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Abstract 

Background: Accumulating studies have suggested associations between peripheral inflammation and 

neurodegenerative disorders, including Parkinson’s disease (PD). 

Objective: To evaluate the causal associations between 91 plasma inflammatory proteins and 4 

neurodegenerative disorders.  

Methods: Two-sample Mendelian randomization studies were performed using summary statistics 

extracted from genome-wide association studies of 91 plasma inflammatory proteins and 4 

neurodegenerative disorders. 

Results: Genetically proxied tumor necrosis factor receptor superfamily member 9 levels were causally 

associated with reduced risk of PD (odds ratio [OR] = 0.82, 95% confidence interval [CI] = 0.74-0.92, p = 

4.18 x 10-4, Bonferroni-corrected p < 0.05 for 91 proteins). Additionally, we identified potential causal 

associations between the levels of C-C motif chemokine 20 (OR = 1.14, 95%CI = 1.03-1.25, p = 1.29 x 10-

2) and Alzheimer’s disease, between levels of leukemia inhibitory factor receptor (OR = 0.91, 95%CI = 

0.84-0.98, p = 1.12 x 10-2) and tumor necrosis factor-β (OR = 0.95, 95%CI = 0.93-0.98, p = 1.01 x 10-3) 

and amyotrophic lateral sclerosis, between levels of adenosine deaminase (OR = 0.81, 95%CI = 0.71-0.94, 

p = 5.14 x 10-3) and interleukin-18 (OR = 0.81, 95%CI = 0.69-0.96, p = 1.68 x 10-2) and multiple sclerosis.  

Conclusions: Our study unveils plausible causal associations between circulating inflammatory factors and 

risk of 4 neurodegenerative disorders. These findings hold promise for promoting risk assessment and 

prevention of neurodegenerative disorders, meriting further exploration. 

Keywords: Parkinson’s disease; Peripheral inflammation; Mendelian randomization; Neurodegenerative 

disease.  
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Introduction 

Although current medical and health services have dramatically increased the life expectancy of elderly 

population, the clinical management of neurodegenerative disorders (NDDs) remains a global health 

challenge 1-7. NDDs are characterized by the progressive degeneration of neural cells in central or peripheral 

nervous system, resulting in the impairment of motor, sensory, cognitive, emotional, and autonomic 

processes. Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and 

multiple sclerosis (MS) are the major types of NDDs, which significantly reduce the life expectancy and 

quality of life 6, 7.  

Over the past decade, increasing evidence has shed light on the important role of peripheral inflammation 

in the pathogenesis of NDDs 8. In MS, peripheral immune cells have been shown to trigger 

neuroinflammation and subsequent demyelination during disease flares 9, 10 and blocking of circulating T 

cell infiltration into the brain parenchyma with natalizumab has been shown to be an alternative targeted 

therapy in clinical management 11, 12. In addition, the mobilization and activation of peripheral immune cells 

have also been demonstrated to be key drivers of neurodegeneration in AD 8, 13, PD 8, 14, and ALS 8, 15, 16, 

thus, peripheral inflammation is also an invariant and fundamental feature of AD, PD, and ALS 8, 17. 

However, due to the complex compositions of peripheral immune system 8, 17, it remains unknown which 

molecular and cellular components of peripheral inflammation are causally involved in the pathogenesis of 

NDDs.  

 Mendelian randomization (MR) is a powerful method that uses randomly assigned genetic variants as 

proxies of exposures and infers the causal associations between exposure and outcome 18, 19. Considering 

the critical role of peripheral inflammation in the occurrence of NDDs, it is important to examine whether 

peripheral immune molecules or cells were causally associated with the risk of NDDs using MR analysis. 

Previous studies have used MR analysis to estimate the causal associations between immune cell traits and 

neurological diseases, such as AD20, 21, PD21, 22, ALS21, 23, MS24, 25, myasthenia gravis26, and subarachnoid 

hemorrhage27. However, how the circulating inflammatory proteins causally associate with NDDs remains 

to be identified. Zhao et al. (2023) conducted a genome-wide protein quantitative trait locus (pQTL) study 

of 91 circulating inflammatory proteins in 14,824 participants and identified 180 pQTLs (59 cis, 121 trans) 

28. In this study, we comprehensively examined the causality between the 4 NDDs and 91 plasma 

inflammatory proteins using a two-sample MR study. 

Methods 

Ethical approval 
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This MR study utilized summary statistics from previous published GWAS with ethical approval by 

corresponding ethics committee, therefore, additional ethical approval for current study is not required. 

