks measuring INH and WM). However, this a-priori 

grouping into cognitive domains (language vs. EF) is problematic and not clearly reflected in our 

findings, given that LEN explains the most variance in the EF ‘subdomain’ of Flexibility (Figures 1-2). 

To further test our hypothesis in a data-driven way, we conducted a principal component analysis (PCA) 

on the cognitive variables from the whole sample. The first principal component (PC), which explained 

approximately 52% of the variance, had positive loadings from all cognitive variables, indicating that it 

represented shared features across all tasks and their related domains (Figure 9, left). Interestingly, the 

average loading on the first PC was significantly lower for variables whose variance was significantly 

better explained by HEN (INH, WM), compared to variables that were more related to LEN (Flexibility, 

Reading, and Vocabulary comprehension), 95% BS-CI [-0.14; -0.02] (Figure 9, left). It seems that in 

terms of explanatory power, LEN configurations outperform HEN configurations, specifically on tasks 

that engage a wide range of cognitive domains, possibly accompanied by higher degrees of integrative 

and distributed processing on a neuronal level. 

2.6.2 LEN relates to positive PSD pathology 

While our main aims in this study were connected to cognitive variables, we also performed explorative 

analyses to see if and how HEN and LEN signatures would relate to the positive and negative symptom 

complexes that characterize PSD pathology. To do this we ran the univariate version of the statistical 

model (Section 4.5.1) with the patients scores on the Positive and Negative Syndrome Scale (PANSS) 

(Liechti, Capodilupo, Opler, Opler, & Yang, 2017) as dependent variables. The same covariates were 

used as in the analyses of the cognitive data. We found that LEN significantly encoded inter-patient 

variance on the positive scale (91%; SE = 34%; p-Wald = 0.0034), which was not the case for HEN 

(Figure 9, right). Additionally, there was some weaker evidence that HEN significantly explained



variance on the negative symptom scale (37%; SE = 29%; p-Wald = 0.11) (Figure 9, right). Although 

these results should be interpreted with caution (Sabuncu et al., 2016), they show a correspondence 

between our suggested marker of neuronal integration (ESE) and core PSD symptoms like hallucinations 

and delusions, which fittingly have been hypothesized to stem from faulty integration of information 

between sensory- and higher order brain systems (Anticevic & Halassa, 2023, Friston et al., 2016).
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Figure 9. Left: Scatterplot visualizing the relationship between integration (loading on first PC; x-axis) and difference 

in variance explained (High-entropy — Low-entropy; y-axis), stratified by cognitive measure. Measures are color- 

coded according to direction and significance of the difference (blue: High-entropy < Low-entropy; red: High-entropy 

> Low-entropy; grey: ns.). Right: Low-entropy (blue) significantly explains variance in positive symptoms in patients. 

Error bars denote parametric SEs, significance is denoted by an asterisk. PC = Principal component, SE = Standard 

error.



3 Discussion 

3.1 Summary 

In this study, we show that the timescales of TVFC during rest encode significant information about 

cognitive task performance in a large sample of young adults in the early phases of psychosis. Our 

hypothesis was that diverging levels of ESE in patients would be differentially related to cognitive 

variables, depending on the level of integrative processing required for performing the related task. We 

find that brain configurations marked by low ESE (high integration; LEN) explain significantly more 

behavioral variance overall in patients, compared to constellations designated by high ESE (low 

integration; HEN). In line with our proposal, this result is driven by LEN encoding significantly more 

variance on tasks that engage a wider range of cognitive processes (Section 2.6.1). Fittingly, the most 

informative connections of the LEN are distributed across a range of cortical NWs encompassing 

unimodal- as well as higher-order cortical NWs (Section 2.3). In contrast, the most informative HEN 

connections are concentrated between SC and CC (Figure 3, bottom-left). This mostly reflects 

significantly higher relative explanatory power for HEN in tasks related to (empirically) more isolated 

EF subdomains (WM, INH). In sum, ESE 1s a useful marker for disentangling the relative contributions 

of different brain systems to specific aspects of cognitive performance in PSD. 

In healthy controls, ESE decreases along a SC to cortical gradient and 1s lowest for nodes belonging to 

SM, DAT and CC, which replicates our previous findings (Hirsch & Wohlschlaeger, 2022). For cortical 

areas, NE closely covaries with oscillatory power in the beta frequency range during rest (ca. 12-30Hz), 

with lower NE corresponding to higher beta power (Figures 7-8). This points towards a possible 

neurobiological mechanism through which information could be integrated in the LEN, especially since 

NE also tracks the density of NET (Figures 7-8), with lower NE corresponding to higher density. 

Additionally, NE is significantly related to 5-HTT density, with higher NE corresponding to higher 

density (Figures 7-8). Overall, these results provide valuable insights into the oscillatory and 

neuromodulatory profiles of HEN and LEN. Given that the edge dynamics of PSD patients within these 

configurations are significantly related to their cognitive profiles, they also provide a mechanistic 

framework for possible interventions to improve cognition in PSDs. This is especially important, since



our explorative analyses also show that LEN dynamics in patients are significantly related to positive 

symptoms like hallucinations and delusions (Figure 9, right). In the following sections we will discuss 

the implications of our findings in the context of the existing literature. 

3.2 Relationships with previous work 

The outcomes of the present investigation validate the substantial body of literature showing that resting- 

state dynamics are useful biomarkers for neuropathological conditions (L. G. Bauer et al., 2022; Kaiser 

et al., 2016; Rashid et al., 2016; Ries et al., 2019; Sakoglu et al., 2010; Salman, Vergara, Damaraju, & 

Calhoun, 2019; Zéller et al., 2019), and that ESE significantly relates to behavior and cognition (Ia & 

Gu, 2019a; Jia et al., 2017; S. S. Menon & Krishnamurthy, 2019). However, our detailed mapping of 

HEN/LEN configurations and their multimodal profiles to specific aspects of cognition and positive 

pathology in PSD provides new theoretical insights and has possible clinical utility. 

3.2.1 LEN 

NWs significantly related to cognition in LEN include DMN, SAL and CC, all of whom are part of the 

triple-network model of general psychopathology (V. Menon, 2011). The model postulates that cognitive 

deficits in SCZ, and psychopathology in general arise from dysfunctional interactions between these 

higher order NWs (V. Menon & Uddin, 2010; Palaniyappan & Liddle, 2012). Indeed, their dysfunction 

is predictive of cognitive deficits across modalities and diagnostic criteria (Sheffield et al., 2017; Sui et 

al., 2018), which also holds true in the present investigation. Since the LEN/HEN templates were derived 

from group-average ESE values across healthy individuals (Section 2), our results partially reflect the 

spatial gradient of ESE (Figures 4-6), with nodes belonging to these higher order NWs amid the most 

highly connected in the LEN. However, the behavioral significance of the patients LEN dynamics was 

entirely absent when edges were selected randomly (Section 2.1). This suggests that the TVFC 

timescales within and between those NWs were indeed amongst the most informative about specific 

aspects of cognition. The lack of significance for any NW or NW-interaction after controlling for degree- 

and strength (Figure 3, bottom-right) indicates that the behavioral relevance of LEN is not so much 

concentrated but rather distributed across its constituent nodes and associated NWs. This conceptually



aligns with our finding that LEN dynamics preferentially encode performance in cognitive tasks 

requiring higher degrees of integration. 

The fact that the topography of NE was strongly anticorrelated with MEG beta-power (Figure 7) implies 

coordinated activity between nodes within the LEN, underscoring that this configuration is not merely 

incidental. Beta power has been related to ongoing effortful cognition (Schmidt et al., 2019) and motor- 

preparation/execution (Baker, 2007; Pfurtscheller & Berghold, 1989; Tewarie et al., 2018). Interestingly, 

this rhythm seems to be important for integrating bottom-up and top-down signals (Tan, Wade, & Brown, 

2016), and tracks SCZ pathology (Donati et al., 2021; Gascoyne et al., 2021; Pittman-Polletta, Kocsis, 

Vijayan, Whittington, & Kopell, 2015). LEN dynamics were also significantly related to positive 

symptom severity in the present study (Figure 9, right), providing further evidence for a possible link 

between ESE and large-scale neuronal dynamics. The NE connection to oscillatory behavior should be 

interpreted together with the corresponding spatial correlations to NET and 5-HTT densities (Figure 7). 

