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ABSTRACT (295 words) 

Background: The Predictive Approaches to Treatment Effect Heterogeneity (PATH) Statement 

provides guidance for using predictive modeling to identify differences (i.e., heterogeneity) in 

treatment effects (benefits and harms) among participants in randomized clinical trials (RCTs). It 

distinguished risk modeling, which uses a multivariable model to predict risk of trial outcome(s) 

and then examines treatment effects within strata of predicted risk, from effect modeling, which 

predicts trial outcomes using models that include treatment, individual participant characteristics 

and interactions of treatment with selected characteristics.  

Purpose:  To describe studies of heterogeneous treatment effects (HTE) that use predictive 

modeling in RCT data and cite the PATH Statement, 

Data Sources:  The Cited By functions in PubMed, Google Scholar, Web of Science and 

SCOPUS databases (Jan 7, 2020 - June 5, 2023). 

Study Selection:  42 reports presenting 45 predictive models. 

Data Extraction: Double review with adjudication to identify risk and effect modeling and 

examine consistency with Statement consensus statements. Credibility of HTE findings was 

assessed using criteria adapted from the Instrument to assess Credibility of Effect Modification 

Analyses (ICEMAN). Clinical importance of credible HTE findings was also assessed.  

Data Synthesis:  The numbers of reports, especially risk modeling reports, increased year-on-

year. Consistency with consensus statements was high, except for two: only 15 of 32 studies with 

positive overall findings included a risk model; and most effect models explored many candidate 

covariates with little prior evidence for effect modification. Risk modeling was more likely than 

effect modeling to identify both credible HTE (14/19 vs 5/26) and clinically important HTE 

(10/19 vs 4/26).   

Limitations: Risk of reviewer bias: reviewers assessing credibility and clinical importance were 

not blinded to adherence to PATH recommendations.  
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Conclusions: The PATH Statement appears to be influencing research practice. Risk modeling 

often uncovered clinically important HTE; effect modeling was more often exploratory. 
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INTRODUCTION 

Findings from randomized controlled trials (RCTs) have limitations for patients making personal 

treatment decisions. (1-6) RCTs are usually planned and sized to estimate overall or average 

treatment effects in trial populations. Even in very positive RCTs, some patients do not benefit 

from the study treatment, and some experience adverse effects of treatment. Patients have many 

characteristics that might influence their own likelihood or “risk” for study outcomes or for 

experiencing either benefit or adverse effects from the treatment.  

Until recently, guidance for identifying possible differences, or heterogeneity, of treatment 

effects (HTE) among RCT participants (1,7-10) has focused on considering one characteristic at 

a time, testing hypotheses for “effect modification” or statistical interaction of the characteristic 

with treatment. Analyses test whether treatment effects differ between patient subgroups, such as 

men vs. women or persons with vs. without diabetes. Relative treatment effects (risk, odds, or 

hazard ratios) are usually compared. These subgroup comparisons are almost always 

underpowered for detecting interactions in RCTs populations, leading to false negative findings. 

At the same time, if many subgroups with low prior probabilities for effect modification are 

explored, chances for false positive findings are also high. Thus, guidelines have consistently 

recommended limiting the number of subgroups examined, ideally to those with prior evidence 

or strong biologic or clinical rationale for HTE and using caution in interpreting apparent 

interactions or applying findings to clinical practice. A fundamental limitation of “one-variable-

at-a-time” subgroup analyses is that they do not provide a single treatment effect prediction for 

an individual because individuals simultaneously belong to multiple subgroups that can vary in 

whether or how they appear to benefit. 

Both patient-centered outcomes research (11) and precision medicine (12) have heightened 

interest in identifying important HTE to improve individualized clinical decision-making. The 

authorizing legislation (13) for the Patient-Centered Outcomes Research Institute (PCORI) 
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explicitly instructed PCORI to require awardees to look for individual differences in the 

effectiveness of health care treatments and services. 

In 2018, an expert panel funded by PCORI described a new approach to HTE   analyses. The 

Predictive Approaches to Treatment Heterogeneity (PATH) Statement (14,15), proposed 

predictive modeling for identifying clinically important HTE. The Predictive Approaches to 

Treatment Heterogeneity (PATH) Statement (14,15), proposed predictive modeling for 

identifying clinically important HTE. Predictive modeling accounts for the effects of multiple 

patient attributes (independent variables) on trial outcomes simultaneously and can produce 

individualized predictions of potential benefits and risks of study treatments .The Statement 

emphasized that important HTE can be seen on the absolute as well as relative scales (i.e., as 

variation among patients in treatment-related differences in outcomes as well as ratios) and that 

absolute treatment effects are more useful than relative effects for clinical decision-making.   

