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Abstract: 

Motivation: The performance of a classification algorithm eventually reaches a point of 

diminishing returns, where additional sample added does not improve results. Thus, there is a 

need for determining an optimal sample size that both maximizes performance, while accounting 

for computational burden or budgetary concerns.  

Methods: Sixteen large open-source datasets were collected, each containing a binary clinical 

outcome. Four machine learning algorithms were assessed: XGBoost (XGB), Random Forest 

(RF), Logistic Regression (LR), and Neural Networks (NN). For each dataset, the cross-validated 

AUC was calculated at increasing sample sizes, and learning curves were fit. Sample sizes 

needed to reach the full-dataset AUC minus 2% (or, 0.02) were calculated from the fitted 
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learning curves and compared across the datasets and algorithms. Dataset-level characteristics: 

minority class proportion, full-dataset AUC, strength/number/type of features, and degree of 

nonlinearity, were examined. Negative binomial regression models were used to quantify 

relationships between these characteristics and expected sample sizes within each algorithm. 

Four multivariable models were constructed which selected the best combination of dataset-

specific characteristics that minimized out-of-sample prediction error. Additional models were 

fitted which allowed for prediction of the expected gap in performance at a given sample size 

using the same empirical learning curve data.  

Results: Among the sixteen datasets (full-dataset sample sizes ranging from 70,000-1,000,000), 

median sample sizes were 9,960 (XGB), 3,404 (RF), 696 (LR), and 12,298 (NN) to reach AUC 

convergence. For all four algorithms, more balanced classes (multiplier: 0.93-0.96 for 1% 

increase in minority class proportion) were associated with decreased sample size. Other 

characteristics varied in importance across algorithms - in general, more features, weaker 

features, and more complex relationships between the predictors and the response increased 

expected sample sizes. In multivariable analysis, top selected predictors were minority class 

proportion, full-dataset AUC, and dataset nonlinearity (XGB and RF). For LR, top predictors 

were minority class proportion, percentage of strong linear features, and number of features. For 

NN, top predictors were minority class proportion, percentage of numeric features, and dataset 

nonlinearity.  

Conclusions: The sample sizes needed to reach convergence among four popular classification 

algorithms vary by dataset and method and are associated with dataset-specific characteristics 

that can be influenced or estimated prior to the start of a research study. 
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Introduction:  

Machine learning (ML) is becoming increasingly popular within the domain of healthcare data 

analysis and clinical decision making [1]. The lack of a fixed model specification and 

distributional assumptions allows for these methods to learn complex relationships that are not 

necessarily linear in nature, such as high-order interactions and polynomial effects. Due to this, 

most popular machine-learning algorithms require much larger sample sizes than traditional 

statistical methods [2]. However, exact amounts are not clear, and combined with the fact that 

there are many different ML algorithms (each containing their own limitations and properties) 

[3], there is a lack of transparency in selecting an optimal sample size for ML analysis. It is 

known that, for any given dataset, there is a point where adding additional samples will not 

increase the performance metrics of the model considerably [4]. Thus, it becomes important to 

collect enough data to optimize these metrics while also accounting for this performance ceiling 

and the budgetary or computational concerns that may arise when collecting substantial amounts 

of unnecessary data.  

Another reason for difficulty selecting a proper sample size when applying machine learning is 

the lack of a true endpoint or common metric of interest. The traditional target for sample size 

determination methods is the statistical power to detect a certain effect size [5]. In machine 

learning, since predictive performance rather than parameter estimation is usually of interest, this 

endpoint becomes unclear. A commonly used metric of predictive performance is prediction 

accuracy, defined as the proportion of correct classifications made [6]. However, the prediction 

accuracy is related to the distribution of the outcome; for a rare event, accuracy can be high even 

with a completely non-informative model [7]. As a result, a fairer performance metric is the area 

under the receiver operating characteristic curve (AUC), which evaluates model predictions over 
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a range of probability thresholds from 0 to 1 [8]. An AUC of 0.5 implies a completely random 

prediction, while an AUC of 1.0 indicates perfect classification. A desirable property of AUC is 

insensitivity to the proportion of cases versus controls in the dataset [9]. While the AUC is 

commonly used to evaluate the performance of an ML algorithm, other metrics such as the under 

the precision-recall curve [10] can also be preferred. Thus, the metric of choice for a certain 

model depends on the clinical question of interest.  