Recent evidence shows that these distributions significantly predict the topography of MEG-derived 

beta-power (Hansen et al., 2022), and monoaminergic dysfunction is central to many explanatory 

accounts of PSDs (Davis, Kahn, Ko, & Davidson, 1991; Eggers, 2013). The noradrenergic system has 

been implicated in the cognitive deficits in SCZ, patients (Maki-Marttunen, Andreassen, & Espeseth, 

2020), and has been hypothesized to drive integration between distributed brain NWs through neural 

gain (Shine, 2019; Totah, Neves, Panzeri, Logothetis, & Eschenko, 2018). Since NE was significantly 

anticorrelated with NET density, these accounts align with our notion that ESE inversely tracks 

integration, behaviorally reflected in the (relatively) superior performance of patients’ LEN patterns to 

encode variance in psychometrically more integrated tasks, which evidence suggest require higher 

degrees of distributed processing (Colom, Jung, & Haier, 2006; Dajani & Uddin, 2015; Niendam et al., 

2012). 

Acorollary of our results is that psychoactive interventions that target positive symptoms in PSDs should 

also significantly influence cognitive performance, given that LEN dynamics were significantly related 

to both aspects of the pathology. There is indeed evidence that some antipsychotics have small positive 

effects on cognition (Baldez et al., 2021, Davidson et al., 2009), with negative effects also being reported 

(Sakurai et al., 2013). Of note, a recent network meta-analysis showed that the antipsychotics



haloperidol and clozapine, which are known for their antagonistic effects on noradrenergic transmission, 

had the most detrimental effects on global cognition (Baldez et al., 2021). This is compatible with our 

present results that indicate a noradrenergic involvement in the LEN dynamics which significantly 

encode cognitive-task variance in PSD patients. Interestingly, NET can also modulate dopaminergic 

(DA) signaling, especially in CC related areas (Gresch, Sved, Zigmond, & Finlay, 1995; Maki- 

Marttunen et al., 2020; Moron, Brockington, Wise, Rocha, & Hope, 2002), and DA dysfunction has been 

the central element in many theories of PSDs (Howes & Kapur, 2009). 

3.2.2 HEN 

Areas significantly related to behavior in the HEN pertained to interactions within SC, and SC- 

interactions with VIS and higher-order NWs (Figure 3, top/bottom-left). These associations were driven 

by HEN explanatory power in specific tasks (List sorting and Flanker) related to EF subdomains 

(Working memory [WM] and Inhibition [INH]). These tasks require quick and precise encoding of low- 

levels stimulus features to perform well (Tulsky et al., 2013; Zelazo et al., 2013). Our results suggest 

that connections with high ESE (low integration) best encoded this ability during rest in PSD patients, 

which is compatible with our hypothesis. This is in line with evidence that SC and visual areas have 

shorter INTs, compared to cortical higher-order areas (Muller et al., 2020; Raut et al., 2020), which is 

also true for the timescales of TVFC (Hirsch & Wohlschlaeger, 2022). Interactions within SC are 

proposed to act as shortcuts for rapid sensory processing (McFadyen, Dolan, & Garrido, 2020), and SC- 

cortical interactions have been consistently associated cognitive symptoms of PSDs (Anticevic & 

Halassa, 2023; Peters, Dunlop, & Downar, 2016; Ramsay, 2019), possibly by influencing cortico- 

cortical connectivity (Hirsch & Wohlschlaeger, 2023). The behaviorally most informative HEN 

interactions were concentrated between SC and CC (Figure 3, bottom-left), contrasting the more 

distributed nature of relevant LEN edges. In general, ESE was able to dissociate different aspects of EF 

(WM/INH vs. Flexibility) in terms of their neurophysiological correlates, resembling the stability vs. 

flexibility dichotomy of cognitive control (Fuster, 2015; Sakai, 2008). 

The observed significant correlation between 5-HTT density and NE for cortical nodes indicates an 

involvement of the serotonergic system in HEN dynamics (Figure 7), especially since FC changes after



5-HTT blockage have been reported for HEN regions including the thalamus, amygdala, and VIS 

(Boucherie et al., 2023). Moreover, serotonergic signaling under normal conditions has been related to 

(SC-driven) feedforward cortical processing (Shine et al., 2022), which is associated with shorter 

timescales (Bastos et al., 2012). Of note, performance in WM and selective attention (akin to INH) was 

improved for PSD patients after administration of the AP olanzapine, relative to other atypical APs, 

typical APs, and placebo (Baldez et al., 2021; Neil D Woodward, Purdon, Meltzer, & Zald, 2005). These 

improvements were partially attributed to olanzapine’s increased affinity for some serotonergic 

receptors (Baldez et al., 2021; Bymaster et al., 2001; Neil D Woodward et al., 2005), aligning with 

evidence showing serotonergic effects on WM (Williams, Rao, & Goldman-Rakic, 2002) and INH 

(Pattij & Schoffelmeer, 2015). Collectively, these findings suggest a neurobiological basis for our 

observed relationship between HEN timescales and specific aspects of cognition in PSD. 

3.3 Limitations 

While our hypothesis was based on the notion from INTs that more self-similarity indicates a greater 

potential for integration (Hasson et al., 2015; J. D. Murray et al., 2014), ESE is only indirectly related 

to the BOLD signal via TVFC. However, our findings in PSD patients indeed suggest that TVFC 

configurations marked by more regular fluctuations (low ESE) explain variance better on tasks that 

require more integrated processing (Figure 9). TVFC fluctuations have been interpreted as shifting 

bram-states (Allen et al., 2014; Leonardi & Van De Ville, 2015), reflecting underlying 

electrophysiological phenomena (Tagliazucchi, Von Wegner, Morzelewski, Brodbeck, & Laufs, 2012; 

G. J. Thompson, 2018) and neuromodulatory processes (Shafiei et al., 2019; Shine, 2019), which is 

compatible with our findings. A criticism of our methodology could be that ESE might not be sensitive 

to active communication between two given regions. It 1s certainly possible for an edge to have low ESE 

(high integration) but for the two corresponding nodes to have low or negative FC. However, we do not 

think that such connections should be excluded or that their existence invalidates our interpretation of 

ESE. On the contrary, evidence shows that weak connections are especially informative about cognition 

(Santarnecchi, Galli, Polizzotto, Rossi, & Rossi, 2014), and topology m PSD (Bassett, Nelson, Mueller, 

Camchong, & Lim, 2012; Mastrandrea et al., 2021).



Another possible issue 1s the fact that SampEn (by definition) is influenced by basic signal properties 

like temporal signal-to noise ratio (Keilholz et al., 2020), which is lower for BOLD signals from SC and 

temporal regions. Although we have shown in the past that the implications for ESE are small (Hirsch 

& Wohlschlaeger, 2022), these influences must be kept in mind when interpreting spatial patterns of 

ESE. Nevertheless, the observed relationships between ESE at different levels and behavior, oscillatory 

dynamics and neurotransmitter densities suggest relevant information can be extracted from the 

timescales of TVFC. Finally, in the past we and others have equated high (single-scale) SampEn with 

high complexity (Hirsch & Wohlschlaeger, 2022; Jia & Gu, 2019a, 2019b; Jia et al., 2017), but others 

have argued that such an interpretation requires a multi-scale entropy analysis (Costa, Goldberger, & 

Peng, 2002; A. C. Yang et al., 2015). While we have avoided the notion of complexity in the present 

study, it should be noted that contrary to BOLD SampEn, ESE at our scale of interest captured most of 

the behaviorally relevant information in healthy subjects (S.S. Menon & Krishnamurthy, 2019). 

3.4 Clinical implications 

Our finding's main (potential) clinical utility lies in the association of distinct aspects of cognition in 

PSD with the topography of neurotransmitter- and oscillatory systems, via ESE. Although (small) 

positive effects of APs on cognition have consistently been reported (Baldez et al., 2021; Keefe et al., 

2007), our findings suggest that pharmacological interventions specifically aimed at noradrenergic 

and/or serotonergic systems might proof beneficial in terms of improving specific aspects of cognition 

in PSD and related disorders. While some evidence exists in that regard (Mancini et al., 2021, Silver et 

al., 2015), no clinical relevance of antidepressants in general was reported in a recent metanalysis of 

chronic SCZ, patients (Vernon et al., 2014). However, the included studies were small, and cognitive 

outcomes were grouped within a-priori cognitive domains (EF, language, etc.) (Vernon et al., 2014). Our 

results suggest that such grouping could obscure possible effects. In addition, our findings pertain to 

young patients in the early phases of PSD, not chronic SCZ. Finally, the implication of the beta-rhythm 

in the LEN makes it a potential target of brain-stimulation techniques, which is technically feasible with 

non-invasive methods (Hannah, Muralidharan, & Aron, 2022).



