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ABSTRACT  
 
Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. 
Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology 
in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living 
prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing 
levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and 
ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of 
inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, 
synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also 
found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these 
discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the 
human brain. 
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INTRODUCTION 
 
Post-transcriptional RNA modifications play important roles in complex functions of the central nervous system 
(CNS)1,2. The conversion of adenosine nucleosides to inosine (A-to-I) represents one of the most abundant RNA 
modifications catalogued in the human brain2-5. Inosine is recognized as guanosine (G) upon translation or 
sequencing, thus, the net effect of A-to-I editing is a post-transcriptional A-to-G transition. A family of three 
adenosine deaminases acting on RNA (ADAR) enzymes drive these conversions on RNA transcripts, which 
underlie diverse molecular functions. ADAR (ADAR1) exists in two isoforms, P110 and P150, both of which 
are responsible for A-to-I editing along endogenous long double-stranded RNA. Notably, only the P150 isoform 
is inducible by interferon, which leads to an upregulation of A-to-I editing activity and plays a crucial role in 
modulating innate immune responses6-8. ADAR2 (ADARB1) is expressed in the CNS and notably recognized 
for its role in editing protein-coding sequences, which results in the production of functionally diverse protein 
isoforms crucial for typical neurodevelopment9-11. ADAR2 is also capable of editing sites within SINE 
elements11. ADAR3 (ADARB2) is expressed exclusively in the brain but cannot catalyze A-to-I activity and is 
proposed to be a negative regulator of A-to-I editing12,13. In the mammalian brain, thousands of highly regulated 
A-to-I editing sites have been discovered across anatomical regions and cell types13-15 as well as neuronal 
maturation and brain development16-18. Aberrant regulation of A-to-I editing in the brain has also been linked to 
the etiology of several neurological disorders19-23, further underscoring the physiological significance of A-to-I 
editing in the CNS. Yet, as understanding of A-to-I editing in the CNS burgeons, it is important to acknowledge 
that these advancements are exclusively driven by studies in postmortem tissues. 
 
The brain is highly vulnerable to changes in blood flow and oxygen levels, and mammalian cells require oxygen 
to maintain cellular and tissue viability24. Shortly after death, intracellular acidosis and oedema elicit secondary 
injury to membranes and organelles, causing an irreversible cascade of apoptosis, necrosis and axonal damage. 
This is followed by activation of innate immune responses, leading to end-organ injury and wide-spread 
metabolic acidosis24-27, which could alter ADAR and A-to-I editing. Moreover, DNA is relatively stable over 
extended postmortem periods, RNA is much more chemically labile and sensitive28. To this end, we postulate 
that molecular responses to ischemic exposures, and the contribution of postmortem-induced innate immune 
responses, likely alter the landscape of A-to-I editing in postmortem brain tissues, skewing a comprehensive 
biological understanding of RNA editing in the CNS. Indeed, a supportive, initial report has suggested increased 
Alu editing in non-CNS postmortem tissues compared to tissues obtained from ventilator-dependent donors29. 
Given these considerations, it is imperative to underscore the significance of distinguishing between 
postmortem and living CNS tissues, particularly as RNA editing studies of the brain play an increasingly pivotal 
role in advancing our knowledge of brain aging and disease.  
 
To address this, the current study investigates the fundamental differences of A-to-I editing between 
postmortem and living human dorsolateral prefrontal cortex (DLPFC) tissues (Figure 1). We anchor our 
investigation around the state-of-the-art Living Brain Project30, whereby DLPFC tissues from living people 
were obtained during neurosurgical procedures for deep brain stimulation, an elective treatment for neurological 
illnesses. For comparison, a cohort of postmortem DLPFC tissues across three brain banks was assembled to 
match the living cohort to the extent possible for key demographic and clinical variables (see full cohort 
description in Supplemental Data 1). All samples underwent joint genomic data generation. We leveraged 
paired whole-genome sequencing (WGS) and bulk-tissue RNA-sequencing of the DLPFC from 164 living 
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participants, including 78 with unilateral biopsies and 86 with bilateral biopsies, as well as 233 partially 
matched postmortem tissues. A non-overlapping, independent collection of 31 living and 21 postmortem 
DLPFC tissues also underwent single-nuclei RNA-sequencing (snRNA-seq). Herein, we provide substantial 
evidence for significant differences in A-to-I editing profiles between postmortem and living human brain 
tissues, which are more evident in non-neuronal cell types (Figure 1). Our results underscore that while the 
investigation of fresh brain tissues can enhance understanding of RNA editing biology, they also provide 
missing context and support for the utility of postmortem brain tissues in A-to-I editing studies relevant to 
human brain health and disease.  

 
RESULTS 
 
Global Alu editing is elevated in postmortem prefrontal cortex 
 
Since most RNA editing occurs in Alu elements3-4, we first computed an Alu editing index (AEI) for each 
sample. The AEI is quantified by measuring the total number of edited adenosines over all adenosines with 
supporting RNA-sequencing read coverage in Alu elements across the entire transcriptome and is a metric of 
global Alu editing activity (see Materials and Methods) (Supplementary Table 1). A significant increase in the 
AEI was observed in postmortem relative to living DLPFC (p=4.3×10-75; Cohen’s d =2.88) (Figure 2A). A 
transcriptome-wide comparative analysis compared postmortem to living DLPFC and revealed that this shift 
was accompanied by heightened expression of ADAR (q-value=9.3×10-87), ADARB1 (q-value=3.5×10-32), and 
ADARB2 (q-value=2.5×10-21) in postmortem DLPFC (Figure 2B). Notably, ADAR was the 15th most 
differentially expressed gene in postmortem DLPFC and was strongly correlated with the AEI (r=0.65) (Figure 
S1). Next, a linear mixed model quantified the fraction of global Alu editing variance explained by known 
biological and technical factors. Differences between living and postmortem tissues explained the largest 
amount of Alu editing variability (~72%) (Figure 2C), while minimal variance was explained by other known 
factors, including differences by medical diagnosis (<0.5%), brain banks (<0.5%) and estimated neuronal cell 
type proportions (<0.5%) (Figure S2), extended postmortem interval (PMI; <0.5%) and RNA integrity (RIN; 
<0.5%). 
 
To further explore the possible influence of differences related to PMI and RNA degradation on Alu editing in 
living and postmortem tissues, two supporting analyses were conducted. First, the minimal effect of extended 
PMI on the AEI was validated by studying 2841 independent transcriptome samples across four large-scale 
postmortem brain consortia (GTEx project [n=1,129]; Mount Sinai Brain Bank [n=876], PsychENCODE 
[n=251]; BrainSpan [n=585]). These secondary postmortem analyses confirmed weak associations between 
PMI and the AEI (r2 = 0.006, r2 = 0.03, r2 = -0.007, r2 = -0.019 respectively) (Figure S3), indicating that 
elevated global Alu editing in postmortem tissue is not likely driven by extended PMI. Second, we measured A-
to-I editing dynamics using an existing molecular degradation assay of the human DLPFC31, whereby no 
significant changes in ADAR expression nor the AEI were observed throughout increasing degradation stages 
of the DLPFC (Figure S4). These results suggest that potential differences in PMI and RNA degradation do not 
fully account for the observed changes between postmortem and living DLPFC.  
 
We next replicated features of RNA editing across 206,568 single nuclei sequenced from a non-overlapping 
sample of 31 living and 21 postmortem DLPFC tissues (Supplemental Data 1). Pseudo-bulk snRNA-seq pools 
were used to confirm heighted global Alu editing levels (p=5.5×10-7) as well as increased mRNA expression per 
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cell for ADAR (p=0.01), ADARB1 (p=0.0004), and ADARB2 (p=0.02) in postmortem relative to living DLPFC 
(Figure S5A-B) (see Materials and Methods). Unsupervised dimensionality reduction applied to all data 
identified nine discrete cell type clusters (Figure 2D). Fewer oligodendrocytes were detected in postmortem 
DLPFC (OLI, p=1.8×10-7), while less excitatory neurons (EXC1, p=1.8×10-7) and inhibitory neurons (INT1, 
p=1.5×10-9) were detected in living DLPFC (Figure 2E). ADAR was ubiquitously expressed across all cellular 
populations, ADARB1 was expressed in a subset of inhibitory and excitatory neurons, and ADARB2 was 
uniquely expressed in oligodendrocytes and a small subset of inhibitory cells (Figure 2F). Pseudo-bulk pools 
were generated for each cell type per donor (Figure S5C) and used to compare the expression of ADAR 
enzymes and the AEI between living and postmortem DLPFC within each cellular population. Using this 
approach, most cell populations in postmortem DLPFC displayed significantly increased expression of ADAR, 
ADARB1 and ADARB2 (Figure 2G) together with an increased AEI relative to living DLPFC (Figure 2H). 
Notably, the largest cell type increases in global Alu editing in postmortem DLPFC occurred in microglia, 
endothelial cells (ENDO) and oligodendrocyte precursor cells (OPCs) (Figure 2H). These increases were 
concordant with increased expression of ADAR (r=0.31), ADARB1 (r=0.57) (Figure 2I) and less so ADARB2 
(r=0.09) (Figure S5F).  