 

Related Works 

The concept of empirically estimating the performance of a classification algorithm as the 

training set size increases has been widely explored in a variety of different settings. This is 

typically done by creating a “learning curve,” measuring a metric (such as classification 

accuracy) as a function of sample size [11]. Perlich et. al [12] compared logistic regression 

approaches versus decision-tree based approaches, demonstrating that logistic regression often 

outperforms tree induction in small samples, but decision trees excel as the sample size becomes 

large. Mukherjee et al [13] developed a method to assess the error rate of a classifier as a 

function of sample size using an inverse power-law model. Their method was introduced in the 

context of DNA microarray data, which often contains a large amount of features and limited 

access to samples due to cost restraints. Figueroa et al. [14] modified the original learning curve 

fitting process by using nonlinear weighted least squares to favor future predictions, using three 

moderately sized datasets to demonstrate their algorithm. More recently, Richter and 

Khoshgoftaar [15] experimented with learning curves on biomedical big data with limited labels 

and heavy class imbalance, using 1% of the full dataset AUC as their stopping rule. Because the 

cost of labelling certain types of data is expensive, it is important to maximize the quality of the 
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data while minimizing costs. They found that a semi-supervised approach and pseudo-labelled 

data generated from a small amount of actual data could accurately predict future performance.  

Our current study aims to develop algorithm-specific sample size guidelines using dataset-

specific variables that can be estimated or manipulated by researchers before any data has been 

collected, analogous to a sample size calculation performed in a traditional power analysis. We 

examined four popular binary classification algorithms in the context of clinical research, where 

the aim is to predict a health-related outcome such as a disease state or event. Previous 

contributions have focused on the methodology of learning curve fitting or estimating future 

performance from an already-collected sample. Previous studies have also mostly used small 

datasets in the context of -omics type data. In general, a focused clinical study often contains 

fewer features and fewer correlated features than -omics data [16]. The contributions of this 

study include a learning curve analysis of sixteen datasets, concrete sample size guidelines based 

on dataset-specific characteristics, as well as creation of an RShiny app where the guidelines 

developed from this analysis can be applied.  

 

Methods:  

Dataset Description  

We have collected sixteen public-access clinical datasets ranging from sample sizes of 70,000-

1,000,000. All datasets contained a single binary outcome, such as a disease state, with a 

combination of continuous numeric, discrete numeric, or binary predictors. Continuous numeric 

features were considered to have at least 10 unique values. Dataset characteristics, as well as 

their source location, were summarized. It should be noted that eight of these sixteen datasets 
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were artificially created from smaller real-life datasets using Bayesian Network Generation, and 

their details have been previously discussed [17].  

A detailed description of specific data pre-processing steps can be found in the supplementary 

section. In summary, nominal variables were converted to binary variables based on arbitrary 

binning rules, and variables containing text values (i.e. “gender”: male vs. female) were also 

converted to binary variables. Missing data was present in three datasets only (CDC Heart 

Disease (2022), Diabetes130, and COVID-19), although the amount of missingness was quite 

low among these sets (1.3%, <1.0%, and <1.0%, respectively). Without knowing additional 

information regarding the nature of these missing values, we considered them missing 

completely at random (MCAR) and performed mean-imputation [18].  

 

Learning Curve Approach 

From the sixteen datasets studied, we evaluated the cross-validated AUC (CV-AUC) as a 

function of increasing sample size. Our approach to generate learning curves for each dataset 

(and each algorithm) was as follows: 

1.) Create a list of proposed training set sizes. 
 

2.) At each point in the sample size interval, generate ten random samples of size n from the 
full dataset. 
 

3.) In each of the ten samples, estimate the (five-fold, outcome-stratified) CV-AUC on the 
proposed algorithm of choice. Average the ten CV-AUC values to generate an estimate of 
out-of-sample performance at a given n.  
 

4.) Repeat at the next n in the list.  
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For step 1.), the training set size list usually consisted of 10 evenly spaced points ranging from n 

= 500 to n = 50,000, but if convergence was not reached by n = 50,000, the end point was 

extended. For logistic regression, the final n was lower, as these models typically converged 

much earlier than more complex ML algorithms. A full description of the sample size intervals 

used for each dataset and each algorithm can be found in the Supplementary section. 