The PATH Statement distinguished two approaches to predictive modeling. “Risk modeling” 

focuses on one potential effect modifier: the individual’s risk (or probability) of experiencing an 

outcome (usually the trial’s primary outcome). (16)  Multiple baseline characteristics are 

incorporated into models predicting risk for the outcome and a risk score is generated for each 

participant. In a second step, treatment effects are examined across strata (e.g. by quartiles) of 

predicted risk. The Statement encouraged use of previously developed, validated prediction 

models when available and appropriate to the RCT population, but also suggested that if an 

appropriate model is not available, one can be developed internally, using observed study 

outcomes, covariates measured at baseline and all participants regardless of treatment 

assignment.   

Risk modeling has both a mathematical and an empirical rationale in evaluating possible HTE. It 

builds on the clinical intuition that patients at greater risk for study outcome(s) have more to gain 
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from a beneficial treatment. Mathematically, baseline risk is linked to the absolute treatment 

effect as follows:  

                                                 ARR = CER (1-RR)                                                (1)   

For any value of relative treatment effect, or relative risk reduction (1 – RR), the absolute risk 

reduction (ARR) increases as baseline risk (the control event rate, CER) increases. This 

relationship has been called “risk magnification,” (17) but is more accurately a “benefit 

magnification” when the overall treatment effect is beneficial. Implicit in Equation 1 and the 

concept of benefit magnification is the assumption that the relative treatment effect (1-RR) is 

constant across baseline risk. Clinical guidelines and disease management strategies also make 

this assumption in recommending that persons at greater risk be treated first or more 

aggressively. In re-analyses of 14 RCTs with positive results, (18) 13 suggested benefit 

magnification, but in the 14th, (19), a significant interaction of baseline risk and treatment effect 

was found. Risk modeling allows for testing this assumption by modeling study outcomes as a 

function of the risk score, treatment assignment, and a statistical interaction between the two. 

Findings that relative treatment effects vary significantly across baseline risk could markedly 

change individual treatment recommendations.   

In the second approach, “effect modeling”, a model predicting the trial’s outcome is developed 

within the RCT data and includes independent variables for treatment assignment, individual 

patient characteristics and interactions of treatment with selected characteristics. This allows 

direct estimation of the predicted treatment effect for individual participants. The Statement 

recognized the more exploratory or “data-driven” nature of most effect modeling and extended 

the general cautions of earlier guidelines, urging that only candidate treatment interaction terms 

with strong pre-existing evidence for HTE be included. It recommended use of statistical 

methods that penalize or “shrink” coefficient estimates to correct for over-fitting and urged 

caution in interpreting findings. The Statement also recognized the emergence and potential 
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importance of newer data-driven machine-learning approaches to effect modeling for exploring 

more complex multi-level interactions among multiple variables but suggested that this field is 

not yet mature enough to justify specific recommendations or approaches.  

This review evaluates the Statement’s impact following the standard methodology for scoping 

reviews (20). We review reports that have appeared since its publication, cited it and presented 

predictive models of potential HTE using RCT data. We assess consistency of analyses with the 

Statement’s Consensus Criteria (Supplement, Boxes A, B, D) and determine whether authors 

claimed that HTE was present, on either relative or absolute scales. We adapted criteria of the 

Instrument to assess Credibility of Effect Modification Analyses (ICEMAN) (21) to determine 

whether claims were credible and, if so, whether the HTE appeared to be clinically important, 

which the Statement defined as variation across patients in the treatment effect sufficient to span 

clinically defined decision thresholds, supporting differing treatment recommendations for 

patient subgroups. 

 

METHODS:  

Identification of Reports for Inclusion. Using the Cited By functions in PubMed, Google 

Scholar, Web of Science and the SCOPUS database, we sought reports appearing after the 

Statement’s publication (January 7, 2020) through June 5, 2023 that presented analyses or re-

analyses of data from RCTs using multivariable predictive modeling to identify HTE. Restricting 

the search to articles citing the Statement allows the assumption that authors were aware of its 

concepts and recommendations. The sources other than PubMed allowed inclusion of non-peer-

reviewed reports posted on pre-print archives as well as dissertations posted on institutional 

websites.  

A total of 211 citations were identified (Figure 1). Fifty-eight (22-79) involved analysis or re-

analysis of data from one or more RCTs. In three instances, we combined two publications from 
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the same authors and trial(s) (35-40). Thirteen reports (22-34) were excluded because they did 

not present a predictive model as defined by the Statement. Reasons for exclusion are presented 

in Supplement Table S1. 

Review of Predictive Model Reports. Variables collected during review and coding instructions 

are presented in Supplemental Tables S2 and S3, respectively. Features describing source 

RCT(s) were collected by the lead author (JS)., including 4 features the Statement suggested 

make risk modeling particularly likely to be of value for identifying clinically important HTE 

(Box A and Table S4 in Supplement). All aspects of analyses and findings for HTE were doubly 

reviewed by the lead author and one co-author (BF,DK,CM). An initial “learning” set of six 

reports was reviewed, discussed and resolved by all study co-authors. Thereafter, co-reviewers 

discussed and resolved initial disagreements. 