 
Accurate detection of A-to-I sites in living and postmortem cortex 
 
To study individual sites underlying these global changes, we catalogued high-confidence RNA sites using two 
complementary site calling techniques followed by a series of comprehensive detection-based thresholds to 
safe-guard against false positives (see Materials and Methods). Here, a de novo caller was used to uncover 
high-quality RNA editing sites not already cataloged in existing databases, together with a supervised approach 
applied to three large lists of known sites (Figure S6A, Supplemental Data 1). A mean of 193,195 editing sites 
were detected per sample in living DLPFC and 295,343 sites were detected per sample across postmortem 
tissues. Importantly, these sites showed hallmark characteristics of ADAR-mediated RNA editing, as the 
majority of sites: (1) were A-to-I sites (∼93% living, ∼95% postmortem); (2) mapped to Alu elements (∼82% 
living, ∼83% postmortem) (Figure S6A); (3) were predominately known sites cataloged in editing databases 
(∼85% living, ∼84% postmortem) (Supplemental Data 1); (4) were sites with low editing levels (20-40%; 
Figure S6B); and (5) commonly mapped to introns and 3′ UTRs (Figure S6C) (Supplemental Data 1). 
Further, while site discovery was largely correlative with sequencing depth, no major differences in library 
depth were observed between living and postmortem DLPFC (Figure S6D-F), suggesting it is not a driver for 
the observed differences. Subsequent analyses examined exclusively A-to-I sites. 
 
Highly dynamic A-to-I editing and RNA recoding between living and postmortem DLPFC 
 
Two approaches probed RNA editing differences between living and postmortem DLPFC. First, analysis of A-
to-I sites detected at significantly different frequencies between postmortem and living DLPFC identified 
28,417 sites preferentially enriched in postmortem tissues and 1,436 sites enriched in living tissues, the majority 
in intronic regions (Figure S7A, Supplemental Data 2). Enrichment patterns were not explained by changes in 
gene expression levels (Figure S7B). Second, A-to-I sites with significantly different mean editing levels were 
queried between living and postmortem DLPFC, focusing analyses on 54,825 A-to-I sites found across all 
samples in this study. Principal component analysis (PCA) distinguished living from postmortem tissues based 
on editing levels for these sites and PC1 was strongly correlated with differences between these two groups 
(r=0.92, p=9.3×10−163) (Figure 3A). Statistical analysis identified differentially edited sites: 41,044 showed 
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higher editing in postmortem tissue (“postmortem-biased”) and 1,449 showed higher editing in living tissue 
(“living-biased”) (Figure 3B, Supplemental Data 2). Sites annotated as postmortem-biased were edited ~37% 
within the living DLPFC sample (Figure 3C). Both postmortem- and living-biased sites predominately mapped 
to non-coding regions, with a moderate enrichment of living-biased sites mapping to 3’UTRs and coding 
regions (Figure 3D). Overall, editing levels for these sites were most strongly correlated with increased 
expression of ADAR (mean r=0.29) in postmortem DLPFC followed by changes ADARB1 (mean r=0.18), with 
little effect explained by ADARB2 (mean r=0.05) (Figure 3E).  
 
A small fraction of differentially edited sites was cataloged as RNA recoding sites (~0.13%, n�=�58 sites), 
which introduce nonsynonymous substitutions in protein-coding regions (Figure 3F). Ranking these recoding 
sites by their effect sizes revealed that sites with the largest changes in editing levels between living and 
postmortem DLPFC typically exhibited high editing levels (>30%). This also confirmed that 14 out of the 27 
living-biased recoding sites were part of a collection of well-known functional sites on excitatory, inhibitory, 
and G-coupled protein receptors (e.g., CYFIP2, NOVA1, GABRA3, GRIA2)2. Living-biased recoding sites were 
also more strongly evolutionary conserved (phastCons) and mapped to genes with higher probability of being 
loss-of-function intolerant (pLI) relative to postmortem-biased recoding sites (p=0.002, p=0.002, respectively) 
(Figure 3G), underscoring their physiological relevance.  
 
Annotating dynamically regulated sites across cellular, developmental and disease scales 
 
We next sought to annotate the cellular context as well as the developmental and disease relevance of the 
differentially regulated sites between living and postmortem DLPFC. Given the scarcity of known cell-specific 
A-to-I sites in the brain and the technical limitations of quantifying cell-specific sites from snRNA-seq data 
(Figure S8, see also13), we leveraged an independent resource of deeply sequenced neuronal and non-neuronal 
nuclei isolated from ten biological replicates across five postmortem cortical regions32. These data were 
subjected to RNA editing calling methods described above. In doing so, we generated an expanded catalogue of 
cell-specific RNA editing sites across the cortex (see Supplemental Note 1 for details, Figure S9-11). 
Subsequently, these findings, together with previously generated collections of editing sites catalogued as cell 
type-specific, temporally regulated across brain development as well as sites disrupted in neurological 
disorders, were used to annotate differentially edited sites between living and postmortem DLPFC 
(Supplemental Data 4).  
 
Postmortem-biased sites were enriched for RNA editing sites catalogued as non-neuronal cell type-specific 
(p=8.9×10-7), including oligodendrocytes (p=2.6×10-9) (Figure 4A-B). Conversely, living-biased sites were 
significantly enriched for sites catalogued as neuronal cell type-specific (p=0.005), including GABAergic 
neurons (p=0.04) (Figure 4A-B). A more focused analysis dissected the cellular specificity of differentially 
edited RNA recoding sites between living and postmortem DLPFC (Figure 4C). This re-affirmed that living-
biased recoding sites were neuronal-specific and featured several well-known functional and highly conserved 
recoding sites, whereas postmortem-biased recoding sites were non-neuronal and mechanistically less 
understood. Living-biased sites were also significantly enriched for several additional functional categories, 
including enrichment for: (i) A-to-I sites disrupted in postmortem brain tissues from individuals with autism 
spectrum disorder (ASD) (cortex p=1.1×10-6; temporal cortex p=1.0×10-4; cerebellum p=1.5×10-4) and 
schizophrenia (SCZ) (ACC p=1.5×10-4; DLPFC p=7.6×10-4; DLPFC HBCC p=4.8×10-4); (ii) A-to-I sites with 
precise spatiotemporal regulation across human prenatal and postnatal brain development (DLPFC p=0.02; 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.05.06.24306763doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.06.24306763
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

cerebrum p=0.006; cerebellum p=0.02) (Figure 4B); and (iii) living-based sites preferentially mapped to genes 
enriched for postsynaptic organization and density, as well as presynaptic activity genes (Figure 4D). 
Considering the high levels of editing in living tissues, these findings imply a connection between A-to-I editing 
sites biased towards living tissues and their functional importance and endorse the value of postmortem 
case/control studies to explore RNA editing in brain health and disease. 
 
Replicating postmortem-induced effects on A-to-I editing in independent transcriptomic resources 
 
Altogether, 72,356 A-to-I sites were catalogued as either detected at different frequencies or altered in mean 
editing levels between postmortem and living DLPFC, here defined as ‘LIV-PM sites’. To validate these 
findings, we first replicated the strong postmortem-bias in editing levels for these sites leveraging pseudo-bulk 
snRNA-seq data from a non-overlapping sample of 31 living and 21 postmortem DLPFC samples (r=0.56) 
(Figure S12). Next, we asked what fraction of the LIV-PM sites identified above are commonly detected across 
four independent large-scale postmortem brain transcriptome consortia, which contain a diverse collection of 
anatomical regions, neurological disorders, and age ranges (GTEx project [n=1,129]; Mount Sinai Brain Bank 
[n=876], PsychENCODE [n=251]; BrainSpan [n=586]). Collectively, these data have been extensively studied 
for their RNA editing properties and serve as cornerstone resources for RNA editing sites in the human 
brain13,16,19,20,33 (Supplemental Data 3). Overall, we found a significant over-representation of LIV-PM sites 
routinely detected across these independent postmortem transcriptomic resources, whereby LIV-PM sites 
represented ~15-31% of all commonly detected A-to-I sites (Figure S13). LIV-PM sites also exhibited stably 
high editing levels (~40-46%), which were significantly higher (~7-20%) than all other detected A-to-I sites 
(Figure S13), implicating a systematic postmortem-induced effect for these sites across diverse cohorts, 
anatomical regions and ages.   
 