Convergence was defined as the smallest n where the CV-AUC was within two percentage points 

of the full-dataset AUC. For example, if the full-dataset AUC was 0.85, we would obtain the 

smallest n where a CV-AUC of 0.83 was first surpassed. We chose this stopping point (2% from 

full-dataset AUC) because we believed that it provided the most reasonable trade-off between 

high performance, computational burden, and sample size. The full-dataset AUC for each 

classification algorithm was calculated using five-fold stratified cross-validation [19] on the 

entire dataset.  

Once the raw data was generated, estimated learning curves were fit using nonlinear least 

squares optimization [20], following the power law equation: AUC(n) = anb + c, where a and b  

were estimated, and c was either fixed to be the full-dataset AUC or was also estimated, 

depending on the quality of the fit. For some datasets and algorithms, the power law function did 

not fit the data well. These were typically scenarios where the dataset required a relatively larger 

sample size to converge. In these scenarios, we instead fit the learning curves using a logarithmic 

function, AUC(n) = β0 + β1*log(n), where β0 and β1 were estimated using ordinary least-squares 

[21].  

 

Classification Algorithms 
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We examined the following binary classifiers on each dataset: logistic regression (LR) [22], 

random forest (RF) [23], XGBoost (XGB) [24], and neural networks (NN) [25]. These 

algorithms were selected due to their widespread and popular use in clinical data analysis. We 

performed logistic regression by fitting a multivariable model using all predictors without any 

variable selection methods. For the random forest and XGBoost algorithms, hyperparameters 

were left at their default values [23, 24]. For neural networks, we used the R package h2o [26] to 

perform our analyses; we considered one hidden layer with 20 units, and 10 epochs of data 

training.  

 

Sample Size Determination and Guidelines 

Following the learning curve analysis of the four selected algorithms on our datasets, we 

examined the effects of six dataset-level factors on the predicted sample sizes needed for 

convergence. These included minority class proportion (maximum value of 50%, indicating no 

class imbalance), separability (defined as the full-dataset AUC itself), the total number of 

features, the percentage of features that were continuous (versus binary or discrete numeric), the 

percentage of “core linear” features, and “dataset nonlinearity.” Core linear features were 

determined by adding an L1 (LASSO) penalty to the logistic regression model for each full 

dataset [27]. The percentage of variables that did not shrink to zero when this penalty was added 

were defined as core linear features. Dataset nonlinearity was a rough measure of the degree of 

nonlinear or interactive relationships between the predictors and the outcome that were present in 

the data. This was defined as the percentage point difference in the full-dataset AUC when using 

a complex algorithm (XGBoost) compared to logistic regression. For example, if logistic 

regression yielded a full-dataset AUC of 0.90 and XGBoost yielded a full-dataset AUC of 0.95, 
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the dataset nonlinearity would be calculated as 5.0%. For the purpose of calculating these values, 

XGBoost hyperparameters were left at their default values [24]. 

Within the context of each algorithm, the relationship between these dataset-specific variables 

and the n required for AUC convergence was examined. Because estimated sample sizes were 

discrete and right-skewed numeric values, we used negative binomial regression models [28] to 

quantify the strength and significance of each dataset characteristic on predicted sample sizes, 

which produce coefficients in terms of log-expected counts. Then, in multivariable negative 

binomial regression models for each algorithm, we selected up to three dataset-level predictors 

that together minimized the Akaike Information Criterion, which evaluates how well the model 

fits the data while penalizing for the number of parameters estimated [29]. A maximum of three 

predictors per model were considered in order to avoid potential overfitting. We also calculated 

adjusted deviance-based pseudo-R2 statistics [30,31], which further quantified each model’s 

goodness-of-fit and proportion of deviance explained by the predictors. The final model 

equations were reported and discussed for each algorithm, and visualizations of the model 

predictions at varying levels of each dataset-specific characteristic were generated. Statistical 

significance was set to α = 0.05 for all hypothesis tests considered, and RStudio version 4.2.3 

was used for all analyses.  

 

Expected Performance at Pre-Specified Sample Size 

As a secondary endpoint, we explored prediction of the expected difference between the training 

set AUC at size n and the full-dataset AUC. For this, we built a second set of models that used 

the empirical learning curve data for each of the sixteen datasets collected. The outcome was the 
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number of percentage points away from the full-dataset AUC that was achieved at each sample 

size point in the learning curve procedure. For example, if a dataset’s AUC was 0.80 and at n = 

500, an AUC of 0.75 was achieved, the difference calculated at this point would be 5%. 