Study design 

The overall study flowchart is illustrated in Fig. 1. MR analyses were performed in accordance with the 

STROBE-MR checklist 29 and Burgess et al.’s guidelines 30. In this study, we treated the plasma levels of 

each inflammatory protein as the exposure (a total of 91 inflammatory proteins; sample size: n = 14,824) 

28, and the risk of each NDD (PD, AD, ALS, and MS; sample size: n = 115,803 ~ 482,730) as the outcome 

in the MR analysis 31-34. According to the standard protocols of MR study 18, 19, 29, 30, each instrumental 

variable (IV) should satisfy three assumptions as shown below: (i) The IV is significantly associated with 

the exposure; (ii) The IV is independent of all the other IVs and potential confounding factors; (iii) The IV 

affects the outcome only through the exposure. During the MR analysis, multiple statistical approaches, 

such as inverse variance weighted (IVW) method and weighted median method, were performed, however, 

only IVW was selected to be the major method to examine causal associations due to its high statistical 

power 35, 36. To guarantee the statistical robustness of MR analysis, we conducted comprehensive 

downstream analyses to evaluate potential biases, which might undermine the reliability of our findings. 

Specifically, we applied MR-RAPS (Robust adjusted profile score)37 to assess the statistical robustness of 

MR analysis with weak genetic IVs as previously described 35, 38. The code of MR-RAPS is available at 

https://github.com/qingyuanzhao/mr.raps. MR-Egger regression 39 and Mendelian Randomization 

Pleiotropy RESidual Sum and Outlier (MR-PRESSO; https://github.com/rondolab/MR-PRESSO/) 40 tests 

were performed to assess potential bias due to pleiotropy. Leave-one-out (LOO) analyses were conducted 

to evaluate the bias caused by individual predominant IVs 35. The reverse MR analyses, steiger test of 

directionality, and steiger filtering were performed to exclude the possibility of reverse causation. All 

statistical analyses were conducted by TwoSampleMR package installed in R software (version 4.3.1; R 

Foundation for Statistical Computing, Vienna, Austria). 

Exposure data 

GWAS data of circulating inflammatory proteins were sourced from 

https://www.phpc.cam.ac.uk/ceu/proteins and the EBI GWAS Catalog (accession numbers 

GCST90274758 to GCST90274848) 28. This dataset comprised the genome-wide protein quantitative trait 

locus (pQTL) mapping of 91 plasma inflammatory proteins measured using the Olink Target platform in 

14,824 participants of 11 cohorts 28.  

Outcome data 
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The GWAS summary statistics of PD (GWAS ID: ieu-b-7) 32, AD (GWAS ID: ieu-b-2) 33, ALS (GWAS 

ID: ebi-a-GCST90027163) 34, and MS (GWAS ID: ieu-b-18) 31 were all extracted from IEU OpenGWAS 

project (https://gwas.mrcieu.ac.uk/). The GWAS of PD involved 33,674 PD cases and 449,056 control 

individuals from International Parkinson’s Disease Genomics Consortium (IPDGC) 32. The GWAS of AD 

was conducted in 21,982 AD cases and 41,944 controls collected from multiple international cohorts 33. 

The GWAS of ALS was conducted in 27,205 ALS cases and 110,881 controls 34. The GWAS of MS was 

performed in 47,429 MS cases and 68,374 controls from International Multiple Sclerosis Genetics 

Consortium (IMSGC) 31. All participants recruited in above original GWAS were of European ancestry. 

The GWAS summary statistics of above 4 NDDs have been widely utilized in previous MR studies 36, 41.  

Selection of genetic IVs 

To increase the statistical power of MR analysis, our study initially applied a relaxed statistical p-value 

threshold (p < 1 x 10-5) to screen the IVs as previously used 38. Then, the linkage disequilibrium (LD) 

clumping was further implemented using 1000 Genomes Project Phase 3 reference panel for the European 

populations within a 10 MB window to select SNPs that were independently (r2 < 0.001) associated with 

circulating inflammatory proteins. If a particular requested SNP was not present in the outcome GWAS, 

then highly correlated proxy SNPs (r2 > 0.8) were searched as IVs.  Heterogeneity test was conducted to 

detect outliers and improve the accuracy and robustness of IVs and Rucker’s Q’ test for MR-Egger model 

was performed to evaluate heterogeneity or directional pleiotropy 42. Funnel plot was also utilized to assess 

the heterogeneity of IVs. p < 0.05 in the heterogeneity test indicated the necessity of IV adjustments.  

Removing confounders 

SNPs associated with potential confounders, such as drinking and smoking behavior, were removed. 