4 Materials and Methods 

4.1 Sample characteristics and image preprocessing 

The initial sample consisted of the 169 subjects for which minimally preprocessed structural data was available at the time of download as part 

of the Human Connectome Project Early Psychosis Release 1.1 (HCP-EP) (https://www.humanconnectome.org/study/human-connectome- 

project-for-early-psychosis/document/hep-ep). For these subjects the (volumetric) minimal preprocessing pipeline of the HCP was conducted, 

see (Glasser et al., 2013; Smith et al., 2013) for details. Briefly, one resting-state {MRI run lasted Smin and 47s, 2 mm isotropic resolution, 

multiband acceleration factor 8, TR = 0.83, TE = 0.037s, phase-encoding direction posterior-to-anterior (PA). Additional runs were available 

in the anterior-to-posterior (AP) phase-encoding direction, but we only used one run with PA per subject to ensure better signal accuracy in 

frontal regions. Preprocessing delivered unsatisfying results for five subjects due to issues with the field-maps, which were subsequently 

excluded from further analysis. Out of the remaining 164 subjects, 150 subjects had sufficient behavioral data available (patients: n = 97; 

controls: 7 = 53), which were then included in the final sample. Functional data were then denoised with aCompCor (Behzadi, Restom, Liau, 

& Liu, 2007), consisting in regressing out the timeseries of the five main axes of variance (principal components) from white-matter and 

cerebrospinal signals (respectively) from the functional images (Muschelli et al., 2014). Additionally, the stx movement parameters and their 

derivatives were regressed out, and the images were downsampled to 116 cortical and subcortical (SC) regions (Tian, Margulies, Breakspear, 

& Zalesky, 2020), with a template from  (https://github.com/yetianmed/subcortex/blob/master/Group-Parcellation/3T/Cortex- 

Subcortex/MNIvolumetric/Schaefer2018_100Parcels_7Networks_order_Tian_ Subcortex_S1 MNII52NLin6Asym_2mm.nii.gz). 

Preprocessed PET (# = 19) and MEG (# = 6) spatial maps were obtained from a _ public repository 

(https://github.com/netneurolab/hansen_receptors) at the 100 parcel resolution of the Schaefer atlas (Schaefer et al., 2018). 

4.2 SWA and ESE calculation 

Prior to SWA, data were bandpass filtered between 0.017 Hz and 0.1 Hz (Leonardi & Van De Ville, 2015), and the mean signal across all 

regions was regressed from the data (a version of global-signal regression [GSR]). GSR has been shown to be beneficial for alleviating the 

influence of global artifacts in {MRI data (Burgess et al., 2016), strengthen brain-behavior relationships on task measures (Li et al., 2019), and 

increases sensitivity to FC differences between controls and clinical populations (Parkes, Fulcher, Yiicel, & Fornito, 2018). The first/last 10 

frames were removed to account for any boundary effects. We used a rectangular window with a width corresponding to 60s, which was then 

slid in steps of one TR across the timeseries. Within each window we estimated the Pearson correlation between all regions, which was then 

Fisher-transformed prior to further analysis. Then SampEn was then calculated for each correlational timeseries. To compute the SampEn for 

a given signal x =[ %,,%2....,x,] with length N, an embedding vector with m running data points is derived from x: v; = [Xj Xi41,--)Xi¢m—1)s 

with m corresponding to the embedding dimension. For each 7 (1 <i s_N—-m) define 
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SampEn is defined as 
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resulting in a nonnegative number, with higher values indicative of less regularity in the signal (Richman & Moorman, 2000). To ensure 

comparability of our results with past investigations, we used the standard parameter values of m = 2 and s = 0.20 (Hirsch & Wohlschlaeger, 

2022; Jia & Gu, 2019b). For BOLD signals of at least 97 timepoints evidence suggests that results from SampEn analyses are robust to 

parameter changes (Albert C. Yang, Tsai, Lin, & Peng, 2018), and similar results were obtained for ESE (Jia et al., 2017). 

4.3 Construction of HEN/LEN templates and similarity matrices 

After ESE values were obtained for all subjects, HEN and LEN templates were constructed by proportional thresholding of the ESE matrix 

averaged across healthy individuals. For each cutoff only a certain proportion of the highest (HEN) or lowest (LEN) edges was kept. The 

resulting 32 templates (16 HEN and 16 LEN) were then used as binary masks to extract the corresponding ESE values from the patients, which 

were then correlated across patients to obtain the similarity matrices. We then ran the statistical model (Section 4.5.1) for each cutoff with the 

corresponding similarity matrices as inputs. Each cutoff was ranked according to explanatory power (mean variance explained), significance 

(p-Perm and p-Wald), and accuracy (absolute difference between p-Perm and p-Wald, see Ge et al. (2016) for the rationale). Subsequently, the 

average rank across all criteria was calculated and the cutoff with the highest rank was chosen for all downstream analyses. For HEN the 

optimal cutoff was at ~6% density and for LEN at ~14% density. Importantly, the complexity of the models for HEN and LEN is equivalent, 

since the final model inputs (the similarity matrices RHEN and RLEN) have equal dimensions, see Liegeois et al. (2019) for a discussion. 

4.4 Behavioral variables 

4.4.1] Cognitive variables 

The seven selected behavioral variables constitute the cognitive module of the NIH Toolbox for the Assessment of Neurological and Behavioral 

Function, which measures the cognitive domains of EF, episodic memory, language, processing speed, working memory, and attention 

(Weintraub et al., 2013). Under EF we grouped the subdomains of Flexibility (Dimensional Change Card Sort), Inhibition (flanker task), and 

Working memory (list sorting working memory test) (Tulsky et al., 2013; Zelazo et al., 2013). Language functions were denoted by Reading 

(Oral Reading Recognition Test) and Vocabulary comprehension (Picture Vocabulary Test) (Gershon et al., 2013), and Episodic memory was 

assessed with the Picture Sequence Memory Test (P. J. Bauer et al., 2013). Finally, Processing speed was assessed with the Pattern Comparison 

Processing Speed Test (Carlozzi, Tulsky, Kail, & Beaumont, 2013). For all tests the age-corrected scaled scores were utilized (Weintraub et al.,



2013). One subject had a missing score for Episodic memory, which was set to the median value across subjects. Prior to being entered into 

the model, the variables were quantile normalized to a Gaussian distribution to fit model assumptions (Liegeois et al., 2019). 

4.4.2 Covariates 

We included age, sex, phenotype description (non-affective vs. affective psychosis), current medication (Chlorpromazine equivalents), as well 

as mean framewise-displacement (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) as covariates in the model. One subject had a missing 

current-medication value, which was set to zero, given that the subjects lifetime exposure to antipsychotic medication was denoted by zero. 

4.5 Variance component model 

4.5.1 Multivariate model 

The multidimensional variance component model of Ge et al. (2016) takes the following form: 

Y=C+E 

where Y, C, and E are 97 x 7 matrices, with Y representing the (quantile normalized) cognitive variables for all N subjects (Section 4.4.1). 

Vec(C) ~ N(O, ZegR), and Vec(E) ~ N(0,Ze gf), where Vec(.) is the vectorization operator, @ the Kronecker matrix product, R the 

similarity matrix (i.e., etther RHEN or RLEN) and | the identity matrix. The 97 x 97 matrices X, and Z, are to be estimated from R and Y, 

which can be done with a moment-matching method (Ge et al., 2016): 

f= =YT(R — tDY,and £ = =y (kI — TR)Y, 
R R 

THR) ute) and Vp = N(ic — 1”). The overall behavioral variance across all measures M (explained by either HEN or LEN), is where T = ——, kK = 
N 

then: 
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with Tr(. ) being the trace operator. The explained variance for a single cognitive variable M; is computed as: 

= Selis) 
PT SeGd+ Deb 

This results in one value between zero and one, across all measures, and for each behavioral measure. Since we account for covariates, the 

model becomes: 

Y=XB+C+E, 

where X is the 97 x 5 matrix of covariates (Section 4.4.2), and B a5 x7 matrix of fixed effects (Ge et al., 2016). To remove the covariate 

matrix from the model, the data is projected onto a 97 — 5-dimensional subspace resulting in the transformed model: 

which is equivalent to the original model, see Ge et al. (2015) for details. Significance for the average variance across all cognitive variables 

was measured with a P value derived from a Wald test (p-Wald), and complementarily by permuting the rows and columns of R (p-Perm) (Ge 

et al., 2016). The results described in Section 2.1 were calculated by running the model separately for RHEN and RLEN, as well as for their 

alternatively derived (random) versions (see Sections 2.1 and 4.3).