Additionally, this outcome was natural log-transformed. Linear mixed effects models were fitted 

for each of the four algorithms with a dataset-level random intercept term, and sample size plus 

the (previously determined) top three dataset-specific characteristics for each algorithm as fixed 

effects. We also included interaction terms between sample size and each dataset specific 

characteristic, which modeled the potential difference in slopes across different levels of the 

covariates. After the models were fitted, we plugged in the expected sample sizes from the 

primary analysis (which represented an AUC difference of 2%, by definition), and examined the 

agreement between the output and the true values. Finally, we discussed the implications of using 

these models in conjunction with the main set of negative binomial models from the primary 

analysis.  

 

Results: 

We assembled sixteen datasets with sample sizes ranging from 70,000 to 1,000,000. Of the four 

classification algorithms examined, XGB performed the best or tied for the best performance on 

14/16 (87.5%) datasets, while random forest performed the best on two. Full dataset AUCs 

(separability) ranged from 0.608-0.979 (XGB), 0.609-0.976 (RF), 0.596-0.949 (LR), and 0.603-

0.974 (NN) (Table 2). As expected, logistic regression models generally performed the worst, 

with full-dataset AUCs that were 2.8 percentage points lower on average compared to XGB.  
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Learning Curve Results 

Learning curves were fit to the sixteen collected datasets. Table 2 and Figure 1 contain a full 

summary and visualization of estimated sample sizes across each classification algorithm and 

dataset. Neural networks required the largest sample sizes to reach convergence, and also had the 

most variability among the datasets (median n = 12,298, range: 1,824-180,835). Logistic 

regression required the smallest sample size to converge, and also was the least variable (median 

n : 696, range : 204-6,798). XGB required approximately three times the sample size compared 

to RF, but the range of estimated sample sizes generated from RF models was nearly twice as 

wide (Table 2). Figure 2 shows the fitted learning curves for each algorithm generated within 

each dataset, with a marker indicating the earliest sample size where the CV-AUC was within 

two percentage points of the full-dataset AUC.  

 

Dataset Specific Characteristics 

Dataset-specific characteristics were examined (Table 1). The average minority class percentage 

was 25.18% (± 15.93%) and average number of features was 18 (± 9). The average percentage of 

continuous numeric features was 24.60% (± 15.31%), and the average percentage of core linear 

features was 67.69% (± 23.73%). The median dataset nonlinearity was 1.85% (range: 0.50-

9.50%). Most datasets (13/16, 81.3%) had nonlinearity values under 5.0%. Thus, for the purpose 

of model fitting, this was converted into a binary variable indicating either high (≥ 5.0%) or low 

(< 5.0%). Scatterplots examining the visual relationships between log-expected sample sizes and 

each dataset-specific characteristic can be found in Figure 3.  

Negative binomial regression models were fitted, examining the individual associations between 

each of the dataset-specific characteristics and predicted sample sizes (Table 3). In these models, 
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separability (full-dataset AUC) was multiplied by 100 for easier interpretation. For example, an 

AUC of 0.80 was entered as 80.0 in the models. For XGBoost, minority class proportion and 

separability were both inversely related with sample size; for every 1% increase in separability 

(where 50.0 was the baseline value), estimated sample sizes were affected by a multiplier of 

0.955 (p=0.024). For every 1% increase in minority class proportion, estimated samples sizes 

were affected by a multiplier of 0.959 (p=0.0007). In datasets with high (≥ 5.0%) values of 

nonlinearity, estimated sample sizes were affected by a multiplier of 3.888 (p=0.005). In the 

Random Forest analyses, results were similar for minority class proportion (0.931× multiplier for 