Profound increases of Alu editing in postmortem tissues explained by interferon activation and hypoxia  
 
We next explored the biological processes that may best explain the profound postmortem-biases in RNA 
editing. Gene set variation analysis computed single-sample scores for 10,493 Gene Ontology Biological 
Processes for each bulk tissue RNA-seq sample, which were regressed onto the AEI to identify biological 
processes predictive of alterations in global Alu editing (Figure S14A). A total of 1,688 biological processes 
were positive predictors of global Alu editing (FDR <5%) and were broadly enriched for categories of innate 
immune and inflammatory responses, hypoxia, intracellular signaling, apoptosis and cellular metabolism 
(Figure 5A-B). Notably, biological processes that predicted the AEI were also strong predictors of living versus 
postmortem DLPFC (r=0.86) (Figure S14B-C). For example, the expression of genes that subserve the 
following biological processes stratified living from postmortem samples and were strongly predictive of 
changes in the AEI: ‘inositol trisphosphate metabolism’ (GO:0032957; t-statistic=14.6, q-value=1.2×10−36), 
‘desensitization of G-protein coupled receptor (GPCR) signaling pathway’ (GO:0002029; t-statistic=12.1, q-
value=8.4×10−27), ‘regulation of cell cycle’ (GO:0051726; t-statistic=11.8, q-value=1.5×10−25), ‘response to 
hypoxia’ (GO:0001666; t-statistic=9.3, q-value=4.8×10−17) and ‘positive regulation of interferon-gamma (IFN-
γ) signaling pathway’ (GO:0060355; t-statistic=8.7, q-value=7.6×10−16), among other innate immune responses 
(Figure 5D). Furthermore, the gene expression profiles underlying these biological processes were also 
significantly elevated in postmortem relative to living DLPFC (Figure 5C).  
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To functionally validate the observed associations, we quantified the AEI across two existing cellular and 
mechanistically related in vitro models34,35.  First, we disentangled the influence of IFN-γ signaling on global 
Alu editing in hiPSC-derived neural progenitor cells (NPCs) and mature neurons treated with IFN-γ34. Here, 
IFN-γ significantly induced global Alu editing across acutely treated NPCs and chronically treated mature 
neurons relative to untreated conditions (p=0.0003, p=0.02, respectively) (Figure 5E). Next, we quantified the 
effect of hypoxia on global Alu editing in human cortical spheroids (hCS) exposed to hypoxic conditions (<1% 
O2) and after 72 hours of reoxygenation versus unexposed (21% O2)

35. Hypoxic conditions significantly 
increased global Alu editing from 24 to 48 hours (p=0.0003) and returned to baseline levels after 72 hours of 
reoxygenation (Figure 5F). Notably, both models revealed significant increases in ADAR1 expression profiles 
(Figure S15). These in vitro results support a mechanistic model, whereby IFN-γ and hypoxia induce global Alu 
editing in human neuronal models, perhaps explaining some of the observed increases in the AEI in postmortem 
DLPFC.  
 
Mapping context-dependent edQTLs between living and postmortem DLPFC 
 
We next sought to elucidate RNA editing quantitative trait loci (edQTLs). Paired WGS data were used to detect 
SNPs that could influence A-to-I editing levels for 155 living and 195 postmortem DLPFC samples. Two cis-
edQTL analyses were performed: (1) A primary cis-edQTL analysis fit A-to-I editing levels to SNPs while 
covarying for differences between living and postmortem tissues, sex, estimated neuronal content, RNA-seq QC 
metrics as well as eleven surrogate variables (PEER factors); and (2) An interaction cis-edQTL analysis tested 
for context-dependent effects between living and postmortem tissues (see Materials and Methods). A 1Mb 
window (±) was defined to search for SNP-editing pairs of an editing site and identified a total of 4,858 and 
2,362 unique editing sites with cis-edQTLs (eSites) from the primary and interaction analyses at FDR < 5%, 
respectively (Supplemental Data 5). eSites were largely non-overlapping between the two analyses and 
together comprised a total of 6,895 unique editing sites. Each lead SNP was located close to their associated 
editing site (±200 kb) (Figure 6A). eSites from the primary and interaction analyses mapped to introns and 
3’UTRs with few in protein-coding sequences (Figure 6B). Furthermore, editing levels for eSites, especially 
those from the interaction analysis, displayed higher variability in postmortem relative to living DLPFC (Figure 
6C). Most cis-edQTLs from the primary analysis explained a large percentage of editing level variability per 
site, explaining up to 90% editing level differences for a given site (Figure 6D). cis-edQTLs from the 
interaction analysis often had smaller effects, with ~83% illustrating postmortem-specific effects (Figure 6E). 
Notably, ~2% eSites identified from the interaction analyses were commonly reported across previous cis-
edQTL investigations in the postmortem brain13,33,36 (Figure S15), indicating that postmortem-related effects do 
not widely contribute to our current view of edQTLs in the brain.  

DISCUSSION 

The investigation of A-to-I editing and its biological significance in the mammalian brain has been restricted to 
the analysis of postmortem tissues. However, increasing evidence indicating molecular changes in response to 
ischemic exposures in the brain highlights the need for a more accurate understanding. Utilizing fresh brain 
tissue from living human donors provides an opportunity to investigate the brain without the confounds inherent 
to postmortem tissue analysis. Here, we present the first systematic study of A-to-I editing differences between 
postmortem and living human DLPFC. In doing so, we reveal more nuanced and accurate insights into the 
prevalence and multifarious roles of A-to-I editing in the human brain, specifically: (1) elevated ADAR and 
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ADARB1 as well as widespread features of A-to-I editing are enriched in postmortem relative to living DLPFC; 
(2) these postmortem-related increases are pronounced in non-neuronal cell populations; (3) these changes also 
scale with elevated expression of gene that subserve biological pathways and molecular responses to human 
death, including IFN-γ signaling, hypoxia and intracellular metabolism; (4) systematic investigation of A-to-I 
sites highly edited in the living brain offers a unique and powerful framework to prioritize sites that are essential 
for brain function; (5) context-dependent cis-edQTLs reveal genetic variants with differing effects on A-to-I 
editing levels between postmortem and living DLPFC; and (6) despite widespread differences, well-powered 
cohorts of postmortem tissues remain a valuable resource for studying A-to-I editing and its roles in brain 
development and disease pathology. We discuss these points in turn below. 

Mounting evidence of molecular responses to ischemic insults in the brain, coupled with the precise control of 
A-to-I RNA editing and the crucial function of ADAR1 in regulating innate immunity, strongly implicate 
dysregulated A-to-I editing in postmortem brain tissues. Indeed, our analyses revealed a significant elevation of 
the AEI as well as ADAR and ADARB1 expression in postmortem compared to living DLPFC (Figure 2), which 
was confirmed on a per-cell basis (Figure S5). To reduce the likelihood of confounding factors in the current 
study, our postmortem DLPFC cohort is matched to the extent possible to the living cohort for key demographic 
and clinical variables (see full cohort description in Supplemental Data 1). Subsequently, the contribution of 
any additional factors on RNA editing variability were minimal in the current study yet warrant further 
discussion. For example, although A-to-I editing is enriched in neuronal cell types13,14 and elevated proportions 
of neurons were predicted in postmortem DLPFC, differences in cellular frequencies had an overall small effect 
on RNA editing differences between postmortem and living DLPFC (<0.5%). In fact, microglia showed the 
most pronounced postmortem-induced effect on A-to-I editing (Figure 2G) and these cells play key roles in 
regulating the brain’s response to inflammation37,38. Microglia also express high levels of ADAR, which is 
interferon inducible6-8,39 and likely explains why microglia are highly susceptible to A-to-I perturbations 
following human death. The length of postmortem interval (PMI) also had little influence on RNA editing 
increases (see also Figure S3), which suggests that the impact of death on A-to-I editing is immediate, with 
subtle and non-systematic alterations occurring in the hours following death. This is also consistent with 
independent studies evaluating the influence of PMI on mRNA levels, whereby relatively few genes show 
significant changes in expression over extended PMI, and genes that do change do not follow an orderly pattern 
of expression27,40. Further quantification of RNA editing metrics throughout a molecular degradation assay of 
the human DLPFC31 did not suggest that A-to-I editing is greatly impacted by tissue degradation (Figure S4) 
nor strongly influenced by RIN (Figure 2C). While postmortem tissues may indeed be confounded with 
elevated RNA degradation, the observed changes in the AEI and ADAR expression between living and 
postmortem tissues is likely not fully explained by such molecular factors. Future work to dissect such impacts 
is warranted. Finally, while disrupted A-to-I editing levels have been linked to a clinical diagnosis of 
Parkinson's disease (PD)41, PD status had no effect on A-to-I editing variance between postmortem and living 
DLPFC (Figure S2A, Figure S14E). However, a deeper investigation into the influence of discrete 
neuropathological hallmarks on A-to-I editing profiles within living tissues is warranted and should be the focus 
of future studies.  