4.5.2 Univariate model 

To obtain the results described in Section 2.3 we used a univariate version of the multivariate model (Liegeois et al., 2019; Sabuncu et al., 

2016): 

y=xXb+Wute, 

where y corresponds to a vector whose N entries contain the values of a given cognitive variable for all subjects, and 4 to a vector of fixed 

effects. W is a column-standardized N x P matrix, with P corresponding to the total number of edges in the HEN/LEN template (see Section 

4.3), u~ N(0,¢,/P) is a vector of random effects, and e ~ N(0,¢,) the residual. W contains the subjects’ standardized SampEn estimates for 

a given template, and assuming that the elements of w are independent, this model can be transformed to the model from Section 4.5.1: 

Cov(y) = 6,°R + o,:1, with R = W-W7/P. The squared entries of the best linear unbiased predictor of u (2) (J. Yang, Lee, Goddard, 

& Visscher, 2011) are a scaled estimate of the variance explained by the corresponding edge across all individuals. We computed 2? for each 

cognitive variable and weighted it by the loading of that variable on the first principal component derived from the whole set of behavioral 

variables (Liegeois et al., 2019), see Ge et al. (2016) for the underlying rationale. 

4.6 Statistical inference 

The significance of the results reported in Section 2.2 was assessed by estimating CIs after resampling, since the model output consist of just 

one value between zero and one for every dependent variable, as well as the average variance explained. We used two different resampling 

methods to ensure robustness of the ensuing CIs: BS-ClIs were calculated based on 1000 bootstrap samples and their width was Bonferroni 

adjusted for multiple comparisons (Manly, 2018). As a complementary approach, we employed a block-version of jackknife-resampling in 

combination with random subsampling: Briefly, the JK-CIs were computed based on 1000 subsets of size N — d of the original data, randomly 

sampled with replacement (Shao & Tu, 1995a). If VN < d < N - 1, this yields a consistent jackknife variance estimator for most underlying 

statistics, so we used d= 10 (Shao & Tu, 1995b). 

The significance of the results reported in Section 2.3 was assessed with two different null-models that were derived from the results of the 

univariate analysis (see Section 4.5.1). For both HEN and LEN (respectively) these results can be represented by a graph with 116 nodes whose 

edges are weighted according to the average behavioral variance explained across variables. The binarized versions of these graphs are 

equivalent to the corresponding HEN/LEN template. For the first null-model we just randomly shuffled the edges (10000 iterations) before 

calculating the average variance explained at the system-level (see Section 2.3). However, we also wanted to know if there were certain 

NWs/NW-interactions that explained significantly more (average) behavioral variance than would be expected, based on the relative centrality 

and explanatory power of their constituent nodes in the underlying templates. To achieve this we created degree- and strength matched random 

NWs (10000 iterations) (Rubinov & Sporns, 2011), before calculating the average variance explained at the system-level. 

4.7 Software and code used in the analysis 

aCompCor denoising was done with DPABI (Yan, Wang, Zuo, & Zang, 2016), which was developed in MATLAB (The MathWorks Inc., 

Natick, MA, US). Further preprocessing was done in Python with the help of the Nilearn toolbox (https://zenodo.org/records/10579570). SWA 

was done in Python with TENETO (https://zenodo.org/records/3626827) (W. H. Thompson, Brantefors, & Fransson, 2017). SampEn 

calculation was done in Python with EntropyHub (Flood & Grimm, 2021). Further statistical analyses were done in MATLAB with the help 

of the following toolboxes: Brain Connectivity Toolbox (BCT) (https://sites.zoogle.com/site/betnet/home), statistics-resampling package 

(https://doi.org/10.5281/zenodo.3992392), and the BrainSpace toolbox (https://brainspace.readthedocs.io/en/latest/index.htm!) (Vos de Wael et



al., 2020). Figures were in part created with Matplotlib (Hunter, 2007), MNE (https://doi.org/10.5281/zenodo.592483) (Gramfort et al., 2013), 

NiBabel (https://zenodo.org/records/10363247), and Connectome Workbench (Marcus et al., 2011). Custom code and further materials 

associated with the study can be found here (-/ink-to-be-added-). 

4.8 Acknowledgements 

Research using Human Connectome Project for Early Psychosis (HCP-EP) data reported in this publication was supported by the National 

Institute of Mental Health of the National Institutes of Health under Award Number U01MH109977. The HCP-EP 1.1 Release data used in this 

report came from DOT: 10.15154/1522899. 

5 References 

Allen, E. A., Damaraju, E., Plis, S$. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the 

resting state. Cereb Cortex, 24(3), 663-676. doi:10.1093/cercor/bhs352 

Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., ... Glahn, D. C. (2014). Characterizing thalamo- 

cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex, 24(12), 3116-3130. doi:10.1093/cercor/bht165 

Anticevic, A., & Halassa, M. M. (2023). The thalamus in psychosis spectrum disorder. Front Neurosci, 17, 1163600. 

doi:10.3389/fnins.2023.1163600 

Baker, S. N. (2007). Oscillatory interactions between sensorimotor cortex and the periphery. Current Opinion in Neurobiology, 17(6), 649- 

655. 

Baldez, D. P., Biazus, T. B., Rabelo-da-Ponte, F. D., Nogaro, G. P., Martins, D. S., Kunz, M., & Czepielewski, L. S$. (2021). The effect of 

antipsychotics on the cognitive performance of individuals with psychotic disorders: Network meta-analyses of randomized 

controlled trials. Neurosci Biobehav Rev, 126, 265-275. doi:10.1016/j.neubiorev.2021.03.028 

Barch, D. M. (2017). The Neural Correlates of Transdiagnostic Dimensions of Psychopathology. Am J Psychiatry, 174(7), 613-615. 

doi:10.1176/appi.ajp.2017.17030289 
Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J., & Lim, K. O. (2012). Altered resting state complexity in schizophrenia. Neuroimage, 

59(3), 2196-2207. doi:10.1016/j.neuroimage.2011.10.002 

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. 

Neuron, 76(4), 695-711. doi:10.1016/j.neuron.2012.10.038 

Bauer, L. G., Hirsch, F., Jones, C., Hollander, M., Grohs, P., Anand, A.,.. . Wohlschlager, A. (2022). Quantification of Kuramoto Coupling 

Between Intrinsic Brain Networks Applied to fMRI Data in Major Depressive Disorder. Frontiers in Computational Neuroscience, 

16. doi:10.3389/fncom.2022.729556 

Bauer, P. J., Dikmen, S. S., Heaton, R. K., Mungas, D., Slotkin, J., & Beaumont, J. L. (2013). Ill. NIH TOOLBOX COGNITION BATTERY (CB): 

MEASURING EPISODIC MEMORY. Monographs of the Society for Research in Child Development, 78(4), 34-48. 

doi:https://doi.org/10.1111/mono.12033 

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based 

fMRI. Neuroimage, 37(1), 90-101. doi:10.1016/j.neuroimage.2007.04.042 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of 

the Royal statistical society: series B (Methodological), 57(1), 289-300. 

Bora, E., & Pantelis, C. (2015). Meta-analysis of Cognitive Impairment in First-Episode Bipolar Disorder: Comparison With First-Episode 

Schizophrenia and Healthy Controls. Schizophr Bull, 41(5), 1095-1104. doi:10.1093/schbul/sbu198 

Boucherie, D. E., Reneman, L., Booij, J., Martins, D., Dipasquale, O., & Schrantee, A. (2023). Modulation of functional networks related to 

the serotonin neurotransmitter system by citalopram: Evidence from a multimodal neuroimaging study. Journal of 

Psychopharmacology, 37(12), 1209-1217. doi:10.1177/02698811231211154 

Burgess, G. C., Kandala, $., Nolan, D., Laumann, T. O., Power, J. D., Adeyemo, B., ... Barch, D. M. (2016). Evaluation of Denoising Strategies 

to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human 

Connectome Project. Brain Connect, 6(9), 669-680. doi:10.1089/brain.2016.0435 

Burt, J. B., Helmer, M., Shinn, M., Anticevic, A., & Murray, J. D. (2020). Generative modeling of brain maps with spatial autocorrelation. 