Specifically, PhenoScanner V2 (http://www.phenoscanner.medschl.cam.ac.uk/) and NHGRI-EBI GWAS 

catalog (https://www.ebi.ac.uk/gwas/docs/file-downloads/) were used to exclude the SNPs associated with 

confounders. 

Two-sample MR analyses 

An IVW regression method with a fixed-effects model was employed as the primary causal inference. 

Complementary MR analyses were conducted using the MR Egger, weighted median, simple mode, and 

weighted mode methods to strengthen the validity of the IVW estimates. MR-RAPS provided a robust 

inference for MR analysis using many weak IVs 37. All these methods were implemented by the functions 

‘mr_ivw’, ‘mr_egger_regression’, ‘mr_weighted_median’, ‘mr_raps’, and ‘mr_weighted_mode’ in the 

TwoSampleMR v0.4.26 R package. Bonferroni approach was utilized to correct for multiple hypothesis 
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testing. Significance was defined as Bonferroni-corrected p < 0.05 (uncorrected p < 5 x 10-4 [0.05/91]), 

whereas uncorrected p < 0.05 that did not meet the Bonferroni-corrected threshold was suggested as 

potential causal association. 

Sensitivity analysis 

First, LOO analysis was performed to examine whether the causal association was particularly driven by a 

single SNP (p < 0.05 was regarded as an outlier). Second, MR-PRESSO global test 

(https://github.com/rondolab/MR-PRESSO/) was used to detect IVs affected by horizontal pleiotropy (p < 

0.05). Third, an MR-Egger regression was conducted to examine the potential bias of directional pleiotropy. 

The intercept in the Egger regression was interpreted as evidence of pleiotropy when the value differed 

from zero (p < 0.05).  

Results 

The Fig. 2 summarized the overall MR causal estimates. Among 91 plasma inflammatory proteins, only 

the levels of tumor necrosis factor receptor superfamily member 9 (TNFRSF9) were found to be causally 

associated with reduced risk of PD (OR = 0.82, 95%CI = 0.74-0.92, p = 4.18 x 10-4, Bonferroni-corrected 

p < 0.05 for 91 proteins). By contrast, other circulating inflammatory proteins failed to reach statistical 

significance. For AD, we identified a potential causal association between the levels of C-C motif 

chemokine 20 (CCL20) and risk of AD (OR = 1.14, 95%CI = 1.03-1.25, p = 1.29 x 10-2). For ALS, the 

levels of leukemia inhibitory factor receptor (LIFR) (OR = 0.91, 95%CI = 0.84-0.98, p = 1.12 x 10-2) and 

tumor necrosis factor-β (TNF-β) (OR = 0.95, 95%CI = 0.93-0.98, p = 1.01 x 10-3) were revealed to confer 

risk of ALS.  For MS, the levels of adenosine deaminase (OR = 0.81, 95%CI = 0.71-0.94, p = 5.14 x 10-3) 

and interleukin-18 (IL-18) (OR = 0.81, 95%CI = 0.69-0.96, p = 1.68 x 10-2) were causally associated with 

reduced risk of MS. The LOO analyses and other downstream statistical analyses, such as heterogeneity 

analysis, pleiotropy test, MR-RAPS, Steiger directionality test, and MR-PRESSO test, all supported the 

reliability of above findings (Supplementary Table 1, Supplementary Fig. 1-2). Zhao et al. (2023) 

identified a potential causal association between circulating CD40 levels and MS (OR = 0.75, 95%CI = 

0.70–0.82, p = 1.20 × 10−12) 28, however, in this study, we found the causal association (OR = 0.79 95%CI 

= 0.73–0.85, p = 2.91 x 10-10) between plasma CD40 levels and MS was biased by a SNP (rs1883832, p = 

1.07 x 10-281 in outcome GWAS) strongly associated with the risk of MS (Fig. 3A-C). When the SNP 

(rs1883832) was removed from the MR models, no significantly causal association was detected (Fig. 3D-

F). 

Discussion 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306837doi: medRxiv preprint 

https://github.com/rondolab/MR-PRESSO/
https://doi.org/10.1101/2024.05.03.24306837


Previous evidence has suggested neuroinflammation in central nervous system plays a key role in the 

pathogenesis of NDDs 43-45. Although dysregulated peripheral immunity has also been observed in NDDs 

according to previous studies8-10, 15, 16, whether peripheral immune dysfunction is causally associated with 

risk of NDDs is largely unknown. In this study, we demonstrate potential causal relationships between 

several plasma inflammatory proteins and risk of NDDs. Especially, the levels of TNFRSF9 are causally 

associated with reduced risk of PD by 18%, which even remains statistically significant after Bonferroni 

correction for multiple hypothesis testing. Our findings support the causality between circulating 

inflammatory proteins and risk of 4 NDDs, suggesting that peripheral inflammation has a significant clinical 

influence on 4 NDDs.  