Altogether, 72,346 A-to-I sites were catalogued as either preferentially enriched or differentially edited between 
postmortem and living DLPFC, with a significant postmortem-bias (Figure 3). Replication of the LIV-PM sites 
across four large-scale postmortem brain transcriptome datasets supports the notion that postmortem-induced 
activation of ADAR- and ADARB1-mediated A-to-I editing occurs in a profound and systematic manner across 
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diverse anatomical regions and data sets. In asking which biological processes might be driving the postmortem 
enrichment of A-to-I editing, we found that increased expression of genes subserving IFN-γ signaling, hypoxia, 
cellular metabolism and apoptosis in postmortem DLPFC were strongly correlated with an elevated AEI 
(Figure 5). Independent studies analyzing alterations in gene expression after organismal death revealed an 
upregulation of similar pathways27,40. While not all these biological processes may be causal for increased 
editing, we validated the influence of IFN-γ signaling and hypoxia on global Alu editing levels using already 
existing RNA-seq data from human neuronal model systems (Figure 5). Indeed, IFN-γ signaling is known to 
induce ADAR, leading to elevated RNA editing6-8,39. ADAR1 has also been shown to promote accumulation of 
HIF1A following oxygen depletion42,43, supporting dynamic changes of A-to-I after hypoxic and re-oxygenated 
exposures. Furthermore, increased Alu editing has been reported across non-CNS human tissues collected from 
postmortem donors compared to those collected from donors while on mechanical ventilation29, suggesting that 
hypoxic exposures have direct effects on RNA editing levels. Moreover, genes associated with inositol 
triphosphate metabolic processes were higher expressed in postmortem and appeared to be a positive predictor 
for A-to-I editing. Interestingly, inositol hexakiphosphate has been found to be in the core structure of ADAR2 
and is crucial for ADAR2 activity44. More access to inositol triphosphate could therefore boost ADAR2 activity 
and lead to elevated A-to-I editing in postmortem tissues. Overall, our results support a mechanistic model 
whereby postmortem-related mechanisms, including inflammatory and hypoxic responses, induce ADAR 
expression. In turn, this leads to an abundance of A-to-I editing commonly observed in postmortem brain tissue. 
 
We also identified hundreds of A-to-I editing sites that were more highly edited in living brain tissues than in 
postmortem samples. These sites are enriched in neuronal synapses and are typically evolutionarily conserved, 
suggesting their functional relevance in brain activity (Figure 3F, Figure 4D). Notably, well-characterized 
neuronal recoding sites with unique functional properties were predominantly edited in living DLPFC, 
signifying their potential involvement in active neuronal processes such as synaptic plasticity. However, several 
living-biased recoding sites that are less functionally understood were also found and their contribution to brain 
function remains an open question for future research. For example, recoding site p.M2269V in FLNB exhibited 
neuronal-specificity and is known to be tightly regulated across stages of prenatal and postnatal human brain 
development16. In mouse brain, editing of Flnb is driven by ADAR2 and leads to less efficient splicing of the 
transcript45. While Flnb is highly edited outside the CNS, including in musculoskeletal tissues, uncovering the 
functional consequences of Flnb editing will be the next experimental challenge. Similarly, recoding site 
p.I328V in MFN1 was neuronal-specific and MFN1 is known to mediate mitochondria fusion process and 
reduced editing on this transcript has been implicated in Alzheimer’s disease22. Additionally, editing variations 
at the GRIA2 Q/R and R/G sites between living and postmortem DLPFC highlight how postmortem conditions 
may differentially influence the editing machinery, potentially releasing it from in vivo regulatory constraints or 
preserving certain functional editing activities related to neuronal maintenance, respectively. The discrepancy 
between the two sites might be attributed to their distinct functional roles and the different susceptibilities to 
postmortem changes. 
 
Another important observation is that living-biased sites are enriched for A-to-I sites that exhibit tight 
spatiotemporal regulation throughout brain development16 and are associated with neurological disorders when 
disrupted19,20 (Figure 4B). Therefore, our findings support the continuing value of postmortem brain tissues for 
RNA editing research in the context of disease pathobiology, as they predominantly preserve the integrity of 
editing sites implicated in brain function and pathology. However, while our results reinforce the relevance of 
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postmortem case/control studies in reflecting the physiological state of RNA editing, they also highlight the 
necessity for discerning potential postmortem artifacts. 
 
Integration of paired WGS with A-to-I editing levels in the form of cis-edQTLs provides unique opportunities 
to dissect how genetic variation regulates editing levels (Figure 6). edQTLs explained up to ∼90% editing level 
differences with the majority of cis-edQTLs located in 3′ UTRs, which is consistent with previous reports by us 
and others13,16,33,36. To this end, a mechanistic model has been proposed whereby 3’UTR bound miRNAs can 
alter gene expression levels from an edQTL locus via miRNA-mediated transcript degradation33. We also 
catalogued 2,362 context-dependent cis-edQTLs across 1,247 unique loci that differed between postmortem and 
living DLPFC. Editing levels for these sites were generally homogenous within living tissues with a significant 
edQTL in postmortem DLPFC, implicating these eSites are highly sensitive to ischemic insults. Importantly, 
these context dependent cis-edQTLs accounted for a small fraction (<2%) of all cis-edQTLs currently 
documented in the postmortem brain literature13,33,36, indicating that cis-edQTLs with differing postmortem and 
living effect sizes do not significantly skew the interpretation of current postmortem edQTL findings, 
supporting the utility of postmortem brain tissues for edQTL discovery. However, to further dissect such 
mechanisms it will be critical for future work to greatly increase sample sizes of fresh biopsies. 
 
Our study also presents some limitations, which warrant further discussion. First, living samples were collected 
using a novel sampling procedure for study participants undergoing deep brain stimulation30. While we refer to 
these fresh biospecimens as living tissue, they may present their own caveats, including the possible influence 
of anesthesia and surgical procedures, which may induce injury and early immediate epitranscriptomic 
responses. Second, sampling living brain tissue comes with spatial and regional constraints. While living tissue 
sampling could be biased towards increased white matter collection and elevated proportions of non-neuronal 
cell types, variation in cell type composition had an insignificant effect on A-to-I editing variability, as 
discussed above. Third, study participants were largely over 60 years of age with a diagnosis of Parkinson’s 
disease (PD) requiring neurosurgical intervention. Nevertheless, ~30% of the living DLPFC cohort does not 
have PD and a clinical diagnosis of PD did not alter Alu editing. Moreover, both PD and control subjects were 
included in the postmortem cohort to match living and postmortem DLPFC according to clinical, demographic, 
and technical factors to minimize its potential confounding effect. Fourth, we cannot fully rule out the 
possibility that both living and postmortem tissues may have differing medication effects. Still, it is worth 
emphasizing that even in tightly controlled experiments conducted by us and others, the overall influence of low 
and high doses of antipsychotics and small molecules on A-to-I editing profiles in the brain is insignificant19,46. 
Finally, we note that cell type-specific A-to-I sites were catalogued from postmortem tissues13,32, thus caution is 
warranted when interpreting their editing levels, especially for non-neuronal A-to-I sites, which are more 
vulnerable to postmortem-induced mechanisms.  
 

In sum, we provide a large-scale systematic investigation of A-to-I editing in the living human brain, in which 
we propose a model whereby early immediate biological responses to human death, including activation of IFN-
γ signaling and hypoxia, up-regulate the expression of ADAR and ADARB1. This is followed by a coordinated 
increase of transcriptome-wide A-to-I editing. Moreover, these profound A-to-I editing increases in postmortem 
tissues are distinct and independent from changes that may be related to any tested confounding effects. Further, 
investigation of A-to-I sites that are highly edited in the living brain offer a powerful framework to identify sites 
that are putatively functionally relevant for brain function. Critically, our findings do not negate but instead 
provide missing context for using postmortem brain tissues in researching A-to-I regulation in brain health and 
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disease. As we advance, the detailed molecular analysis of living brain tissues presents considerable challenges 
for large-scale study, yet it holds the potential to yield promising insights into the biology of RNA and A-to-I 
editing, which could transform our understanding of both the healthy and diseased human brain. 
 

METHODS 
 

Ethics declaration 
 

All human subjects research was carried out under STUDY-13-00415 of the Human Research Protection 
Program at the Icahn School of Medicine at Mount Sinai and was approved by the Icahn School of Medicine 
at Mount Sinai’s Institutional Review Board. The study design and conduct complied with all relevant 
regulations. Research Participants in the living cohort provided informed consent for sample collection, 
genomic profiling, clinical data extraction from medical records and public sharing of de-identified data.  