Neuroimage, 220, 117038. doi:https://doi.org/10.1016/j.neuroimage.2020.117038 

Bymaster, F. P., Falcone, J. F., Bauzon, D., Kennedy, J. S., Schenck, K., DeLapp, N. W., & Cohen, M. L. (2001). Potent antagonism of 5-HT3 and 

5-HT6 receptors by olanzapine. European Journal of Pharmacology, 430(2), 341-349. doi:https://doi.org/10.1016/S0014- 

2999(01}01399-1 

Carlozzi, N. E., Tulsky, D. S., Kail, R. V., & Beaumont, J. L. (2013). VI. NIH TOOLBOX COGNITION BATTERY (CB): MEASURING PROCESSING 

SPEED. Monographs of the Society for Research in Child Development, 78(4), 88-102. doi:https://doi.org/10.1111/mono.12036 

Carrion, R. E., Cornblatt, B. A., Burton, C. Z., Tso, I. F., Auther, A. M., Adelsheim, S.,... McFarlane, W. R. (2016). Personalized Prediction of 

Psychosis: External Validation of the NAPLS-2 Psychosis Risk Calculator With the EDIPPP Project. Am J Psychiatry, 173(10), 989- 

996. doi:10.1176/appi.ajp.2016.15121565 
Cheng, W., Palaniyappan, L., Li, M., Kendrick, K. M., Zhang, J., Luo, Q.,.. . Feng, J. (2015). Voxel-based, brain-wide association study of 

aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NP/ Schizophr, 1, 15016. 

doi:10.1038/npjschz.2015.16 

Colom, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. Neuroimage, 31(3), 1359-1365. 

doi:10.1016/j.neuroimage.2006.01.006 

Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale entropy analysis of complex physiologic time series. Physical review letters, 

89(6), 068102. 



Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends 

Neurosci, 38(9), 571-578. doi:10.1016/j.tins.2015.07.003 

Davidson, M., Galderisi, S., Weiser, M., Werbeloff, N., Fleischhacker, W. W., Keefe, R. S., . .. Rybakowski, J. K. (2009). Cognitive effects of 

antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial 

(EUFEST). American Journal of Psychiatry, 166(6), 675-682. 

Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. The American journal 

of psychiatry, 148(11), 1474-1486. 

Donati, F. L, Fecchio, M., Maestri, D., Cornali, M., Derchi, C. C., Casetta, C.,... D’Agostino, A. (2021). Reduced readiness potential and post- 

movement beta synchronization reflect self-disorders in early course schizophrenia. Scientific Reports, 11(1), 15044. 

doi:10.1038/s41598-021-94356-5 

Eggers, A. E. (2013). A serotonin hypothesis of schizophrenia. Medical hypotheses, 80(6), 791-794. 

Feinberg, I. (1978). Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr Bull, 4(4), 636-640. 

doi:10.1093/schbul/4.4.636 

Flood, M. W., & Grimm, B. (2021). EntropyHub: An open-source toolkit for entropic time series analysis. PLoS One, 16(11), e0259448. 

doi:10.1371/journal.pone.0259448 

Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophr Res, 176(2-3), 83-94. 

doi:10.1016/j.schres.2016.07.014 

Fuster, J. M. (2015). The prefrontal cortex: Academic Press. 

Garrett, D. D., Epp, $. M., Perry, A., & Lindenberger, U. (2018). Local temporal variability reflects functional integration in the human brain. 

Neuroimage, 183, 776-787. doi:https://doi.org/10.1016/j.neuroimage.2018.08.019 

Gascoyne, L. E., Brookes, M. J., Rathnaiah, M., Katshu, M., Koelewijn, L, Williams, G., ... Morris, P. G. (2021). Motor-related oscillatory 

activity in schizophrenia according to phase of illness and clinical symptom severity. Neuroimage Clin, 29, 102524. 

doj:10.1016/j.nicl.2020.102524 

Ge, T., Nichols, T. E., Lee, PB. H., Holmes, A. J., Roffman, J. L., Buckner, R. L.,. .. Smoller, J. W. (2015). Massively expedited genome-wide 

heritability analysis (MEGHA). Proceedings of the National Academy of Sciences, 112(8), 2479-2484. 

doi:doi:10.1073/pnas.1415603112 

Ge, T., Reuter, M., Winkler, A. M., Holmes, A. J., Lee, P. H., Tirrell, L.S., ... Sabuncu, M. R. (2016). Multidimensional heritability analysis of 

neuroanatomical shape. Nature Communications, 7(1), 13291. doi:10.1038/ncomms13291 

Gershon, R. C., Slotkin, J., Manly, J. J., Blitz, D. L, Beaumont, J. L, Schnipke, D.,... Weintraub, S. (2013). IV. NIH TOOLBOX COGNITION 

BATTERY (CB): MEASURING LANGUAGE (VOCABULARY COMPREHENSION AND READING DECODING). Monographs of the Society 

for Research in Child Development, 78(4), 49-69. doi:https://doi.org/10.1111/mono.12034 

Glasser, M. F., Sotiropoulos, $. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., ... Consortium, W. U.-M. H. (2013). The minimal 

preprocessing pipelines for the Human Connectome Project. Neuroimage, 80, 105-124. doi:10.1016/j.neuroimage.2013.04.127 

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., .. . Hamalainen, M. (2013). MEG and EEG data analysis 

with MNE-Python. Frontiers in Neuroscience, 7. doi:10.3389/fnins.2013.00267 

Gresch, P. J., Sved, A. F., Zigmond, M. J., & Finlay, J. M. (1995). Local influence of endogenous norepinephrine on extracellular dopamine in 

rat medial prefrontal cortex. / Neurochem, 65(1), 111-116. doi:10.1046/j.1471-4159.1995.65010111.x 

Hannah, R., Muralidharan, V., & Aron, A. R. (2022). Motor cortex oscillates at its intrinsic post-movement beta rhythm following real (but 

not sham) single pulse, rhythmic and arrhythmic transcranial magnetic stimulation. Neuroimage, 251, 118975. 

doi:https://doi.org/10.1016/j.neuroimage.2022.118975 

Hansen, J. Y., Shafiei, G., Markello, R. D., Smart, K., Cox, S$. M. L., N@rgaard, M., ... Misic, B. (2022). Mapping neurotransmitter systems to 

the structural and functional organization of the human neocortex. Nature Neuroscience, 25(11), 1569-1581. 

doi:10.1038/s41593-022-01186-3 

Harvey, P. D., Bosia, M., Cavallaro, R., Howes, O. D., Kahn, R. S., Leucht, S., ... Vita, A. (2022). Cognitive dysfunction in schizophrenia: An 

expert group paper on the current state of the art. Schizophr Res Cogn, 29, 100249. doi:10.1016/j.scog.2022.100249 

Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: memory as an integral component of information processing. 

Trends Cogn Sci, 19(6), 304-313. doi:10.1016/j.tics.2015.04.006 

Hearne, L. J., Mattingley, J. B., & Cocchi, L. (2016). Functional brain networks related to individual differences in human intelligence at rest. 

Sci Rep, 6, 32328. doi:10.1038/srep32328 

Hirsch, F., & Wohlschlaeger, A. (2022). Graph analysis of nonlinear fMRI connectivity dynamics reveals distinct brain network configurations 

for integrative and segregated information processing. Nonlinear Dynamics, 108(4), 4287-4299. doi:10.1007/s11071-022-07413- 

7 

Hirsch, F., & Wohlschlaeger, A. (2023). Subcortical influences on the topology of cortical networks align with functional processing 

hierarchies. Neuroimage, 283, 120417. doi:https://doi.org/10.1016/j.neuroimage.2023.120417 

Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version Ill--the final common pathway. Schizophr Bull, 35(3), 

549-562. doi:10.1093/schbul/sbp006 

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90-95. doi:10.1109/MCSE.2007.55 

Ito, T., Hearne, L. J., & Cole, M. W. (2020). A cortical hierarchy of localized and distributed processes revealed via dissociation of task 

activations, connectivity changes, and intrinsic timescales. Neuroimage, 221, 117141. 

doi:https://doi.org/10.1016/j.neuroimage.2020.117141 

Jia, Y., & Gu, H. (2019a). Identifying nonlinear dynamics of brain functional networks of patients with schizophrenia by sample entropy. 

Nonlinear Dynamics, 96(4), 2327-2340. doi:10.1007/s11071-019-04924-8 

Jia, Y., & Gu, H. (2019b). Sample Entropy Combined with the K-Means Clustering Algorithm Reveals Six Functional Networks of the Brain. 