The dysregulations of peripheral immunity have been observed in 4 NDDs 8-10, 15-17. For innate immunity, 

both monocytes and macrophages have been revealed to be involved in the occurrences of NDDs, including 

PD 46-48, ALS 49, 50, and MS 51, 52. Abnormal activations of monocytes have been observed in PD patients 47, 

48 and monocytes seem to exhibit age-dependent impairment of α-synuclein oligomer uptake 53. In ALS, 

the modification of peripheral macrophages could suppress proinflammatory microglial responses and exert 

neuroprotection 50. In MS, remarkable bone marrow myelopoiesis has been shown to increase the invasion 

of peripheral neutrophils and Ly6Chigh monocytes into brain parenchyma 52. Especially, Cxcl10+ monocytes 

have been shown to induce experimentally autoimmune encephalomyelitis, a model of MS 54. As to 

adaptive immunity, infiltration of peripheral CD8+ T cells into AD cultures could induce abnormal 

microglial activation, neuroinflammation and neurodegeneration 13. Additionally, PD patients exhibit 

reduced blood CD8+ cytotoxic T cells, which are primarily associated with the severity of the disease. 

Importantly, peripheral Th17 lymphocytes from PD patients have been demonstrated to induce neuronal 

cell death in an iPSC-based PD model 55. In ALS, increased blood CD4+EOMES+ T cells are associated 

with poor prognosis 56 and T cells have been shown to infiltrate into the spinal cord of sporadic ALS patients 

57. In MS, blood memory B cells are demonstrated to activate autoreactive CD4+ T cells to trigger 

neuroinflammation and demyelination 58. All these findings suggest that peripheral immune dysregulation 

is a remarkable pathological marker of NDDs. With MR analysis, previous studies have also shown several 

blood immune cell traits are causally correlated with 4 NDDs, including AD20, 21, PD21, 22, 59, ALS21, 23, and 

MS24, 25. In this study, we provided new evidence that peripheral inflammatory proteins are also causally 

associated with NDDs, which further support the causal role of peripheral immune dysregulation in the 

pathogenesis of NDDs. TNFRSF9 is a receptor for TNFSF9/4-1BBL (also known as CD137L), which is a 

type II membrane protein of the TNF superfamily. TNFRSF9 could enhance the survival, cytotoxicity, and 

mitochondrial activity of CD8+ T cell, thereby enhancing immunity against viruses and tumors 60, 61. The 

levels of TNFRSF9 are increased in PD patients 62, especially in those with cognitive impairment 62.  

Patients with mutations in DJ-1 develop early-onset PD and exhibit slow disease progression, while a novel 
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variant that contains the partial deletion of neighboring genes DJ-1 (del exons 1-5) and TNFRSF9 (del 

exons 1-6) is revealed to cause a new type of juvenile PD with remarkably earlier disease onset 63. In current 

study, we find levels of TNFRSF9 are associated with reduced risk of PD, which indicates TNFRSF9 may 

play a protective role in PD patients. However, according to previous literature, the specific mechanisms 

of TNFRSF9 involved in PD pathophysiology have not been investigated before. The dysregulations of T 

cell immunity have been shown to induce neuroinflammation and dopaminergic neurodegeneration in PD 

patients 64-67. Considering the key role of TNFRSF9 in the modulation of CD8+ T cells 60, 61, we hypothesize 

that TNFRSF9 may regulate CD8+ T cells to participate in the neuroinflammation of PD patients. Future 

studies are required to further decode the molecular and cellular mechanisms underlying the effects of 

TNFRSF9 in PD patients. We find the levels of CCL-20 are associated with increased risk of AD, which is 

consistent with previous studies showing that chemokines are associated with cognitive impairment in AD 

patients 68. Although the specific role of CCL-20 in AD has not been studied before, other chemokines, 

such as CXCL1 and CXCL10, have been shown to mediate neuroinflammation and neurodegeneration in 

AD models 13, 69. LIFR is a receptor for LIF, which is a member of the IL-6 cytokine family. LIF gene has 

been shown to be modifier gene in the pathogenesis of ALS 70. Interestingly, a recent MR analysis has also 

revealed that LIFR levels are causally associated with ALS risk 71, which are consistent with our results. 