Review determined whether a report used risk modeling, effect modeling or both. Effect models 

were further classified into those using regression methods (e.g., ordinary least squares, logistic, 

proportional hazards) and those that used more flexible, non-parametric data-driven machine-

learning algorithms (e.g., 80-83). 

Consistency with PATH Statement Criteria and Considerations. The Statement offered 10 

guidance criteria for risk modeling (Supplement, Box B). The first recommended that risk 

modeling be conducted whenever an RCT had a positive overall result. Seven additional criteria 

were assessed, including using an external risk score (if available), including both treatment arms 

rather than only the control arm if developing the risk model internally; pre-specifying the 

analytic plan, including cut points for subgrouping of risk scores, before analyses; reporting risk 

model performance metrics (i.e., discrimination and calibration) when applied to the RCT 

population; presenting risk score distributions separately by treatment arm; reporting both 

absolute and relative effect sizes when reporting risk-stratified treatment effects; and reporting 
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important adverse treatment effects by risk stratum when present. One remaining criterion could 

not be assessed at review and one was not a clearcut recommendation (see Supplement, Box B).   

For effect models, consistency with four Statement consensus criteria (Supplement, Box D) was 

recorded. These included limiting model covariates to those with strong prior evidence for effect 

modification; taking steps to reduce risks of model overfitting by applying 

penalization/regularization procedures to model coefficients (e.g., least absolute shrinkage and 

election operator (LASSO) (84), penalized ridge regression (85), elastic net regularization (86)) 

and/or using internal cross-validation; validating final model performance in a dataset external to 

the population in which it was developed (credit was given for using either an entirely distinct 

RCT dataset or a non-random subset of the original population selected before analyses on the 

basis of either geography (e.g., trial sites) or time of enrollment); and not relying solely on 

metrics intended for evaluating risk prediction when evaluating the performance of treatment 

effect models. In addition, we noted whether authors evaluated model performance in terms of 

predicting patient-specific treatment effects, including use of recently developed performance 

metrics for this purpose (e.g., 87-89). 

 

Assessment of Credible and Clinically Important HTE. For reports that claimed to have identified 

HTE on either the absolute or relative scale, we assessed the credibility of HTE by adapting the 

ICEMAN criteria for RCTs (21,90). Although these criteria were developed for assessing 

credibility of findings from one-at-a-time subgroup analyses of interactions, three of the five 

apply readily to multivariable predictive modeling. These include 1) whether or not the number 

of interactions tested is small (three or fewer); 2) whether interactions tested are limited to 

covariates for which prior evidence of possible effect modification exists; and 3) whether 

arbitrary or data-driven cut-points are avoided in analyzing possible treatment interactions with 

continuous covariates.  
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Each ICEMAN criterion (90) rates compliance from 1 to 4 (definitely not, probably not, 

probably and definitely compliant). If all criteria are scored as probably or definitely compliant, 

credibility of HTE is rated as “high”. If at least 2 criteria are scored as definitely not compliant or 

if all 3 are scored as probably not compliant or worse, credibility is rated as “very low” or “low”, 

respectively. Remaining reports are rated as either “low” or “moderate”, using reviewer 

discretion with guidance from the ICEMAN manual considering the quality of the methods 

employed and whether statistical tests, when present, supported a hypothesis of HTE. High or 

moderate ratings were classified as credible HTE for this review.  

Two ICEMAN criteria were not readily applicable to predictive modeling. The criterion that a 

statistical test for interaction be performed and highly significant, was not always applicable. In 

risk modeling, important HTE could be identified on the absolute scale even if testing for 

interaction on the relative scale was null or not performed. In effect modeling, multiple possible 

interactions were usually tested and results for specific interactions were often not reported. 

When present, results of statistical tests for interaction or overall HTE were considered and may 

have weighed in differentiating between low and moderate credibility. The fifth criterion, that 

authors pre-specify direction of the interaction, was not considered feasible in predictive 

modeling, given the potentially complex interactions of multiple covariates with each other and 

with treatment.  

Reviewers assessed reports of credible HTE for clinical importance by determining whether 

observed differences in size and direction of absolute treatment effect between subgroups 

supported different treatment recommendations.  An additional consideration was whether 

findings for all outcomes studied, including adverse effects of treatment, were consistent in 

identifying preferred treatments, or whether they conflicted.  

 
 
Results 
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General Description. The 42 reports (35-79) included 35 peer-reviewed publications, 4 postings 

on pre-print archives, and 3 dissertations. Five appeared in 2020, 11 in 2021, 13 in 2022 and 13 

in the first five months of 2023. Among the 42, 25 were re-analyses of single RCTs, 14 were 

individual patient data meta-analyses (IPDMAs) of two or more RCTs, and three were initial 

reports from single RCTs that included HTE analyses.  Forty-one reports examined HTE for a 

clinical treatment and one (54) evaluated behavioral interventions to boost educational 

performance among university students. A total of 19 risk models and 26 effect models were 

reported, with three reports presenting both risk and effect models (49,73,75).  