Entropy, 21(12), 1156. doi:10.3390/e21121156 

Jia, ¥., Gu, H., & Luo, Q. (2017). Sample entropy reveals an age-related reduction in the complexity of dynamic brain. Scientific Reports, 7(1), 

7990. doi:10.1038/s41598-017-08565-y 

Kaiser, R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M., Minkel, J., ... Pizzagalli, D. A. (2016). Dynamic Resting-State Functional 

Connectivity in Major Depression. Neuropsychopharmacology, 41(7), 1822-1830. doi:10.1038/npp.2015.352 

Kambeitz, J., Kambeitz-llankovic, L., Cabral, C., Dwyer, D. B., Calhoun, V. D., van den Heuvel, M. P., . .. Malchow, B. (2016). Aberrant 

Functional Whole-Brain Network Architecture in Patients With Schizophrenia: A Meta-analysis. Schizophrenia Bulletin, 

42(suppl_1), $13-S21. doi:10.1093/schbul/sbv174 

Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. 

Am J Psychiatry, 160(1), 13-23. doi:10.1176/appi.ajp.160.1.13 



Keefe, R. S., Sweeney, J. A., Gu, H., Hamer, R. M., Perkins, D. O., McEvoy, J. P., & Lieberman, J. A. (2007). Effects of olanzapine, quetiapine, 

and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am J Psychiatry, 

164(7), 1061-1071. doi:10.1176/ajp.2007.164.7.1061 

Keilholz, S., Maltbie, E., Zhang, X., Yousefi, B., Pan, W-J., Xu, N.,... Guo, Y. (2020). Relationship Between Basic Properties of BOLD 

Fluctuations and Calculated Metrics of Complexity in the Human Connectome Project. Frontiers in Neuroscience, 14(939). 

doi:10.3389/fnins.2020.550923 

Leonardi, N., & Van De Ville, D. (2015). On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage, 104, 

430-436. doi:10.1016/j.neuroimage.2014.09.007 

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., ... Yeo, B. T. T. (2019). Global signal regression strengthens association between 

resting-state functional connectivity and behavior. Neuroimage, 196, 126-141. doi:10.1016/j.neuroimage.2019.04.016 

Liechti, S., Capodilupo, G., Opler, D. J., Opler, M., & Yang, L. H. (2017). A Developmental History of the Positive and Negative Syndrome Scale 

(PANSS). fnnov Clin Neurosci, 14(11-12), 12-17. 

Liegeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J., & Yeo, B. T. T. (2017). Interpreting temporal fluctuations in resting-state functional 

connectivity MRI. Neuroimage, 163, 437-455. doi:10.1016/j.neuroimage.2017.09.012 

Liegeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T.,. . . Yeo, B. T. T. (2019). Resting brain dynamics at different timescales capture 

distinct aspects of human behavior. Nat Commun, 10(1), 2317. doi:10.1038/s41467-019-10317-7 

Lurie, D. J., Kessler, D., Bassett, D. S., Betzel, R. F., Breakspear, M., Kheilholz, S., .. . Calhoun, V. D. (2020). Questions and controversies in the 

study of time-varying functional connectivity in resting fMRI. Network Neuroscience, 4(1), 30-69. doi:10.1162/netn_a_00116 

Maki-Marttunen, V., Andreassen, O. A., & Espeseth, T. (2020). The role of norepinephrine in the pathophysiology of schizophrenia. 

Neuroscience & Biobehavioral Reviews, 118, 298-314. doi:https://doi.org/10.1016/j.neubiorev.2020.07.038 

Mancini, V., Maeder, J., Bortolin, K., Schneider, M., Schaer, M., & Eliez, S. (2021). Long-term effects of early treatment with SSRIs on 

cognition and brain development in individuals with 22q11.2 deletion syndrome. Trans/ Psychiatry, 11(1), 336. 

doi:10.1038/s41398-021-01456-x 

Manly, B. F. (2018). Randomization, bootstrap and Monte Carlo methods in biology: chapman and hall/CRC. 

Marcus, D., Harwell, J., Olsen, T., Hodge, M., Glasser, M., Prior, F.,... Van Essen, D. (2011). Informatics and Data Mining Tools and Strategies 

for the Human Connectome Project. Frontiers in Neuroinformatics, 5. doi:10.3389/fninf.2011.00004 

Mastrandrea, R., Piras, F., Gabrielli, A., Banaj, N., Caldarelli, G., Spalletta, G., & Gili, T. (2021). The unbalanced reorganization of weaker 

functional connections induces the altered brain network topology in schizophrenia. Scientific Reports, 11(1), 15400. 

doi:10.1038/s41598-021-94825-x 

McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. 

Nat Rev Neurosci, 21(5), 264-276. doi:10.1038/s41583-020-0287-1 

McTeague, L. M., Huemer, J., Carreon, D. M., Jiang, Y., Eickhoff, S. B., & Etkin, A. (2017). Identification of common neural circuit disruptions 

in cognitive control across psychiatric disorders. American Journal of Psychiatry, 174(7), 676-685. 

Menon, S. S., & Krishnamurthy, K. (2019). A Study of Brain Neuronal and Functional Complexities Estimated Using Multiscale Entropy in 

Healthy Young Adults. Entropy, 21(10), 995. Retrieved from https://www.mdpi.com/1099-4300/21/10/995 

Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in cognitive sciences, 15(10), 

483-506. doi:10.1016/j.tics.2011.08.003 

Menon, V., & Uddin, LQ. (2010). Saliency, switching, attention and control: a network model of insula function. Brain structure & function, 

214(5-6), 655-667. doi:10.1007/s00429-010-0262-0 

Moron, J. A., Brockington, A., Wise, R. A., Rocha, B. A., & Hope, B. T. (2002). Dopamine uptake through the norepinephrine transporter in 

brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. / Neurosci, 22(2), 389-395. 

doi:10.1523/jneurosci.22-02-00389.2002 

Muller, E. J., Munn, B., Hearne, L. J., Smith, J. B., Fulcher, B., Arnatkeviciute, A.,... Shine, J. M. (2020). Core and matrix thalamic sub- 

populations relate to spatio-temporal cortical connectivity gradients. Neuroimage, 222, 117224. 

doi:10.1016/j.neuroimage.2020.117224 

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X.,... Wang, X.-J. (2014). A hierarchy of intrinsic timescales across 

primate cortex. Nature Neuroscience, 17(12), 1661-1663. doi:10.1038/nn.3862 

Murray, R. M., Sham, P., Van Os, J., Zanelli, J., Cannon, M., & McDonald, C. (2004). A developmental model for similarities and dissimilarities 

between schizophrenia and bipolar disorder. Schizophr Res, 71(2-3), 405-416. doi:10.1016/j.schres.2004.03.002 

Muschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., & Mostofsky, S. H. (2014). Reduction of motion-related artifacts in resting 

state fMRI using aCompCor. Neuroimage, 96, 22-35. doi:10.1016/j.neuroimage.2014.03.028 

Nezafati, M., Temmar, H., & Keilholz, $. D. (2020). Functional MRI Signal Complexity Analysis Using Sample Entropy. Frontiers in 

Neuroscience, 14. doi:10.3389/fnins.2020.00700 

Niendam, T. A., Laird, A. R., Ray, K. L, Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive 

control network subserving diverse executive functions. Cogn Affect Behav Neurosci, 12(2), 241-268. doi:10.3758/s13415-011- 

0083-5 

Omidvarnia, A., Liégeois, R., Amico, E., Preti, M. G., Zalesky, A., & Van De Ville, D. (2022). On the Spatial Distribution of Temporal Complexity 

in Resting State and Task Functional MRI. Entropy, 24(8), 1148. Retrieved from https://www.mdpi.com/1099-4300/24/8/1148 

Omidvarnia, A., Mesbah, M., Pedersen, M., & Jackson, G. (2018). Range Entropy: A Bridge between Signal Complexity and Self-Similarity. 

Entropy, 20(12), 962. Retrieved from hitps://www.mdpi.com/1099-4300/20/12/962 

Omidvarnia, A., Zalesky, A., Mansour L, S., Van De Ville, D., Jackson, G. D., & Pedersen, M. (2021). Temporal complexity of fMRI is 

reproducible and correlates with higher order cognition. Neuroimage, 230, 117760. 

doi:https://doi.org/10.1016/j.neuroimage.2021.117760 

Palaniyappan, L., & Liddle, P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular 

dysfunction. Journal of Psychiatry and Neuroscience, 37(1), 17-27. 