 
Experimental model and subject details 
 

The Living Brain Project: The current study is anchored around state-of-the-art Living Brain Project 
(LBP) data comprised of multi-omic paired whole-genome sequencing (WGS), bulk-tissue RNA sequencing 
(RNA-seq) and single-nuclei RNA-sequencing (snRNA-seq) of living and postmortem dorsolateral 
prefrontal cortical (DLPFC) samples (see full cohort description in Supplemental Data 1). All the data 
from living and postmortem samples studied in the current report have been introduced with detail in 
complimentary LBP reports: bulk RNA-seq was introduced in Liharska et al., snRNA-seq was introduced in 
Vornholt et al., and the WGS data is introduced in Kopell et al. Each of these datasets is more fully 
described in each respective body of work. We briefly describe these protocols here:  
 
Regarding ascertainment of living samples, fresh tissues were obtained during a deep brain stimulation 
(DBS) electrode implantation procedure at the Icahn School of Medicine at Mount Sinai. For the procedure, 
a burr hole was created in the frontal bone to access the cortical surface. A unique modification was made to 
this procedure for the LBP, where a small DLPFC biopsy was collected. These biopsies were immediately 
preserved in RNAlater or on dry ice and stored at -80°C. Most living samples were obtained from 
individuals with Parkinson's disease (PD), with non-PD samples collected for other DBS indications. 
Unilateral and bilateral biopsies were obtained. Informed consent was obtained from donors or their next-of-
kin, and diagnoses were based on medical records, questionnaires, and neuropathological evaluations.  
 
Regarding ascertainment of postmortem tissues, postmortem DLPFC samples were obtained from three 
different brain banks, matching them with living samples in terms of age, sex, and clinical diagnosis to the 
extent possible. Three separate brain banks were utilized, specifically Harvard Brain and Tissue Resource 
Center, the New York Brain Bank and Columbia University, and the University of Miami Brain Endowment 
Bank. Standard protocols were followed for processing postmortem samples, including dissection, freezing, 
and storage. Donors provided consent before death, and diagnoses were made based on various sources of 
information, including medical records and neuropathological evaluation. The New York Brain Bank at 
Columbia University specifically focused on donors with age-related neurodegenerative diseases and those 
without neurological or psychiatric impairments. 
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In the current study, we leveraged DLPFC bulk tissue RNA-seq data from a total of 251 living DLPFC 
samples (comprising 164 biological replicates [66 male and 98 female]) together with 233 postmortem 
DLPFC samples (comprising 233 biological replicates [148 male and 85 female])). A non-overlapping 
sample of 31 living DLPFC tissues were subjected to snRNA-seq (comprising 22 biological replicates [18 
male and 4 female]) together with 21 postmortem DLPFC samples (comprising 21 biological replicates [13 
male and 8 female]). Finally, WGS was used from 155 living and 195 postmortem DLPFC samples with 
paired bulk tissue RNA-sequencing data. All data are available on Synapse: Syn26337520 
[https://www.synapse.org/#!Synapse:syn26337520]. Subject IDs are not known to anyone outside the 
research group. 

 
In vitro validation models: Two different in vitro models were studied. The first study consisted of 18 
RNA-sequencing samples generated from hiPSC-derived neural progenitor cells (day 18) and mature 
neurons (day 30) acutely or chronically treated with IFN-γ or left untreated34. All data are available on 
Synapse Syn18934100 [https://www.synapse.org/#!Synapse:syn18934100]. The second study consisted of 
48 RNA-sequencing samples generated from human cortical spheroids (hCS) exposed to hypoxic conditions 
(<1% O2; at 24 hours and 48 hours) and after 72 hours of reoxygenation versus unexposed (21% O2)

35. All 
data are available at GEO GSE112137 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112137].  
 
Genotype Tissue Expression (GTEx) Project: Approved access the GTEx Project was obtained through 
the database of Genotypes and Phenotypes (dbGaP) phs000424.v8 
[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2] (Supplemental 
Data 1). A total of 1390 raw fastq files were analyzed, comprising bulk tissue transcriptomes across thirteen 
different postmortem brain regions (see Supplemental Data 1 and 3). The total number of biological 
replicates per region are as follows: Anterior Cingulate Cortex (ACC), n=95; Amygdala, n=80; Basal 
ganglia, n=133; Cerebellar hemisphere, n=118; Cerebellum, n=145; Cortex, n=125; Frontal cortex, n=114; 
Hippocampus, n=107; Hypothalamus, n=99; Nucleus accumbens, n=124; Putamen, n=104; Spinal cord, 
n=73; Substantia nigra, n=73.  
 
Mount Sinai Brain Bank (MSBB): A total of 876 bulk tissue RNA-sequencing samples across four 
different postmortem cortical areas were obtained from the MSBB through the AMP-AD Synapse Web 
Portal47 (Supplemental Data 1). The total number of biological replicates per region are as follows: 
Brodmann area (BM) 10, n=253; BM 22, n=218; BM 44, n=218; BM 36, n=187. These data comprised 
postmortem tissues from individuals with various stages of neurodegeneration.  All data are available on 
Synapse Syn7416949 [https://www.synapse.org/#!Synapse:syn7416949].  
 
PsychENCODE: A total of 251 bulk tissue RNA-sequencing samples across three postmortem anatomical 
regions were investigated (vermis, temporal cortex (BA41 42), and frontal cortex (BA9))20 (Supplemental 
Data 1). These data comprised postmortem tissues from individuals with autism spectrum disorder as well 
as a matched control group.  All raw FASTQ files were downloaded from Synapse under accession number 
Syn8365527 [https://www.synapse.org/#!Synapse:syn8365527].  

 
BrainSpan: A total of 585 bulk tissue RNA-sequencing samples covering prenatal and postnatal 
development periods (8 post-conception weeks until 40 years of age) and 16 postmortem anatomical regions 
were included in the current study48 (Supplemental Data 1). These developmental brain samples comprised 
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of both cortical and subcortical structures, including the amygdala (AMY), primary auditory cortex (A1C), 
cerebellar cortex  (CBC), dorsolateral prefrontal cortex (DFC), hippocampus (HIP), posterior inferior 
parietal cortex (IPC), inferior temporal cortex (ITC), primary motor cortex (M1C), mediodorsal nucleus of 
thalamus (MD), medial frontal cortex (MFC), orbital frontal cortex (OFC), primary somatosensory cortex 
(S1C),  posterior superior temporal cortex (STC), striatum (STR), primary visual cortex (V1C), and 
ventrolateral frontal cortex (VFC). Raw FASTQ files were downloaded from Synapse under accession 
number Syn8298777 [https://www.synapse.org/#!Synapse:syn8298777].  
 
FANS-derived neuronal and non-neuronal nuclei: A total of 100 RNA-sequencing data were leveraged 
from neuronal and non-neuronal nuclei isolated via fluorescence-activated nuclear sorting (FANS)32 
(Supplemental Data 4). NeuN (also known as RNA-binding protein RBFOX3) is a well-established marker 
of neuronal nuclei and was used to isolate neuronal (NeuN+) from non-neuronal nuclei (NeuN−). NeuN+ 
and NeuN− nuclei were sampled across five postmortem brain regions from ten biological replicates (BM 
10, 17, 22, 36, 44). All data are available on Synapse Syn25716684 
[https://www.synapse.org/#!Synapse:syn25716684/wiki/610496]. 
 
Molecular degradation assay of the human DLPFC: A total of 20 RNA-sequencing samples were 
downloaded from an existing study examining the molecular degradation of the human DLPFC31 (NCBI 
BioProject Number: PRJNA389171 
[https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=389171]). Postmortem DLPFC 
tissue was left at room temperature (off of ice) at a series of subsequent time-points (0, 15, 30 and 60 
minutes) followed by RNA extraction, RiboZero RNA-seq library preparation and sequencing. We used 
these transcriptome samples because the approach for RNA-seq library preparation is similar to the methods 
reported in the current study. 
 
 

Sample Processing, Quantification and Statistical Analyses 

Living Brain Project Sample Batch Assignment, RNA processing and RNA-sequencing  

To minimize batch effects, all living and postmortem samples were processed together for RNA sequencing at 
the Icahn School of Medicine in New York City. First, a randomization algorithm was employed to create 
batches for RNA extraction, cDNA library preparation, and RNA sequencing. The algorithm aimed to minimize 
correlations between batch assignments and living and postmortem status, ensuring an even distribution of 
samples across processing steps. Next, approximately 5-10 milligrams of each LIV and PM sample were used 
for RNA extraction. A reference piece of postmortem brain tissue was used to standardize the aliquoting 
process, eliminating the need to weigh individual samples and prevent thawing. To maintain a uniform 
temperature, a cryostat set at -20°C was used, and all equipment was treated with RNase Zap to prevent RNA 
degradation. After aliquoting, samples were homogenized in TRIzol, and RNA extraction was primarily carried 
out with the RNeasy Kit. RNA integrity was assessed, and only specimens with a RIN greater than 4.0 were 
sent for sequencing. Following, CDA libraries and RNA sequencing were performed at Sema4 in Stamford, CT. 
Libraries were prepared using the TruSeq Stranded Total RNA with Ribo-Zero Globin Kit, and sequencing was 
conducted on the NovaSeq 6000 System. Two S4 flow cells were used for each sequencing batch to achieve the 
targeted depth of 100 million paired-end reads per sample library. Sequencing was carried out in two waves, 
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with the first wave reaching a depth of 50 million paired-end reads and the second wave, over a year later, 
sequencing the remaining samples to a depth of 100 million, with an additional 50 million reads generated for 
samples from the first wave. Further detailed materials and methods regarding sample collection and data 
generation for LBP samples are outlined in Liharska et al.30.  