Reviewer Agreement. After excluding six reports (presenting six effect models and one 

risk model) used for training reviewers, initial between-reviewer disagreement rates for doubly-

reviewed items in 36 reports ranged from 0 to 47%, with an overall average of 17.4% (details, 

Supplement Table S2). Disagreements were resolved with discussion. Items with higher levels of 

initial disagreement included both the credibility and clinical importance of claimed HTE, 

especially for risk models.    

Risk Models. Risk modeling appeared with increasing frequency over time, with six 

appearing during 2020-21 and an additional 13 found in 2022 and the first five months of 2023. 

Consistency with Statement criteria (Table 1) was above 65% for all but three criteria. Slightly 

fewer than half of reports with positive findings included a risk model. External prediction 

models were employed in only eight of 19 analyses, possibly because an appropriate validated 

model was not available; and risk score distributions were presented separately by trial arm in 

only 12 reports.   

Study authors claimed findings of HTE in 15 risk modeling reports (Figure 2). For six, 

(49,60,64,71,75,77) heterogeneity was found on the absolute but not the relative scale (i.e., 

benefit magnification) and for nine (36,38,43,48,50,54,58,68,73), heterogeneity was also found 

on the relative scale (i.e., relative treatment effects also varied across levels of baseline risk). The 
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four remaining reports (56,57,61,76) did not find clear overall treatment effects and none 

claimed HTE on either scale. Risk models generally scored highly on the three ICEMAN criteria 

for credibility of HTE. They always involved a single effect modifier (the baseline risk score); 

those finding benefit magnification had strong prior theoretical and empirical reasons (18) to 

expect such HTE; and all models used pre-specified rather than data-driven cut-points to define 

risk score subgroups.   

We scored all risk models finding benefit magnification and eight of nine that found HTE on a 

relative scale as credible HTE. Four of these eight found that relative as well as absolute 

treatment effects were greater in individuals at higher risk for experiencing trial outcomes. 

(38,43,50,68) In the remaining four (36,48,58,73), those at greatest risk showed no evidence of 

benefit. In two (36,58), both relative and absolute effects of treatment were greatest for 

individuals in the middle of the risk distribution, and in two (48,73), only those at lower risk 

experienced a treatment benefit. In the single report that was not found to be credible, multiple 

treatment-by-risk interactions were tested across a variety of outcomes and findings were 

inconsistent. (54)     

Effect Models.  The 26 effect model analyses used diverse types of models and analytic 

strategies. Nine analyses used regression methods; the remainder employed various data-driven 

machine-learning approaches. Machine-learning approaches became more frequent over time 

(5/11 reports in 2020-21 vs. 12/15 reports in 2022-23).  

Few effect model reports (41,44,59) restricted analyses to potential effect modifiers with strong 

prior evidence for effect modification (Table 3). The majority explored many candidate effect 

modifiers with little prior evidence. Most used recommended steps to reduce risks of over-fitting, 

including coefficient shrinkage methods and internal cross-validation. Six (40,41,44,59,69,79) 

applied effect model findings to external datasets for validation. Only four studies (52,75,78,79) 

used performance metrics designed for risk prediction without also reporting performance for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.06.24306774doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306774
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

predicting treatment effects. In all, eight effect modeling reports (41,42,44,49,59,62,69,74) 

specifically assessed model performance for predicting individual treatment effects.   

Authors claimed HTE in 20 effect modeling reports (Figure 2). Most failed to meet the adapted 

ICEMAN credibility criteria because they explored many variables with little prior evidence for 

effect modification. Many also reported data-driven rather than pre-specified cut points for 

continuous predictors. However, five of the 20 were judged to present credible HTE. These 

included three (41,44,59) that restricted analyses to small numbers of pre-specified effect 

modifiers with strong prior evidence. These, along with two other reports, (40,97) also validated 

model predictions of individual treatment effect in external RCT datasets. Because these 

validation analyses tested only effect modifiers with prior evidence and pre-specified cut points 

(i.e., the evidence and cut points from derivation analyses), they scored highly for credibility of 

HTE. Four of these used regression models; (40,41,44,59) the fifth (69) used a causal forest 

machine-learning algorithm. (82) 

Assessment for Clinically Important HTE.  Reviewers judged findings from 14 reports 

with credible HTE to also be clinically important (Figure 2, Table 3), including 10 of 14 risk 

modeling analyses and four of five effect modeling reports. Table 3 gives the decision thresholds 

for important subgroup differences in treatment recommendations. Reasons for concluding that 

credible HTE was not clinically important included lack of clarity in presentation of findings, 

(75) failure to identify a threshold for differing treatment choices, (64) conflicting findings 

across outcomes, (77) failure to add clinical value to previous risk-based selection strategies, 

(68) and concurrence with authors on the need for additional investigation, possibly testing 

additional potential effect modifiers. (44)    

 

Discussion  
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Popular approaches to evidence-based medicine have encouraged reliance on average treatment 

effects from RCTs to support decision-making by individual patients, (91) despite appreciation 

of the limitations of this approach. Herein, we reviewed early efforts in applying predictive 

modeling within RCTs to deliver more patient-centered evidence for decision making. During 

the first three years, five months following publication of the PATH Statement, we identified 42 

reports that cited the Statement and presented predictive modeling across a range of clinical 

conditions and types of interventions. Fully one third of these reports found HTE that met 

adapted ICEMAN criteria for credibility and the PATH definition for clinical importance, 

providing strong evidence that recommendations should vary among patients facing the same 

treatment choices.   