Parkes, L., Fulcher, B., Yucel, M., & Fornito, A. (2018). An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies 

for resting-state functional MRI. Neuroimage, 171, 415-436. doi:10.1016/j.neuroimage.2017.12.073 

Pattij, T., & Schoffelmeer, A. N. (2015). Serotonin and inhibitory response control: focusing on the role of 5-HT(1A) receptors. Eur J 

Pharmacol, 753, 140-145. doi:10.1016/j.ejphar.2014.05.064 

Pearlson, G. D., Clementz, B. A., Sweeney, J. A., Keshavan, M. S., & Tamminga, C. A. (2016). Does biology transcend the symptom-based 

boundaries of psychosis? Psychiatric Clinics, 39(2), 165-174. 

Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in 

Psychiatric Disease and Treatment. Frontiers in Systems Neuroscience, 10. doi:10.3389/fnsys.2016.00104 



Pfurtscheller, G., & Berghold, A. (1989). Patterns of cortical activation during planning of voluntary movement. Electroencephalography and 

clinical neurophysiology, 72(3), 250-258. 

Pittman-Polletta, B. R., Kocsis, B., Vijayan, $., Whittington, M. A., & Kopell, N. J. (2015). Brain Rhythms Connect Impaired Inhibition to 

Altered Cognition in Schizophrenia. Biological Psychiatry, 77(12), 1020-1030. doi:https://doi.org/10.1016/j.biopsych.2015.02.005 

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional 

connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142-2154. doi:10.1016/j.neuroimage.2011.10.018 

Ramsay, I. S. (2019). An Activation Likelihood Estimate Meta-analysis of Thalamocortical Dysconnectivity in Psychosis. Biol Psychiatry Cogn 

Neurosci Neuroimaging, 4(10), 859-869. doi:10.1016/j.bpsc.2019.04.007 

Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson, G. D., & Calhoun, V. D. (2016). Classification of schizophrenia 

and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage, 134, 645-657. 

doi:https://doi.org/10.1016/j.neuroimage.2016.04.051 

Raut, R., Snyder, A., & Raichle, M. (2020). Hierarchical dynamics as a macroscopic organizing principle of the human brain. Proceedings of 

the National Academy of Sciences, 117, 202003383. doi:10.1073/pnas.2003383117 

Richman, J. $., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal 

of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. 

Ries, A., Hollander, M., Glim, S., Meng, C., Sorg, C., & Wohlschlager, A. (2019). Frequency-Dependent Spatial Distribution of Functional Hubs 

in the Human Brain and Alterations in Major Depressive Disorder. Front Hum Neurosci, 13, 146. doi:10.3389/fnhum.2019.00146 

Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56(4), 2068-2079. 

doi:10.1016/j.neuroimage.2011.03.069 

Sabuncu, M. R., Ge, T., Holmes, A. J., Smoller, J. W., Buckner, R. L, & Fischl, B. (2016). Morphometricity as a measure of the neuroanatomical 

signature of a trait. Proc Natl Acad Sci U S A, 113(39), E5749-5756. doi:10.1073/pnas.1604378113 

Sakai, K. (2008). Task set and prefrontal cortex. Annu. Rev. Neurosci., 31, 219-245. 

Sakoglu, U., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional 

network connectivity and task-modulation: application to schizophrenia. MAGMA, 23(5-6), 351-366. doi:10.1007/s10334-010- 

0197-8 

Sakurai, H., Bies, R. R., Stroup, S. T., Keefe, R. S., Rajji, T. K., Suzuki, T., .. . Mimura, M. (2013). Dopamine D2 receptor occupancy and 

cognition in schizophrenia: analysis of the CATIE data. Schizophrenia Bulletin, 39(3), 564-574. 

Salman, M. S., Vergara, V. M., Damaraju, E., & Calhoun, V. D. (2019). Decreased Cross-Domain Mutual Information in Schizophrenia From 

Dynamic Connectivity States. Frontiers in Neuroscience, 13(873). doi:10.3389/fnins.2019.00873 

Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, . (2014). Efficiency of weak brain connections support general cognitive 

functioning. Hum Brain Mapp, 35(9), 4566-4582. doi:10.1002/hbm.22495 

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N., Holmes, A. J.,... Yeo, B. T. T. (2018). Local-Global Parcellation of the Human 

Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex, 28(9), 3095-3114. doi:10.1093/cercor/bhx179 

Schmidt, R., Herrojo Ruiz, M., Kilavik, B. E., Lundqvist, M., Starr, PB A., & Aron, A. R. (2019). Beta Oscillations in Working Memory, Executive 

Control of Movement and Thought, and Sensorimotor Function. J Neurosci, 39(42), 8231-8238. doi:10.1523/jneurosci.1163- 

19.2019 

Seidman, L. J., Shapiro, D. I., Stone, W. S., Woodberry, K. A., Ronzio, A., Cornblatt, B. A., ... Woods, S. W. (2016). Association of 

Neurocognition With Transition to Psychosis: Baseline Functioning in the Second Phase of the North American Prodrome 

Longitudinal Study. JAMA Psychiatry, 73(12), 1239-1248. doi:10.1001/jamapsychiatry.2016.2479 

Shafiei, G., Zeighami, Y., Clark, C. A., Coull, J. T., Nagano-Saito, A., Leyton, M., ... MiSic, B. (2019). Dopamine Signaling Modulates the 

Stability and Integration of Intrinsic Brain Networks. Cereb Cortex, 29(1), 397-409. doi:10.1093/cercor/bhy264 

Shao, J., & Tu, D. (1995a). Computational Methods. In J. Shao & D. Tu (Eds.), The Jackknife and Bootstrap (pp. 190-231). New York, NY: 

Springer New York. 

Shao, J., & Tu, D. (1995b). Theory for the Jackknife. In J. Shao & D. Tu (Eds.), The Jackknife and Bootstrap (pp. 23-70). New York, NY: Springer 

New York. 

Sharma, A., Wolf, D. H., Ciric, R., Kable, J. W., Moore, T. M., Vandekar, S. N.,... Davatzikos, C. (2017). Common dimensional reward deficits 

across mood and psychotic disorders: a connectome-wide association study. American Journal of Psychiatry, 174(7), 657-666. 

Sheffield, J. M., Kandala, S., Tamminga, C. A., Pearlson, G. D., Keshavan, M. S., Sweeney, J. A.,... Barch, D. M. (2017). Transdiagnostic 

Associations Between Functional Brain Network Integrity and Cognition. JAMA Psychiatry, 74(6), 605-613. 

doi:10.1001/jamapsychiatry.2017.0669 

Shine, J. M. (2019). Neuromodulatory Influences on Integration and Segregation in the Brain. Trends Cogn Sci, 23(7), 572-583. 

doi:10.1016/j.tics.2019.04.002 

Shine, J. M., O'Callaghan, C., Walpola, I. C., Wainstein, G., Taylor, N., Aru, J.,. . . John, Y. J. (2022). Understanding the effects of serotonin in 

the brain through its role in the gastrointestinal tract. Brain, 145(9), 2967-2981. doi:10.1093/brain/awac256 

Silver, H., Mandiuk, N., Einoch, R., Susser, E., Danovich, L., Bilker, W.,... Weinreb, O. (2015). Improvement in verbal memory following SSRI 

augmentation of antipsychotic treatment is associated with changes in the expression of mRNA encoding for the GABA-A 

receptor and BDNF in PMC of schizophrenic patients. international Clinical Psychopharmacology, 30(3), 158-166. 

doi:10.1097/yic.0000000000000070 

Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J., Bijsterbosch, J., Douaud, G., .. . Consortium, W. U.-M. H. (2013). Resting-state 

fMRI in the Human Connectome Project. Neuroimage, 80, 144-168. doi:10.1016/j.neuroimage.2013.05.039 

Sokunbi, M. O., Gradin, V. B., Waiter, G. D., Cameron, G. G., Ahearn, T. S., Murray, A. D.,.. . Staff, R. T. (2014). Nonlinear Complexity Analysis 

of Brain fMRI Signals in Schizophrenia. PLoS One, 9(5), 95146. doi:10.1371/journal.pone.0095146 

Song, M., Zhou, Y., Li, J., Liu, ¥., Tian, L., Yu, C., & Jiang, T. (2008). Brain spontaneous functional connectivity and intelligence. Neuroimage, 

41(3), 1168-1176. doi:10.1016/j.neuroimage.2008.02.036 

Stephens, G. J., Honey, C. J., & Hasson, U. (2013). A place for time: the spatiotemporal structure of neural dynamics during natural audition. 