RNA-sequencing data and quality control 
 
All RNA-sequencing data were processed and mapped to the GRCh38 primary assembly with GENCODE gene 
annotations v30 using STAR (v.2.7.2a)49. Picard v2.22.3 tools marked duplicate reads and gathered RNA-
sequencing short read metrics and distributions (https://github.com/broadinstitute/picard/). STAR produced a 
coordinated-sorted mapped BAM file for each sample, which was used to study features of RNA editing. For 
gene expression analyses, featureCounts (v1.6.3)50 quantified gene expression and unspecific filtering removed 
lowly expressed genes with less than 1 count per million in at least 10% of samples. The resulting raw counts 
were normalized with voomWithDreamWeights() from the variancePartition R package (v1.20.0)51 and used for 
downstream analyses. Linear mixed models from the R package varianceParition were also used to characterize 
and identify biological and/or technical drivers that may affect the observed Alu editing index (AEI). This 
approach quantifies the main sources of AEI variation attributable to differences in biological factors 
(e.g. clinical diagnoses, age, sex ethnicity) and technical factors (e.g. RIN, batch). For further details on bulk 
tissue RNA-sequencing data generation and pre-processing, we refer the reader to Liharska et al.30.  
 
snRNA-seq data generation and quality control 
 
For isolating single cells from fresh brain tissue samples (n=31), we utilized the Adult Brain Dissociation Kit 
(Miltenyi Biotech, #130107677), which is particularly suited for processing live tissue. This kit enables the 
enzymatic breakdown of the tissue while maintaining the integrity and viability of the cells, which is crucial for 
subsequent cell-specific analyses. The process included washing the tissue, enzymatic digestion, and 
mechanical dissociation to ensure a high yield of viable cells. After dissociation, the cells were further purified 
using filtration and centrifugation steps provided in the kit’s protocol, including the removal of myelin and 
debris, to ensure a clean sample for downstream applications. For extracting nuclei from frozen brain samples 
(n=21), we chose the Minute Single Nucleus Isolation Kit (Invent Biotechnologies, #BN-020), which is 
designed to handle the challenges posed by frozen tissue. This kit's protocol is optimized to protect and isolate 
nuclei, which are less susceptible to damage from the freeze-thaw cycle than whole cells. The kit facilitates the 
gentle extraction of nuclei while preserving RNA integrity, which is essential for accurate transcriptomic 
profiling from postmortem tissue. Subsequent gene expression profiling for both isolated cells and nuclei was 
carried out using the Chromium Single Cell 3’ Gene Expression platform with Next GEM reagents (10X 
Genomics, #CG000204 Rev D), which allows for high-throughput analysis and precise barcode assignment to 
individual cells or nuclei. The integrity of the synthesized cDNA was verified through meticulous quality 
control checks. The libraries produced were then sequenced on the NovaSeq system using the NovaSeq 6000 S2 
Reagent Kit (Illumina, #20028315), adhering to a sequencing protocol that ensures comprehensive coverage. 
For more details on snRNA-seq data generation, we refer the reader to Vornholt et al52.  
 
For all snRNA-seq data, CellRanger software (v7.0) performed genome alignment using 3’ gene expression 
chemistry against the GRCh38 primary assembly, generated barcode/UMI counts, and cell filtering to create 
mapped BAM files and feature-barcode matrices. Reads mapped to introns were incorporated into final count 
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matrices to include both pre-mRNA and mRNA, which is representative of nuclear RNA populations. SoupX53 
was applied to remove contaminating ambient RNA. To optimize cell classification and reduce unwanted 
variance, we quality filtered, normalized, and scaled data according to Seurat’s guidelines54. For these data, we 
used a set of previously implemented methods consisting of the following steps. First, a cell was excluded if the 
number of expressed genes was less than 200, with the number of UMI less than 200, or the percentage of 
mitochondria reads more than 1%. The normalization method was LogNormalize with a scale factor of 10000. 
The linear regression was performed using the percentage of mitochondrial reads as a variable. Second, the 
FindVariableFeatures(selection.method=vst, nfeatures=2000) function from Seurat R package (v4.2.0)54 was 
used to identify highly variable gene features. Third, principal component analysis and uniform manifold 
approximation and projection (UMAP) performed unsupervised clustering of each cell type. Hierarchical 
clustering was manually checked along with the top-ranked genes in each cell cluster to determine cellular 
specificity based on well-known gene markers to verify the assignment of cell types and subtypes. Finally, cells 
with inconsistent assignments were pooled into their corresponding cell type cluster based on shared 
transcriptome-wide profiles using CellSelector() from Seurat R package (v4.2.0). Ultimately, we report on nine 
major cell type clusters, defined by canonical cell-type markers. 
 
Generating an Alu editing index  
 
For RNA-seq data, the AEI method v1.0 computed the Alu editing index (AEI)29 using a STAR mapped BAM 
file as input. The AEI is computed as the ratio of edited reads (A-to-G mismatches) over the total coverage of 
adenosines in Alu elements and is a robust measure that retains the full Alu editing signal, including editing 
events residing in low-coverage regions with a low false discovery rate. The resulting metric is multiplied by 
100, so the index describes the percentage level of editing. The predetermined genomic regions were set to all 
SINE/Alu repeats using the Alu bed table of the UCSC genome browser, where most A-to-I editing occurs in 
mouse. Common genetic variation was also discarded using coordinates from UCSC genome browser (hg38 
CommonGenomicSNPs150). Notably, we have applied these metrics to hundreds of independent samples and 
this method has proven to be highly robust and scalable across postmortem brain RNA-seq samples from unique 
studies and library preparation protocols29,16.  
 
For snRNA-sequencing data, the AEI method v1.0 was applied two different ways. First, the AEI was 
quantified ignoring all cell barcoded information, thereby analyzing each mapped snRNA-seq BAM file as a 
pseudo-bulk tissue. Second, using the nine cell type annotations identified via unsupervised dimensionality 
reduction, cell-specific barcodes were used to parse each pseudo-bulk snRNA-seq BAM file into cell type 
specific BAM file (i.e., pseudo-bulk pooling of cell types per donor). The AEI was then computed for each cell 
type-specific mapped BAM file for each donor.  
 
Cellular deconvolution of bulk tissue 
 
Cell type deconvolution of the bulk tissue RNA-sequencing data was performed on raw gene count data using 
dtangle55 and a scRNA-seq cell type reference panel from the DLPFC56, including GABAergic and 
glutamatergic neurons, oligodendrocytes, astrocytes, and microglia. The sum of GABAergic and glutamatergic 
neuronal cell type proportions was used as proxy of total neuronal fraction. 
 
RNA editing site detection and annotation 
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A two-step approach was used to quantify high-quality A-to-I sites from sorted mapped bam files: 
 

1. We first quantified A-to-I sites de novo to facilitate the discovery of A-to-I sites not yet catalogued in 
existing RNA editing databases. Here, JACUSA257 was applied with the following parameters: -p 10 –a 
D, M, Y, E, -m 20. All analyses considered read strandedness when appropriate. 

2. Next, we applied a supervised approach to query nucleotide coordinates for A-to-I sites already 
catalogued through REDIportal58, A-to-I sites cataloged across human brain cell types13 and an 
extensive list of A-to-I recoding sites59. Here, the samtools mpileup function was used to query editing 
levels of known sites, as shown prior13,16,19.  This secondary supervised approach was applied to ensure 
identification and inclusion of well-known sites into downstream analyses.  
 

Subsequently, filtering steps were applied to retain only high-quality, high-confident bona fide A-to-I sites16. 
Briefly, the following sites were removed: i) multi-allelic events; ii) sites mapping to homopolymeric regions or 
black-listed genomic regions in the genome60; iii) sites mapping to common genomic variation in dbSNP(v150) 
and those in gnomAD with minor allele frequency greater than 0.05; iv) sites mapping to high confidence 
heterozygous or homozygous genomic calls using paired WGS data; v) de novo called sites adjacent to read 
ends and splice sites; vi) de novo called sites with coverage was below ten reads, edited read coverage was 
below three reads and an editing ratio below 1%; vii) supervised sites with coverage below five reads and the 
number of edited reads below three. Following, remaining sites were annotated using ANNOVAR61 to gene 
symbols using RefGene, repeat regions using RepeatMasker v4.1.1, known RNA editing sites using the most 
recent version of REDIportal and conservation metrics were gathered using phastCons from the PHAST 
package62.  
 