1% increase, p=0.0003), separability (0.939× multiplier for each 1% increase over 50.0, 

p=0.047), and nonlinearity (15.984× multiplier for those with high values, p<0.0001). However, 

the percentage of continuous numeric features (1.065× multiplier for every 1% increase, 

p=0.003) was also individually statistically significant. For logistic regression, minority class 

proportion (0.963× multiplier for every 1% increase, p=0.001), the number of features (1.056× 

multiplier for each additional feature, p=0.006), the percentage of core features (0.982× 

multiplier for 1% increase, p=0.046), and the percentage of continuous numeric features (0.971× 

multiplier for 1% increase, p=0.042) were significantly associated with sample size. Again, a 

more balanced ratio of classes reduced the needed sample size, while more features increased 

sample size. However, a higher percentage of core linear features and a higher percentage of 

continuous numeric features lowered the sample size. Finally, for neural networks, results were 

similar to XGBoost; minority class proportion (0.953× multiplier for 1% increase, p=0.003), full-

dataset AUC (0.950× multiplier for each 1% increase over 50.0, p=0.031), and nonlinearity 

(6.85× multiplier for high values, p=0.0001) were all individually statistically significant.  
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In multivariable models for each algorithm, we selected the set of three predictors that 

minimized the AIC. The equation below, as well as Table 5, presents a summary of each 

algorithm-specific model, which shows the adjusted contribution of each predictor to the 

expected sample size.  

 

Equation 1: Empirically Derived Sample Size Equations for XGB, RF, LR, and NN algorithms 

1.) NXGB � 121,967 	 0.956Minority Class Proportion 	 3.091Nonlinearity 	 0.952Separability 

2.) N�� � 26,872 	 0.957Minority Class Proportion 	 12.298Nonlinearity 	 0.975Separability   

3.) NLR �1,801 	 0.968Minority Class Proportion	 0.988Core Features 	 1.054Number of Features   

4.)  N�� � 36,819 	 0.976Minority Class Proportion  	 10.209Nonlinearity 	 0.973Continuous Features   

 

For XGB and RF, minority class proportion, separability, and nonlinearity were the top three 

variables selected. For logistic regression, minority class proportion, number of features, and 

percentage of core features were the top three variables. For neural networks, the top three 

variables were minority class proportion, number of features, and nonlinearity. The direction and 

magnitude of coefficient estimates from multivariable models were similar to those obtained 

from univariable models (Table 5). Deviance-based R2 statistics, adjusted for the number of 

predictors added, were 0.845 (XGB), 0.808 (RF), 0.798 (LR), and 0.665 (NN) (Table 5). This 

indicated that the dataset-specific predictors explained a majority (66.5% - 84.5%) of the total 

deviance in the data among all four models, although the neural network model was weaker than 

the other three. Figure 4 shows the predicted sample sizes estimated from each algorithm-

specific model at a variety of levels for each predictor. As can be seen, for all four classification 
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algorithms, a balanced class ratio (50% cases versus 50% controls) resulted in the lowest 

predicted sample sizes.  

 

Expected Performance at Pre-Specified Sample Size 

From the empirical learning curve data, four additional models were built, examining the 

expected performance at each sample size point. The supplementary section includes a 

visualization of the AUC difference (between the full-dataset AUC and the AUC calculated at 

each n) for all datasets and all four algorithms. When values from the primary analysis (see: 

Table 3) were plugged into these models, we expected that the average output would be 2%, by 

definition. We found that all models provided predictions near this value (XGB: 1.84% on 

average, RF: 1.96%, LR: 1.78%, NN: 2.61%), and only the NN model tended to underestimate 

performance by more than a 0.5% difference in AUC.  

 

Discussion: 

In this study, we performed a learning curve analysis of sixteen datasets over four different 

classification algorithms. From this, we identified the expected samples needed to reach AUCs 

within two percentage points of those measured in the full dataset. We then examined the effects 

of dataset-specific characteristics on expected sample sizes, and provided formulas that can be 

used to predict the necessary sample size in a new dataset. We found that logistic regression 

required the smallest sample size (median n = 696) but performed slightly worse, on average, 

compared to more complicated algorithms. Random forest (median n = 3,404) and XGBoost 

algorithms (median n = 9,960) required larger sample sizes, as expected. Neural networks 
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required the largest sample size (median n = 12,998) and also had the most variability over the 

sixteen datasets. Dataset-specific variables that altered expected sample sizes varied by 

algorithm, but the class imbalance of the outcome, the strength and number of features, and 

nonlinearity of the predictors were among the most influential characteristics.  

This study provides a simple framework for determining sample size in the context of four 

popular machine learning algorithms. Most of the dataset-specific characteristics that we 

examined can be reasonably guessed or influenced before the study begins. For example, 

researchers can examine prior studies in their field of interest to determine a reasonable range for 

separability. For minority class proportion, which was a key selected feature for all four models, 

we observed that an optimal class balance (50% cases, 50% controls) led to the lowest predicted 

sample sizes, with each additional percentage point of balance decreasing the needed n by a 

multiplier of 0.96-0.98.  