J Neurophysiol, 110(9), 2019-2026. doi:10.1152/jn.00268.2013 

Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L, ... Corlett, PR. (2018). The Predictive Coding Account of Psychosis. 

Biol Psychiatry, 84(9), 634-643. doi:10.1016/j.biopsych.2018.05.015 

Sui, J., Qi, S., van Erp, T. G. M., Bustillo, J., Jiang, R., Lin, D., ... Calhoun, V. D. (2018). Multimodal neuromarkers in schizophrenia via 

cognition-guided MRI fusion. Nature Communications, 9(1), 3028. doi:10.1038/s41467-018-05432-w 

Tagliazucchi, E., Von Wegner, F., Morzelewski, A., Brodbeck, V., & Laufs, H. (2012). Dynamic BOLD functional connectivity in humans and its 

electrophysiological correlates. Frontiers in human neuroscience, 6(339). doi:10.3389/fnhum.2012.00339 



Tan, H., Wade, C., & Brown, P. (2016). Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from 

internal models. Journal of Neuroscience, 36(5), 1516-1528. 

Tewarie, P., Hunt, B. A. E., O’Neill, G.C., Byrne, A., Aquino, K., Bauer, M.,... Brookes, M. J. (2018). Relationships Between Neuronal 

Oscillatory Amplitude and Dynamic Functional Connectivity. Cerebral Cortex, 29({6), 2668-2681. doi:10.1093/cercor/bhy136 

Thompson, G. J. (2018). Neural and metabolic basis of dynamic resting state fMRI. Neuroimage, 180, 448-462. 

doi:https://doi.org/10.1016/j neuroimage.2017.09.010 

Thompson, W. H., Brantefors, P., & Fransson, P. (2017). From static to temporal network theory: Applications to functional brain 

connectivity. Netw Neurosci, 1(2), 69-99. doi:10.1162/NETN_a_00011 

Tian, Y., Margulies, D. S., Breakspear, M., & Zalesky, A. (2020). Topographic organization of the human subcortex unveiled with functional 

connectivity gradients. Nat Neurosci, 23(11), 1421-1432. doi:10.1038/s41593-020-00711-6 

Totah, N. K., Neves, R. M., Panzeri, S., Logothetis, N. K., & Eschenko, O. (2018). The Locus Coeruleus Is a Complex and Differentiated 

Neuromodulatory System. Neuron, 99(5), 1055-1068.e1056. doi:10.1016/j.neuron.2018.07.037 

Tulsky, D. S., Carlozzi, N. E., Chevalier, N., Espy, K. A., Beaumont, J. L., & Mungas, D. (2013). V. NIH TOOLBOX COGNITION BATTERY (CB): 

MEASURING WORKING MEMORY. Monographs of the Society for Research in Child Development, 78(4), 70-87. 

doi:https://doi.org/10.1111/mono.12035 

Uscatescu, L. C., Kronbichler, M., Said-Yurekli, S., Kronbichler, L., Calhoun, V., Corbera, S., . .. Assaf, M. (2023). Intrinsic neural timescales in 

autism spectrum disorder and schizophrenia. A replication and direct comparison study. Schizophrenia, 9(1), 18. 

doi:10.1038/s41537-023-00344-1 

Uscatescu, L. C., Said-Yurekli, S., Kronbichler, L., Stelzig-Schéler, R., Pearce, B.-G., Reich, L. A., .. . Kronbichler, M. (2021). Reduced intrinsic 

neural timescales in schizophrenia along posterior parietal and occipital areas. npj Schizophrenia, 7(1), 55. doi:10.1038/s41537- 

021-00184-x 

van den Heuvel, M. P.,, Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual 

performance. J Neurosci, 29(23), 7619-7624. doi:10.1523/jneurosci.1443-09.2009 

van Os, J., & Kapur, S. (2009). Schizophrenia. Lancet, 374(9690), 635-645. doi:10.1016/s0140-6736(09)60995-8 

Vernon, J. A., Grudnikoff, E., Seidman, A. J., Frazier, T. W., Vemulapalli, M. S., Pareek, P., .. . Correll, C. U. (2014). Antidepressants for 

cognitive impairment in schizophrenia — A systematic review and meta-analysis. Schizophrenia research, 159(2), 385-394. 

doi:https://doi.org/10.1016/j.schres.2014.08.015 

Vidaurre, D., Llera, A., Smith, S$. M., & Woolrich, M. W. (2021). Behavioural relevance of spontaneous, transient brain network interactions in 

fMRI. Neuroimage, 229, 117713. doi:https://doi.org/10.1016/j.neuroimage.2020.117713 

Vita, A., Barlati, $., Ceraso, A., Nibbio, G., Ariu, C., Deste, G., & Wykes, T. (2021). Effectiveness, Core Elements, and Moderators of Response 

of Cognitive Remediation for Schizophrenia: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA 

Psychiatry, 78(8), 848-858. doi:10.1001/jamapsychiatry.2021.0620 

Vos de Wael, R., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S.,... Bernhardt, B. C. (2020). BrainSpace: a toolbox for the 

analysis of macroscale gradients in neuroimaging and connectomics datasets. Communications Biology, 3(1), 103. 

doi:10.1038/s42003-020-0794-7 

Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P.J.,... Gershon, R. C. (2013). Cognition assessment using the 

NIH Toolbox. Neurology, 80(11 Suppl 3), $54-64. doi:10.1212/WNL.0b013e3182872ded 

Wengler, K., Goldberg, A. T., Chahine, G., & Horga, G. (2020). Distinct hierarchical alterations of intrinsic neural timescales account for 

different manifestations of psychosis. Fife, 9, e56151. doi:10.7554/eLife.56151 

Williams, G. V., Rao, S. G., & Goldman-Rakic, P. S. (2002). The physiological role of S-HT2A receptors in working memory. / Neurosci, 22(7), 

2843-2854. doi:10.1523/jneurosci.22-07-02843.2002 

Woodward, N. D., & Heckers, $. (2016). Mapping Thalamocortical Functional Connectivity in Chronic and Early Stages of Psychotic Disorders. 

Biol Psychiatry, 79(12), 1016-1025. doi:10.1016/j.biopsych.2015.06.026 

Woodward, N. D., Purdon, S. E., Meltzer, H. Y., & Zald, D. H. (2005). A meta-analysis of neuropsychological change to clozapine, olanzapine, 

quetiapine, and risperidone in schizophrenia. international Journal of Neuropsychopharmacology, 8(3), 457-472. 

Yamada, Y., Matsumoto, M., lijima, K., & Sumiyoshi, T. (2020). Specificity and Continuity of Schizophrenia and Bipolar Disorder: Relation to 

Biomarkers. Curr Pharm Des, 26(2), 191-200. doi:10.2174/1381612825666191216153508 

Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y-F. (2016). DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. 

Neuroinformatics, 14(3), 339-351. doi:10.1007/s12021-016-9299-4 

Yang, A. C., Hong, C. J., Liou, Y. J., Huang, K. L., Huang, C. C., Liu, M.E., ... Tsai, S. J. (2015). Decreased resting-state brain activity complexity 

in schizophrenia characterized by both increased regularity and randomness. Hum Brain Mapp, 36(6), 2174-2186. 

doi:10.1002/hbm.22763 

Yang, A. C., Tsai, S.-J., Lin, C.-P., & Peng, C.-K. (2018). A Strategy to Reduce Bias of Entropy Estimates in Resting-State fMRI Signals. Frontiers in 

Neuroscience, 12(398). doi:10.3389/fnins.2018.00398 

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. Am 4 Hum Genet, 88(1), 

76-82. doi:10.1016/j.ajhg.2010.11.011 

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., ... Buckner, R. L. (2011). The organization of the 

human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125-1165. 

doi:10.1152/jn.00338.2011 

Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., & Weintraub, S. (2013). Il. NIH Toolbox Cognition Battery (CB): 

measuring executive function and attention. Monogr Soc Res Child Dev, 78(4), 16-33. doi:10.1111/mono.12032 

Zoller, D., Sandini, C., Karahanoglu, F. 1., Padula, M. C., Schaer, M., Eliez, S., & Van De Ville, D. (2019). Large-Scale Brain Network Dynamics 

Provide a Measure of Psychosis and Anxiety in 22q11.2 Deletion Syndrome. Biological Psychiatry: Cognitive Neuroscience and 

Neuroimaging, 4{10), 881-892. doi:https://doi.org/10.1016/j.bpsc.2019.04.004 