Detecting dynamically regulated A-to-I sites 
 
Two different approaches were used to identify dynamically regulated A-to-I sites. First, sites observed at 
significantly different population frequencies were computed using a two-proportions z-test via the prop.test() 
function in R. This result returns the value of the Pearson’s chi-squared test statistic, a p-value, 95% confidence 
intervals and an estimated probability of success. We required that all significant sites must have more than 
20% difference in detection rates between living and postmortem DLPFC and no more than 10% detection 
levels in the comparison group for which the A-to-I site is depleted. Second, to identify sites with significantly 
different mean editing levels between living and postmortem DLPFC, linear modeling via the limma R 
package63 was implemented and adjusted for the possible influence of the following covariates: RNA editing 
levels ~Neurons + Sex + Age + RIN + 3’ read bias + percent mRNA bases + median insert sizes + strand 
balance + batch. The duplicateCorrelation() function was used to model donor (i.e. technical replicates) as a 
repeated measure. Additional models were fit covarying for the influence of ADAR, ADARB1 and/or ADARB2. 
All significance values were adjusted for multiple testing using the Benjamini-Hochberg (BH) method to 
control the false discovery rate (FDR). Sites passing a multiple test corrected p-value < 0.05 were labeled 
significant. This approach was applied to all bulk RNA-seq and pseudo-bulk snRNA-seq data from the Living 
Brain Project and FANS-derived neuronal and non-neuronal nuclei.  
 
Quantifying A-to-I sites across large-scale postmortem brain consortia 
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To query A-to-I sites from existing large-scale postmortem transcriptomic resources outlined above (GTEx, 
MSBB, PsychENCODE, BrainSpan), raw FASTQ files were processed and mapped to the GRCh38 primary 
assembly with GENCODE gene annotations v30 using STAR (v.2.7.2a)49. Picard v2.22.3 tools marked 
duplicate reads and gathered RNA-sequencing short read metrics and distributions. STAR produced a 
coordinated-sorted mapped BAM file for each sample, which was used to study features of RNA editing. Next, 
because these cohorts have been extensively studied for the RNA editing properties, we applied a supervised 
approach (samtools mpileup) to quantify millions of known sites from three main resources: REDIportal58, A-
to-I sites cataloged across human brain cell types13 and an extensive list of A-to-I recoding sites59. The 
supervised also required that all A-to-I sites must have a coverage of at least 5 reads and 2 edited reads to be 
considered for downstream analyses.  
 
Quantifying A-to-I sites in postmortem neuronal and non-neuronal nuclei 
 
It is acknowledged that individual A-to-I site identification using snRNA-seq presents difficulties due to 
limitations such as low capture efficiency and sequencing depth, resulting in partial coverage of the genome64. 
Our prior research has discussed these technical challenges in depth, particularly in the context of human cortex 
snRNA-seq data13. Furthermore, snRNA-seq data are inclined to exhibit an overrepresentation of intronic 
editing due to the predominance of nuclear RNA, which contrasts with bulk tissue sequencing that includes both 
nuclear and cytoplasmic fractions65-67. To this end, we incorporated deep RNA-seq from florescence activated 
nuclei sorted (FANS)-derived neuronal and non-neuronal cortical nuclei from a prior study32, which were 
mapped to the GRCh38 primary assembly with GENCODE gene annotations v30 using STAR (v.2.7.2a)49. This 
generated a coordinated-sorted mapped BAM file for downstream analyses. Next, we applied both a de novo 
caller (JACUSA2) together with a supervised approach (samtools mpileup), as described above for all the 
Living Brain Project bulk RNA-sequencing data. Because of the deep level of sequencing performed on these 
cell populations, we applied the de novo caller to ensure capture of cell-type specific A-to-I sites that are not 
already catalouged in existing databases. All subsequent filters and thresholds as described for the Living Brain 
Project bulk RNA-sequencing data were also applied here.  
 
Enrichment for cellular, developmental and disease-related sites 

Correlation adjusted mean rank (CAMERA) gene set enrichment68 was performed using the resulting sets of 
differential editing summary statistics between living and postmortem tissues. Here we used CAMERA to 
perform a competitive editing set (i.e. a set of curated A-to-I sites) rank test to assess whether the sites in each 
editing set were highly ranked in terms of differential editing relative to sites that are not in the editing set. For 
example, CAMERA first ranks editing level differences in living cortical tissues relative to postmortem cortical 
tissues. Next, CAMERA tests whether the user-defined editing sets are over-represented toward the extreme 
ends of this ranked list. After adjusting the variance of the resulting editing set test statistic by a variance 
inflation factor that depends on the site-wise correlation (which we set to default parameters, 0.01) and the size 
of the set, a p-value is returned and adjusted for multiple testing. We used this function to test for enrichment of 
editing sets derived from: three major brain cell types13, human brain development16, schizophrenia19, Fragile X 
Syndrome and ASD20.  

Single sample pathway activation scores 
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The gene set variation analysis (GSVA) R package69 was applied to VOOM normalized gene expression data to 
generate gene set-centric activation scores for each transcriptome sample, converting a matrix of genes to gene 
sets. Gene set activation scores were generated across a well-curated list of 10,493 Gene Ontology (GO) 
Biological Processes. Subsequently, linear modeling via the limma R package63 tested single-sample pathway 
activation scores for associations with the AEI, as well as for differences in these scores between living and 
postmortem samples while adjusting both analyses for the covariates described above. Gene sets passing a 
multiple test-corrected p-value < 0.05 with an absolute t-statistic > 7 were labeled significant. Gene sets 
annotated as positive and negative predictors of global Alu editing were subjected to REVIGO semantic 
similarity70 to reveal consensus groups of gene sets with similar gene content.   
 
Identification of RNA editing quantitative trait loci 
 
Cis-edQTLs were identified for all high-quality common variants within 1 Mb (±) of an editing site using the 
fastQTL permutation-based analysis71. Two different analyses were run: (1) A primary edQTL analysis testing 
relationships between editing levels and SNPs while covarying for differences between living and postmortem 
tissues, sex, estimated neuronal content, the top eleven PEER factors and a series of RNA-sequencing metrics 
(median 3’ bias, percent mRNA bases, batch, median insert size, strand balance). This analysis was run using a 
total of 10,000 permutations: (2) An interaction analysis testing context-dependent effects between living and 
postmortem tissues while adjusting for the covariates above. This analysis was run using a total of 1,000 
permutations. For the results of each analysis, all SNP-variant pairs with p-value < 0.05 obtained via beta 
approximation were deemed significant and used for downstream analyses.  
 

Data availability  
 
The Living Brain Project RNA-sequencing data generated in this study have been deposited in the Synapse 
database under accession code syn26337520 [https://www.synapse.org/#!Synapse:syn26337520]. Secondary 
data analysis was carried out for several additional data resources, which are also publicly available with 
accession codes described above within each corresponding methods section. In brief, datasets subjected to 
secondary data analysis are available at Synapse under the accession numbers syn18934100, syn7416949, 
syn8365527, syn8298777, syn25716684, at GEO under the accession number GSE112137, and at dbGaP under 
the accession number phs000424.v8. Contact the corresponding author for access to full Supplemental Data 
files. 
 
 

Code availability 
 
Code is available at GitHub (https://github.com/BreenMS/Living-Brain).  
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MAIN FIGURE LEGENDS 
 
Figure 1.  Overview of study design and multi-omic utilization. This study leverages a comprehensive set of 
multi-omic data from the Living Brain Project, including: (i) Bulk RNA-sequencing data from 164 living and 
233 postmortem dorsolateral prefrontal cortex (DLPFC) samples; (ii) Single-nuclei RNA-sequencing data from 
an independent subset of 31 living and 21 postmortem DLPFC samples, ensuring no participant overlap with 
the bulk sequencing cohort; and (iii) Paired whole-genome sequencing (WGS) data from 155 living and 195 
postmortem DLPFC samples. Detailed cohort demographics are detailed in Supplemental Data 1. 
Comprehensive analyses were conducted to quantify global Alu editing levels and individual A-to-I editing 
sites, with subsequent investigations encompassing bulk tissue comparisons, cell type-specific editing patterns, 
pathway-driven predictors of editing, and the genetic influences on A-to-I editing dynamics. We propose a 
mechanistic model to frame the interpretation of our overall findings. 