The Statement recommended that risk modeling be conducted when RCTs report positive overall 

results. Risk modeling was much more likely than effect modeling to produce findings that met 

criteria for credible HTE because risk modeling tests only a single effect modifier, one with 

strong prior evidence and a theoretical rationale for effect modification. Nevertheless, fewer than 

half of reports from positive RCTs presented risk modeling. Many effect modeling reports had 

features the Statement indicated would make risk-modeling a promising place to begin 

(Supplement, Box A, Table S4), suggesting that a simpler approach could have been more 

informative.   

Contrary to assumptions that relative treatments effects are constant across levels of baseline 

risk, the risk modeling studies reviewed here more often found that relative as well as treatment 

effects varied importantly. In one report, (73) persons at opposite ends of the predicted risk range 

experienced opposite effects of treatment. In others, relative effects were greater in or completely 

confined to persons at higher (38,43,50,68) or lower ends (48) of predicted risk, and in two, 

(36,58) maximal benefit was found for those in the mid-range. This U-shaped, or “sweet spot,” 

pattern (36) has also been observed elsewhere. (92)   
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Explanations for such variation in relative treatment effects across baseline risk are not always 

obvious. Risk scores may incorporate traits that are both strong predictors of study outcomes and 

also potent relative treatment effect modifiers, either directly or as proxies for unmeasured 

attributes. In a study of therapeutic-dose heparin vs. usual care pharmacologic 

thromboprophylaxis for patients hospitalized with COVID-19, (73) a better initial respiratory 

status was the most potent predictor of good clinical outcomes. When included in the risk model, 

respiratory status dominated the risk score. It had also proved to be a strong modifier of 

treatment effect in earlier subgroup analyses. Persons with low risk scores (better baseline 

respiratory status) were then found to be the only subgroup that benefited from heparin 

treatment. In three RCTs (36,48,58) where incidence of study outcomes was particularly high 

(range 27-61%), no benefit was observed for those in the highest stratum of predicted risk. For 

these extremely high-risk individuals, models may have captured attributes whose presence 

reflected irreversible disease or competing causes of the outcome that would make treatment 

futile. These observations of risk – treatment interactions and others noted elsewhere (93) 

demonstrate that assumptions of simple benefit magnification are not well-founded and should 

be tested routinely. 

The number of effect modeling analyses and the increasing use of exploratory machine-learning 

methods over time suggest continuing enthusiasm for individualizing treatment 

recommendations beyond risk stratification. Several authors motivated their approaches by 

pointing to limitations of risk modeling. (47,65,77) Although risk scores can create patient 

subgroups well-matched on risk, subgroup members may be heterogeneous for the specific 

characteristics that contributed to their risk scores and therefore potentially heterogeneous in 

terms of their treatment response. (65)  

Five effect models did find credible HTE, either because they adhered to Statement 

recommendations to include only effect modifiers with strong prior evidence or because they 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.06.24306774doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306774
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

took the added step of validating their HTE findings in external populations. Many additional 

reports provided evidence suggesting multivariable HTE that now deserves such external 

validation.  

Findings from several effect modeling reports revealed the uncertainty that can remain after 

initial findings suggest HTE and reinforce the necessity of validating such findings in other 

populations before they are accepted as credible. Two reports (47,74) explored data from the 

SPRINT and Action to Control Cardiovascular Risk in Diabetes (ACCORD) trials using causal 

forest algorithms. One (74) found evidence of HTE, the other did not. In two reports (52,70) 

from a trial of dabigatran vs. warfarin for stroke prevention in atrial fibrillation, one model (52) 

suggested interactions of three covariates with treatment choice and significant HTE; the second 

report, (70) using four machine-learning algorithms applied to the same RCT data, found no 

evidence for HTE. Sinha et al (51) applied four widely used machine-learning algorithms to 

RCTs of treatments for acute respiratory distress syndrome finding inconsistent evidence for 

HTE, not only between algorithms but within algorithms when random initiation seeds were 

altered. Both authors (51,70) acknowledged the challenges from false signals of effect 

modification in exploratory analyses.  

As the Statement suggests, additional steps will often be needed before implementing HTE 

findings from predictive models into clinical practice. Prediction models used in risk modeling, 

especially those developed internally, may not yet generalize well to clinical populations with 

differing risk distributions. The performance of all models for predicting treatment effects may 

need further validation in differing populations. Ultimately, it will be critical to demonstrate that 

clinical outcomes improve when treatment recommendations are personalized using predictive 

modeling.  