Additionally, researchers can use feature engineering to control the quality and overall number of 

predictors included in their models. As we have determined in this study, a smaller number of 

strong predictors will generally require less sample size than a large and noisy predictor set, 

supporting the idea that more features is not always ideal [32]. Dataset nonlinearity is less 

intuitive to guess prior to data collection. In general, we found that datasets with nonlinearity 

values of at least 5.0% required approximately 3-12 times the amount of sample to reach 

convergence, depending on algorithm. However, in this study, 13/16 (81.3%) of the datasets had 

values under 5.0%, which means that high values of dataset nonlinearity may be uncommon. 

Again, prior studies where both simple (LR) and complex (NN/RF/XGB) methods are compared 

can help researchers determine if this value will be high. As a last resort, researchers can simply 

calculate expected sample sizes for both scenarios (< 5.0% and ≥ 5.0%) using the model 
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equations presented in this study and discuss the implications. It is also important to note that the 

effect of nonlinearity (and other dataset-specific characteristics) on estimated sample sizes is 

diminished when the class imbalance is optimized. This is due to the multiplicative nature of the 

negative-binomial regression models and is illustrated in Figure 4. Thus, it is critical that 

researchers aim to collect a sample with the most balance between cases and controls.  

As a secondary aim, we built models that inverted the learning curve data from the primary 

analysis, enabling prediction of the expected performance gap at some user-defined sample size. 

Because the same set of dataset-specific characteristics were used as covariates in these models, 

researchers can enter their expected dataset-specific characteristics and a sample size (or range of 

sample sizes), and will be given a prediction for the expected AUC difference at that n. Because 

we already derived the n where the AUC was 2 percentage points less than the full-dataset AUCs 

from our primary analysis, we were able to test the internal validity by plugging in these 

predicted sample sizes and seeing how close to 2% the mean output of each model was. We 

found that, on average, the XGB, RF, and LR models were quite close to this value, while the 

NN model tended to underpredict performance slightly more. Regardless, some error was 

expected due to variability in the empirical learning curve data. These models can provide 

valuable insight on the expected performance of each algorithm at a range of sample sizes, and 

may guide the choice of classification method, if researchers are limited by data collection.  

To our knowledge, no prior study has presented specific formulas for calculating sample size 

within the context of machine learning for a binary outcome in the field of healthcare/clinical 

data analysis. We examined sixteen datasets, which is a relatively large amount in this area of 

research - similar learning curve analyses have typically examined less than ten [14,15]. 

Assessment of more, potentially non-open access datasets, could strengthen these models and 
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provide clearer insight on dataset-specific effects on expected sample size, although the fact that 

we still observed many statistically significant relationships even with an effective sample size of 

n=16 is a strength of the study. Additionally, the datasets we examined had relatively low (< 50) 

numbers of features – generalization of the formulas presented in this study may not extrapolate 

to datasets with larger amounts of features. Finally, it is important to note that machine learning, 

specifically algorithms like random forest and XGBoost, can still outperform traditional 

parametric methods even if the sample size is limited (i.e. under n = 5,000), and when 

hyperparameter tuning is implemented [33, 34, 35]. Therefore, these guidelines should serve as a 

supplement, giving a general idea of how much sample is expected to reach a point of 

“diminishing returns,” where large amounts of additional data will only increase the AUC 

marginally. 

Future research in this area could examine different outcome types, such as multi-class or 

survival endpoints. Additionally, a more in-depth examination of XGBoost/RF/NN 

hyperparameters would be impactful, as all of the equations developed in this study considered 

only the default hyperparameter values. Finally, stacked machine learning methods [36], or 

different gradient-boosted tree algorithms such as CatBoost [37] or LightGBM [38] could be 

investigated. 
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Data Availability and Access: 

All datasets in CSV format and R Code will be uploaded to GitHub following publication. 