Adenosine deaminase is a key enzyme in purine salvage pathways and the mutations in adenosine 

deaminase gene cause autosomal recessive severe combined immunodeficiency (SCID). MS patients 

exhibit elevated levels of adenosine deaminase in CSF 72 and elevated adenosine deaminase activities in 

serum 73. Besides, the distribution of adenosine deaminase isoenzymes has been shown to be impaired in 

CSF and plasma of MS patients 74. It seems that adenosine deaminase may regulate the pathogenesis of MS 

through adenosinergic signaling 75. IL-18 607C/A gene promoter polymorphism has been shown to be a 

major genetic factor for MS 76 and the serum levels of IL-18 are increased in MS patients 77, 78. In this study, 

we found the plasma IL-18 levels are associated with reduced risk MS patients, indicating IL-18 may play 

an essential role in the occurrence of MS.  

Previous MR analysis reported a causal association between plasma CD40 levels and MS risk 28, however, 

we didn’t completely duplicate their results. In their analysis, they used quasi-independent variants (r2 < 

0.1) to select IVs, which may increase LD of IVs and bias of their results. Actually, we found the causal 

association between plasma CD40 levels and MS may be biased by a risk variant of MS, rs1883832 31. 

rs1883832 is a cis-pQTL of plasma CD40 and the GTEx project has shown that rs1883832 C allele is 

associated with increased CD40 levels in both blood (p < 1.6 x 10-13) and cerebral cortex (p < 5.6 x 10-7).  

Additionally, previous studies have shown that the CD40–CD40L costimulatory pathway is implicated in 

the pathogenesis of MS 79-81 and anti-CD40L monoclonal antibody frexalimab has been shown to reduce 
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the number of new gadolinium-enhancing T1-weighted lesions in MS patients 82. Based on these results, 

we conclude that CD40–CD40L pathway may be causally associated with pathogenesis of MS, however, 

whether plasma CD40 levels are causally associated with MS risk remains to be further elucidated.  

In conclusion, our study indicates the peripheral inflammation may be causally associated with 4 NDDs. 

Future studies are encouraged to decipher the molecular mechanisms underlying the associations between 

circulating inflammatory proteins identified in this study and the pathogenesis of 4 NDDs.  
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Figure legends 

Fig. 1 Workflow of the causal inference between circulating inflammatory proteins and NDDs. 

Abbreviations: NDD, Neurodegenerative disorder; AD, Alzheimer’s disease; PD, Parkinson’s disease; ALS, 

amyotrophic lateral sclerosis; MS, multiple sclerosis; GWAS, Genome-wide association study; SNP, single 

nucleotide polymorphism; IV, Instrumental variable; LD, Linkage disequilibrium; MAF, minor allele 

frequency; MR, Mendelian randomization; IVW, Inverse variance weighted; MR-RAPS, Mendelian 

randomization-robust adjusted profile score; MR-PRESSO, Mendelian Randomization Pleiotropy 

RESidual Sum and Outlier.  

Fig. 2 Causalities in the MR analysis. A-F The forest plot shows the significant causalities in PD (A), AD 

(B), ALS (C-D), and MS (E-F). The effect estimates represent the OR of disorder and error bars represent 

95% CIs. All statistical tests were two sided. p < 5 × 10−4 after Bonferroni correction was considered 

significant. Causal effects were estimated using five two-sample MR methods (MR-Egger, IVW, weighted 

median, weighted mode, and simple mode). Abbreviations: AD, Alzheimer’s disease; PD, Parkinson’s 

disease; ALS, Amyotrophic lateral sclerosis; MS, Multiple sclerosis; TNFRSF9, Tumor necrosis factor 

receptor superfamily member 9; CCL20, C-C motif chemokine 20; LIFR, Leukemia inhibitory factor 

receptor; TNF-β, Tumor necrosis factor-β; IL-18, Interleukin-18; MR, Mendelian randomization; IVW, 

Inverse variance weighted; MR-RAPS, Mendelian randomization-robust adjusted profile score; MR-

PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier.  

Fig. 3 The MR causal estimates between plasma CD40 level and risk of MS. A-C The causal association 

between plasma CD40 levels and MS is determined by rs1883832, which is strongly associated with the 

risk of MS (p = 1.07 x 10-281). D-F When the rs1883832 was removed from the MR models, no significantly 

causal association was detected. Abbreviations: SNP, single nucleotide polymorphism; MR, Mendelian 

randomization; MS, Multiple sclerosis.  
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