There are learnings from this review for funding, conducting, and publishing clinical research. 

The value of external validation, especially for effect models, points to the fundamental 
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importance of sharing data from completed RCTs. In the absence of additional appropriate 

RCTs, large well-characterized observational cohorts with treatment and covariate data could 

also be valuable both for validation (94) as well as for developing and validating new, 

representative risk prediction models. In planning and funding new RCTs, the potential existence 

of appropriate external risk models should be considered and data collection should include 

baseline data necessary for classifying individual risk of study outcomes. 

In recent years, guidelines for reporting clinical trials findings have recognized the importance of 

presenting absolute as well as relative measures of the overall treatment benefit or harm because 

of the greater relevance of absolute measures to clinical decision-making. (95-97)  We believe 

the present review supports consideration of an additional editorial requirement that initial 

reports of RCTs or IPDMA’s routinely present treatment effects in relation to baseline risk when 

overall results are positive.   

 

Limitations.  

There is inherent subjectivity in assessing credibility and importance of HTE. The close 

association of two authors (DK, JS) with production of the PATH statement should be kept in 

mind.  

 

Conclusions. 

The PATH statement appears to be influencing research practice. Effect modeling holds promise 

for predicting individualized treatment effects but the need for external validation is a constraint. 

Risk modeling provides a more straightforward initial approach when overall trial findings are 

positive and often identifies clinically important HTE.  
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Table 1. Consistency with PATH Statement criteria for risk modeling (19 risk models presented) 

Recommendation Number Adherent / Number Eligible* 

1. Conduct a risk model analysis if the trial has 
positive overall results 

15/32 (47%)† 

2. Apply an externally developed risk model to 
stratify the trial population, if available  

8/19 (42%) 

3. If developing an internal model, avoid using 
control group only 

8/11 (73%)‡ 

4. Pre-specify plan for applying/developing the 
model 

14/19 (74%) 

5. Report metrics for model performance on trial 
population 

15/19 (70%) 

6. Report distribution of predicted risk/risk score 
for each arm of trial 

12/19 63%) 

7. Report treatment effects in both relative and 
absolute terms across risk strata 

16/19 (84%) 

8. If there are important treatment-related harms 
(n=9), report these by risk stratum  

6/9 (67%)§ 

• Several recommendations apply only to subset of reports, as indicated below.  
†    Denominator includes all reports from RCTs with positive overall findings, whether a risk model 

was presented or not. Numerator excludes 3 risk models presented in trials with negative overall 
findings. 

‡   Denominator excludes the eight reports that assigned risk based on external prediction models 
§   Denominator includes only those RCTs in which at least one treatment carried risks of important 

harms. 
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Table 2.  Consistency with PATH Statement criteria for effect modeling (26 effect models 
presented) 

Recommendation Number Adherent / Number Eligible 

1. Incorporate highly credible effect modifiers into 
prediction models using multiplicative 
interaction terms 

3/26 (12%) 

2. Avoid regression models that do not take into 
account model complexity  

a. Use shrinkage methods  21/26 (81%) 

b. Use internal validation 22/26 (85%) 

c. Use external validation 6/26 (23%) 

3. Avoid evaluations of treatment effect model 
performance that use only conventional metrics 
for prediction of risk 

 
 

22/26 (85%) 
 
 

4. Report model performance in terms of ability to 
predict treatment effect 

8/26 (31%) 
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Table 3. Studies found to have clinically important heterogeneity of treatment effects (HTE) 
 

RISK MODELS 

Ref Clinical 
Condition Outcome(s) Randomized 

Intervention (s) 
Overall RCT 

Findings  Methods Type of HTE 
Identified  

Clinically Important Subgroup 
Differences 

Kent et al50. Patent foramen 
ovale (PFO) - 

associated stroke 

Recurrent 
stroke 

Percutaneous PFO-
closure vs medical 

therapy  

Strong benefit in 
favor of PFO-

closure 
(aHR=0.41) 

IPD meta-
analysis of 6 

trials;  
external risk 

model 

Relative as well as 
absolute effect variation, 
p=0.02 for multiplicative 

interaction 

Identified a subgroup comprising 15% 
of trial population unlikely to have had 
a PFO-related stroke, who received no 
benefit from PFO-closure and were at 

higher risk of procedure-related 
complications.  