An RShiny app will become available for public use following publication, where users can 

calculate expected sample size from the equations and models generated in this study. 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306846doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306846


Table 1: Dataset-Specific Characteristics 

Dataset 
Name 

Source Full 
Dataset 

Size 

Minority 
Class 

Proportion 

Features  Core 
Linear 

Features 
(%) 

Continuous 
Features 
(%) 

Nonlinearity 

Cardio OpenML 70,000 50.0% 11 100.0% 45.5% 1.8% 
Diabetes130 OpenML 101,766 46.1% 35 45.7% 20.0% 0.8% 

NoShow OpenML 110,527 20.2% 8 25.0% 12.5% 1.2% 
BreastTumor OpenML 116,640 34.6% 9 44.4% 33.3% 9.5% 

Diabetes UCI 253,680 13.9% 21 85.7% 19.0% 0.7% 
COVID-19  OpenML 263,007 39.0% 16 37.5% 6.25% 2.2% 

LOS OpenML 318,438 2.1% 11 36.4% 27.3% 1.9% 
CDC Heart 

Disease 
(2020) 

Kaggle 319,795 4.4% 17 76.5% 23.5% 0.5% 

CDC Heart 
Disease 
(2022) 

Kaggle 394,509 8.6% 39 59.0% 15.4% 0.6% 

Heart OpenML 1,000,000 44.4% 13 92.3% 46.2% 1.6% 
Hepatitis OpenML 1,000,000 20.8% 19 94.7% 31.6% 4.0% 
Lymph OpenML 1,000,000 45.7% 18 83.3% 5.6% 2.3% 
Pharynx OpenML 1,000,000 25.6% 11 72.2% 18.2% 1.5% 

Cholesterol OpenML 1,000,000 16.5% 13 61.5% 30.8% 6.7% 
Dermatology OpenML 1,000,000 13.2% 33 84.8% 3.0% 3.6% 

PBC OpenML 1,000,000 17.8% 18 83.3% 55.6% 6.2% 
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Table 2: Full-Dataset AUC (Separability) for Each Algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Name XGB RF LR NN 
Cardio 0.802 0.796 0.784 0.795 

Diabetes130 0.662 0.661 0.654 0.661 
NoShow 0.608 0.609 0.596 0.603 

BreastTumor 0.777 0.780 0.682 0.730 
Diabetes 0.829 0.822 0.822 0.826 

COVID-19 0.664 0.661 0.642 0.661 
LOS 0.917 0.915 0.898 0.901 

CDC Heart Disease 
(2020) 

0.815 0.810 0.810 0.809 

CDC Heart Disease 
(2022) 

0.815 0.801 0.809 0.801 

Heart 0.965 0.963 0.949 0.962 
Hepatitis 0.979 0.976 0.939 0.974 
Lymph 0.957 0.957 0.934 0.956 

Pharynx 0.858 0.858 0.843 0.856 
Cholesterol 0.736 0.728 0.669 0.714 

Dermatology 0.859 0.857 0.823 0.852 
PBC 0.850 0.850 0.788 0.823 
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Table 3: Predicted Sample Sizes Needed to Reach 2% of Full-Dataset AUC from Learning Curve 

Analysis 

 

 

 

 

 

 

 

Dataset Name XGB RF LR NN 
Cardio 4,341 1,476 363 4,349 

Diabetes130 9,623 3,544 1,822 16,823 
NoShow 12,114 2,241 742 8,084 

BreastTumor 19,668 17,383 558 28,424 
Diabetes 9,306 2,261 1,140 8,556 

COVID-19 7,026 4,750 543 4,241 
LOS 18,239 15,381 2,555 14,085 

CDC Heart Disease 
(2020) 

15,177 4,995 2,243 10,510 

CDC Heart Disease 
(2022) 

30,534 16,355 6,768 25,120 

Heart 960 250 204 1,824 
Hepatitis 3,513 3,265 425 15,302 
Lymph 1,409 1,992 276 4,470 
Pharynx 10,296 2,488 317 5,260 

Cholesterol 65,556 140,499 1,368 180,835 
Dermatology 7,979 3,103 1,696 47,489 

PBC 31,897 71,194 650 53,453 
     

Median (Range) 9,960 (960 – 
65,556) 

3,404 (250-
140,499) 

696 (204-6,798) 12,298 (1824-180,835) 

Mean (SD), Log-
Transform 

9.16 (1.11) 8.57 (1.55) 6.75 (0.96) 9.47 (1.17) 
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Table 4: Univariable Association of Each Dataset-Specific Characteristic with Predicted Sample 