 

Figure 2. Global Alu editing across living and postmortem DLPFC. (A) Alu editing index (AEI; y-axis) 
computed on bulk RNA-seq from living and postmortem (PM) DLPFC. Two-sided linear regression was used 
to test for significance. (B) ADAR, ADARB1 and ADARB2 normalized expression profiles on bulk including 
RNA-seq between living and PM. All boxplots show the medians (horizontal lines), upper and lower quartiles 
(inner box edges), and 1.5× the interquartile range (whiskers). Reported BH adjusted p-values were derived 
from a moderated t-test comparing transcriptome-wide gene expression between living and postmortem tissue. 
(C) Linear mixed model explaining AEI variance by eleven known biological and technical factors. (D) UMAP 
dimension reduction analysis of snRNA-seq classified nine unique cell populations. Values in brackets indicate 
the number of cells per sub-population: excitatory (EXC) and inhibitory (INT) neurons, astrocytes (AST), 
microglia (MG), oligodendrocytes (OLI), OLI precursor cells (OPCs), endothelial cells (ENDO). (E) The mean 
frequencies for each cell population quantified between living and PM. Two-sided linear regression was used to 
test for significance. (F) Hierarchical clustering of scaled ADAR, ADARB1 and ADARB2 expression across all 
cell populations. (G) Cell type-specific ADAR, ADARB1 and ADARB2 expression for living and PM. (H) Alu 
editing index computed for each cell population for each donor and compared across living and PM samples 
(bottom). PM-induced effect sizes calculated by Cohen’s d for each cell population (top). (G-H) Two-sided 
linear regression was used to test for significance (*denotes p< 0.05). All boxplots show the medians (horizontal 
lines), upper and lower quartiles (inner box edges), and 1.5× the interquartile range (whiskers). Two-sided 
linear regression was used to test for significance. (I) Pearson’s correlation coefficient between the mean Alu 
editing index and mean normalized ADARB1 expression for each cell population according to living and PM 
samples. Standard error bars capture group-wise variance within living and postmortem tissues, respectively. 
RNA-seq analysis encompassed 164 and 233 biologically independent samples from living and postmortem 
sources, respectively. Single-nucleus RNA-seq was conducted on 31 living and 21 PM biologically independent 
samples. All box plots in this figure show the medians (horizontal lines), upper and lower quartiles (inner box 
edges), and 1.5 × the interquartile range (whiskers).  
 
Figure 3. Dynamically regulated A-to-I sites between living and postmortem DLPFC. (A) Principal 
component analysis of editing levels for 54,825 high-confidence sites detected across all samples in the current 
study. (B) Differential editing analysis compare delta editing levels (%; x-axis) and strength of significance (-
log10 adjusted P, y-axis) for each site between living and postmortem (PM) DLPFC. Sites are colored by 
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novelty (i.e. detection in REDIportal) and shaped uniquely by genic region. Reported BH adjusted p-values 
were derived from a moderated t-test comparing transcriptome-wide A-to-I editing levels between living and 
postmortem tissue. (C) Frequency distribution of mean editing levels in living DLPFC (x-axis) based on PM 
biased sites (y-axis). (D) The fraction of genic regions for all living biased and PM biased sites. (E) Frequency 
distributions of Pearson’s correlation coefficients (x-axis) between the expression for ADAR, ADARB1, 
ADARB2 relative to editing levels for 54,825 sites. An additional analysis modeled ADAR+ADARB1-ADARB2 
to capture ADAR and ADARB1 effects. The total number of sites with significant correlations are listed in the 
top right corner of each histogram. (F) Dynamic recoding sites: 27 living-biased recoding sites and 31 
postmortem-biased recoding sites ordered by their effect size differences (y-axis, lower) and plotted alongside 
with the mean editing levels (y-axis middle). The strength of evolutionary conservation (phastCons) was 
measured for each site and the probability of being loss of function intolerant (pLI) was measured for each gene 
(top). (G) Frequency distributions demonstrating that living biased recoding sites are often more strongly 
evolutionarily conserved and map to genes with higher pLI relative to PM biased recoding sites. Mann Whitney 
U-test was used to test for significance. Living Brain Project data encompassed 164 and 233 biologically 
independent samples from living and postmortem sources, respectively. 
 

Figure 4. Annotating dynamically regulated sites between living and postmortem DLPFC. (A) CAMERA 
enrichment scores (y-axes) for three candidate sets of A-to-I editing sites along a ranked list of differentially 
edited sites (t-statistics; x-axis) between living and postmortem (PM) DLPFC, from highly living-biased (right; 
pink) to highly PM-biased (left; blue) (x-axes). Enrichment plots for non-neuronal sites (top, PM biased), sites 
disrupted in autism spectrum disorder (ASD) cortex (middle, living biased) and those disrupted in schizophrenia 
(SCZ) ACC (bottom, living biased). (B) Summary of all multiple test corrected p-values (-log10) for all sets of 
RNA editing sites across cell types, neurodevelopmental disorders, and brain development. (A-B) CAMERA 
gene set enrichment p-values, quantifying the statistical significance of overrepresented A-to-I sites within the 
ranked living versus postmortem data. (C) Pearson’s correlation and scatterplot of delta editing rates for cell-
specific recoding sites (y-axis) versus delta editing rates for living/PM differences (x-axis). Y-axis description: 
Fluorescence activated nuclei sorted (FANS) neurons and non-neuronal cell populations were collected from 10 
postmortem donors across five cortical regions (see Supplemental Note 1). (D) SynGO synaptic enrichment (-
log10 q-value) for genes harboring living-biased editing sites (top) and genes harboring postmortem-biased sites 
(bottom). RNA-seq analysis encompassed 164 and 233 biologically independent samples from living and 
postmortem sources, respectively. 
 
Figure 5. Biological processes that explain differences in Alu editing. (A) Single-sample scores were 
generated for 10,493 Gene Ontology Biological Processes. These pathway scores were regressed onto the AEI 
while covarying for known biological and technical factors. Reported BH adjusted p-values and t-statistics were 
derived from a moderated t-test comparing pathway scores between living and postmortem tissue. The t-
statistics (x-axis) for each biological process relative to strength of association with the AEI (y-axis; -log10 
adjusted p-value). Pathways with an absolute t-statistic > 7 and FDR adjusted p-value < 0.05 were deemed 
significant (blue, negative association; red, positive association). (B) A density distribution of t-statistics 
illustrates most pathways are positive predictors of the AEI (top) and REVIGO semantic similarity 
representation of the top positive 1688 pathways (bottom, ). Multiple broad groupings emerge that map to intra-
cellular signaling, apoptosis, hypoxia, cellular metabolism and innate immune/inflammatory responses. Colors 
indicate the Adjusted P-value of the enriched GO terms. The size of each bubble shows the GO terms with more 
significant P-values. (C) Single sample scores that represent top pathways from each cluster also predict 
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differences between living and postmortem (PM) tissues. (D) Pearson’s correlation coefficient illustrates 
regressions of single-sample pathway score onto the AEI for the top six candidate pathways. All Living Brain 
Project data encompassed 164 and 233 biologically independent samples from living and postmortem sources, 
respectively. (E) Validating the interaction between interferon-γ and the AEI. Two-dimensional (2D) hiPSC-
derived neural progenitor cells (NPCs; day 18) and mature neurons (day 30) treated with interferon-gamma 
(IFN-γ) (PMID: 32875100). Data was generated by bulk RNA-seq from n=3 biological replicates. (F) 
Validating the interaction between hypoxia and the AEI. Three-dimensional (3D) model of human cortical 
spheroids (hCS) exposed to differing degrees of hypoxia (PMID: 31061540). Data was generated by bulk RNA-
seq from n=8 biological replicates. (E-F) Two-sided linear regression was used to test for significance. All 
boxplots in this figure show the medians (horizontal lines), upper and lower quartiles (inner box edges), and 
1.5× the interquartile range (whiskers). 

 
Figure 6. Context-dependent cis-edQTLs between living and postmortem DLPFC. (A) Distribution of the 
cis-edQTL associations evaluating the distance between eSites and common variants. The gray box indicates 
±200�kb relative to the editing site. Inset Venn diagram depicts the overlap of eSites between the primary and 
interaction analyses. (B) eSite discovery (y-axis) according to genic regions (x-axis) for primary (top) and 
interaction (bottom) cis-edQTL analyses. (C) Editing level variance within living and postmortem DLPFC 
parsed by sites with primary and interaction cis-edQTLs. (D) The fraction of eSites from the primary (top) and 
interaction (bottom) analyses that are either neuronal or non-neuronal cell type specific. (E) Two examples of 
primary cis-edQTLs, in which editing levels (y-axes) are associated with common genotypes (x-axes). (F) Two 
examples of interaction cis-edQTLs, in which different common genotypes (x-axis) are associated with 
differing editing levels between living and postmortem DLPFC (y-axes). (C-E) Two-sided linear regression was 
used to test for significance. Analyses encompassed 164 and 233 biologically independent samples from living 
and postmortem sources, respectively. All boxplots in this figure show the medians (horizontal lines), upper and 
lower quartiles (inner box edges), and 1.5× the interquartile range (whiskers). 
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