Kumar et 
al.43 

Ambulatory 
patients with 

cancer 

Venous 
thrombo-
embolism 

(VTE) 

Apixaban vs 
placebo  

Strong benefit in 
favor of 
apixaban 

(aHR=0.49) 

Single RCT re-
analysis; external 

risk model 

Probable relative as well 
as absolute effect 
variation; test for 

multiplicative interaction 
not reported  

Patients with a baseline risk for VTE < 
8%, comprising 67% of the trial 

population, derived no benefit from 
apixaban, but experienced an excess of 

overall bleeding events on treatment 
with apixaban  

Bress et 
al.49 

Systolic 
hypertension and 

increased 
cardiovascular 

risk  

Cardiovascular 
disease events; 

all-cause 
mortality 

Intensive vs 
standard systolic 
blood pressure 

control 

Strong benefit in 
favor of 
intensive 

systolic control 
(HR=0.75 and 

0.73, 
respectively 

Single RCT re-
analysis; internal 

risk model 

Absolute but not relative 
effect variation (benefit 

magnification) 

Patients in highest risk quartile clearly 
benefit from intensive systolic BP 

control with acceptable adverse event 
rates; those in lowest risk quartile can 

expect little benefit from intensive 
control, despite increased costs, burden 

and adverse effects. 

Redelmeier 
et al.35,36 

Congestive 
Heart Failure 

All-cause 
mortality 

Implantable 
defibrillator (ICD) 

vs medical 
management 

Strong benefit in 
favor of ICD 
(OR=0.69) 

Single RCT re-
analysis;  

internal risk 
model 

Relative as well as 
absolute effect variation, 

p<0.001 for 
multiplicative interaction 

Mortality Benefit of ICD implantation 
largely confined to patients in 

midrange (3rd and 4th quintiles) of 
predicted risk, i.e., a “sweet spot” 

Taylor et 
al.58 

Hospitalized 
Patients with 

Sepsis 

30-day 
mortality and 
readmission 

Nurse-navigator led 
Sepsis Transition 

and Recovery 
(STAR) 

intervention vs 
usual care 

Moderate benefit 
in favor of the 
intervention 
(aOR=0.80) 

Single RCT re-
analysis; external 

risk model 

Relative as well as 
absolute effect variation; 
95% confidence intervals 
for quartile-specific OR’s 

do not overlap  

Mortality and re-admission benefit of 
the intervention confined to patients in 
the middle two quartiles of predicted 

risk lowest (i.e., “sweet spot”). 
Intervention is associated with greater 

costs. 
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Ref Clinical 
Condition Outcome(s) Randomized 

Interventions 
Overall RCT 

Findings Methods Type of HTE 
Identified 

Clinically Important Subgroup 
Differences 

Chalkou et 
al.37,38 

Multiple 
Sclerosis 

Relapse of MS 3 immunologic 
therapies 

(DF: Dimethyl 
fumarate, GA: 

Glatiramer acetate, 
N: Natalizumab) vs 

placebo 

Strong benefit in 
favor of 

Natalizumab 
(OR  vs placebo:  

DF: 043 
GA: 0.53 

    N: 0.28) 
 

IPDMA – 3 
trials, using 

network meta-
analysis; external 

risk model 

Probable relative as well 
as absolute effect 
variation; test for 

multiplicative interaction 
not reported 

Patients with baseline risk < 30%,  
comprising 25% of trial population, 

had negligible added benefit of 
natalizumab vs. dimethyl fumarate. 

Natalizumab is associated with rare but 
possibly fatal complication, 

progressive multifocal 
leukoencephalopathy (PML). 

Rysavy et 
al.48 

Extreme  
Prematurity 

Broncho-
pulmonary 
dysplasia 

Vitamin A vs sham 
injection 

Weak benefit in 
favor of vitamin 

A (RR=0.89) 

Single RCT re-
analysis; external 

risk model 

Relative as well as 
absolute effect variation, 
p=0.03 for multiplicative 

interaction 

Benefits of Vitamin A therapy largely 
confined to lowest 50% of predicted 
risk; no evidence for benefit among 

infants in highest quarter of predicted 
risk. 

Gencer et 
al.60 

Atrial 
Fibrillation 

Net composite 
of stroke/ 
systemic 

embolism, 
major bleed, 

all-cause death 

Lower (LDER) vs 
higher (HDER) dose 

regimens of 
edoxaban vs 

warfarin 

Moderate benefit 
for either dose of 

edoxaban vs 
warfarin  

(HR=0.83, 0.89 
for 

LDER,HDER) 

Single RCT re-
analysis;  

risk stratification 
based on count of 
number of high-

risk features 

Absolute effect variation 
(p=0.001) but not relative 
effect variation (p=0.065 

for multiplicative 
interaction) (benefit 

magnification) 

Absolute benefits of either dose of 
edoxaban vs warfarin increase for both 
stroke/embolism and major bleeding 
endpoints as number of risk factors 

increases. Negligible benefits in those 
with 0-1 risk factors may not justify 
switching in those well managed on 

warfarin.  
Trinks-

Roerdink et 
al 71 

Atrial 
Fibrillation 

All-cause 
mortality 

Integrated atrial 
fibrillation care vs. 

usual care 

Strong benefit of 
integrated care 

(aHR=0.55) 

Single RCT re-
analysis, external 

risk model 

Absolute but no relative 
effect variation (p=0.93 

for multiplicative 
interaction) (benefit 

magnification) 

Large benefit for persons in highest 
25% of risk distribution; minimal 

benefit despite increased costs in lower 
75%. 