Size 

Variable XGB RF LR NN 
Minority Class 
Proportion 

0.959 [0.934-0.985], 
p=0.0007 

0.931 [0.891-0.977], 
p=0.0003 

0.963 [0.945-
0.983], p=0.001 

0.953 [0.921-
0.990], p=0.003 

Separability  0.955 [0.903-1.000], 
p=0.024 

0.939 [0.861-1.028], 
p=0.047 

0.999 [0.946-
1.051], p=0.976 

0.950 [0.898-
1.007], p=0.031 

Number of Features 1.000 [0.958-1.053], 
p=0.995 

0.966 [0.904-1.059], 
p=0.354 

1.056 [1.021-
1.097], p=0.006 

1.001 [0.947-
1.071], p=0.981 

Continuous 
Features (%) 

1.019 [0.986-1.057], 
p=0.211 

1.065 [1.013-1.121], 
p=0.003 

0.971 [0.942-
1.006], p=0.042 

1.019 [0.982-
1.059], p=0.04 

Core Linear 
Features (%)  

0.983 [0.958-1.001], 
p=0.071 

0.988 [0.941-1.034], 
p=0.413 

0.982 [0.959-
1.004], p=0.046 

0.994 [0.960-
1.028], p=0.610 

Dataset 
Nonlinearity 

3.889 [1.631-11.209], 
p=0.005 

15.985 [5.914-
55.754], p<0.0001 

0.585 [0.211-
2.112], p=0.346 

6.853 [2.763-
20.947], 
p=0.0001 
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Table 5: Multivariable Negative Binomial Regression - Data-Specific Characteristics Effect on 

Predicted Sample Size 

Variable XGB RF LR NN 
Intercept 121,967 [57,883-262,108] 26,872 [8,118-

92,378] 
1,801 [904-3,809] 36,819 [18,691-

76,970] 
Minority Class 
Proportion 

0.956 [0.946-0.967], 
p<0.0001 

0.957 [0.940-0.975], 
p<0.0001 

0.968 [0.957-
0.979], p<0.0001 

0.976 [0.957-0.996], 
p=0.016 

Separability 0.952 [0.934-0.970], 
p<0.0001 

0.975 [0.947-1.004], 
p=0.074 

-- -- 

Number of 
Features 

-- -- 1.054 [1.034-
1.076], p<0.0001 

-- 

Continuous 
Features (%) 

-- -- -- 0.973 [0.950-0.997], 
p=0.020 

Core Linear 
Features (%) 

-- -- 0.988 [0.980-
0.996], p=0.005 

-- 

Dataset 
Nonlinearity 

3.091 [2.011-4.922], 
p<0.0001 

12.298 [5.826-
28.791], p<0.0001 

-- 10.209 [4.274-
26.569], p<0.0001 

     
Metrics     
Adj. Psuedo-R2 0.845 0.808 0.798 0.665 
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Figure 1 : 

Visualization of expected sample sizes calculated from the learning-curve analysis of sixteen 

datasets. The y-axis represents the natural-log transformed sample size values, while the x-axis is 

grouped by classification algorithm. Each dataset is represented by a different color. 
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Figure 2 : 

Fitted learning curves for sixteen datasets across four classification algorithms. The x-axis is 

sample size, while the y-axis is area-under the receiver operating characteristic curve (AUC). 

Different colors were chosen for different algorithms. Each black X represents the point where 

the AUC at size n first comes within 2% (or, 0.02) of the asymptotic (i.e. full-dataset) AUC. 
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Figure 3 : 

Relationships between each dataset-specific characteristic and expected sample sizes. The y-axis 

represents the natural-log transformed sample size values, while each x-axis represents varying 

levels of each dataset-specific characteristic. Different colors were chosen for different 

algorithms. Lines represent simple lines-of-best fit, included for the purpose of visualization. 

Separability multiplied by 100. All values representing proportions were multiplied by 100 so 

that 0 indicates 0% and 100 indicates 100%. Nonlinearity “low” : < 5%, “high” : ≥ 5%. 
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Figure 4 : 

Fitted values derived from the four final negative binomial regression models for each 

classification algorithm. Shaded lines represent 95% confidence intervals. Imbalance = minority 

class proportion × 100. Separability = Full-dataset AUC × 100. Nonlinearity “low” : < 5%, 

“high” : ≥ 5%.  
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