Goligher et 
al 73 

Hospitalized 
COVID-19 
infection 

Organ-support 
free days; 
hospital 
survival  

Therapeutic-dose 
heparin vs usual 
pharmacologic 

thromboprophylaixi
s 

No benefit in 
overall 

population (OR 
for benefit 1.05) 

 

IPDMA – 3 
trials; re-
analysis; 
subgroup 

analyses, internal 
risk model and  
effect model) 

Relative as well as 
absolute effect variation, 
interaction not tested for 
risk model; p=0.05 for 

non-homogeneity of risk 
differences by decile of 

predicted risk differences 
in effect model   

Clear benefit for 60% of persons in 
lowest deciles of risk score (not 

requiring organ support at baseline); 
apparent harm for those needing 

intensive care at baseline (highest 3 
deciles of risk score); similar HTE 

suggested in subgroup analyses and the 
effect model 

EFFECT MODELS 

Ref Clinical Outcome(s) Randomized Overall RCT Method Type of HTE Clinically Important Subgroup 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 6, 2024. 
; 

https://doi.org/10.1101/2024.05.06.24306774
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.05.06.24306774
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Condition Intervention (s) Findings Identified  Differences 
Dennis et 

al.59 
Type 2 diabetes Hb A1c at 6 

mos post-
initiation 

Initiation of SGLT-
2 inhibitors vs DPP-
4 inhibitor as add-

on therapy 

Strong benefit in 
favor of SGLT-2 

inhibitor  

Model built in 
large obs. cohort; 
linear regression; 

external 
validation in 

multiple RCTs. 

Clear differences in 
absolute treatment 

effects; relative effect 
differences not contrasted 

statistically 

Predictive model identifies a large 
subgroup, comprising 60% of trial 

participants, who clearly do better if 
SGLT-2 inhibitor is initiated (vs DPP-
4 inhibitor); a small group (5%) appear 

to do better if a DPP-4 inhibitor is 
initiated.  

Takahashi 
et al.41 

De-novo three-
vessel and left 
main coronary 
artery disease 

5-year major 
adverse cardiac 
events (MACE) 
and 10-year all 

cause death 

Coronary artery 
bypass graft 
(CABG) vs 

percutaneous 
coronary 

intervention (PCI) 

Strong benefit in 
favor of CABG 

(HR10-year 

death=0.84;  
HR5-year adverse 

events=0.78) 

Single RCT-
reanalysis; Cox 

proportional 
hazazds 

regression; 
external 

validation in 
IPDMA of 3 

trials  

Multiplicative 
interactions of treatment 
with two effect model 
covariates (p=0.03 and 

0.04) 

Model identifies half of patients  who 
clearly benefit from CABG (vs PCI); 

and half in whom there is no 
expectation of greater benefit with the 
more invasive procedure for either 5-
year outcome (MACE) or 10-year all 

cause death. 

Seitz et al.69 Respiratory 
Distress 

Successful 
intubation on 

the first attempt 

Bougie vs Stylet Null (non-
significant 6.8 
percent point 
difference in 

favor of stylet) 

Single RCT re-
analysis; causal 
forest; external 

validation in non-
random subset 

Absolute and relative 
effect differences 

(p=0.02 for 
multiplicative interaction 

of treatment with 
predicted treatment 

effect)..  

Model identifies a quarter of patients in 
the validation cohort who clearly 
benefit from use of the stylet vs 

bougie; a quarter of patients with a 
possible marginally better result when 
bougie is used; with little difference in 

the remainder.   
Park et al40 

 
Hospitalized 

Covid Infection 
without 

mechanical 
ventilation at 
randomization 

Ordinal 
COVID-19 

clinical status 
scale 

Convalescent 
Plasma (CCP) vs 

control 

Null (no 
overall 

association 
between CCP 

and patient 
outcomes) 

IPDMA of 8 
trials; 

proportional odds 
model; external 

validation in 
multiple datasets. 

Relative treatment effect 
differences demonstrated 

with non-overlapping 
95% confidence intervals 

Patients were successfully categorized 
by the model into 3 roughly equal-

sized subgroups, one with high benefit 
from CCP, one with modest benefit 

from CCP, and the third with modest 
harm from CCP. 
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FIGURE LEGENDS 
 
 

Figure 1.  Flow Diagram for identification and screening of all reports citing the PATH 
Statement and for exclusion of reports not meeting study criteria for presenting a predictive 
model of individual treatment effects from RCT data.  Abbreviations: RCT: randomized 
controlled trial; IPDMA: independent patient data meta-analysis. 
 
 
Figure 2.  Adjudicated results of review of all eligible reports for type of predictive modeling 
(risk or effect), for claims by authors of heterogeneity of treatment effects (HTE), for credibility 
of HTE (using adapted ICEMAN criteria), and for clinical importance of HTE found to be 
credible. 
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