
   

 

   

 

Title: Alcohol use disorder and body mass index show genetic pleiotropy and shared neural 

associations 

 

Authors: *Samantha G. Malone, PhD1,2; *Christal N. Davis, PhD3,4,; Zachary Piserchia, MS1,2; 

Michael R. Setzer, ScM1; Sylvanus Toikumo, PhD3,4; Hang Zhou, PhD5,6,7; Emma L. Winterlind, 

MPS1,2; Joel Gelernter, MD5,6, Amy Justice, MD, PhD5,8,9; Lorenzo Leggio, MD, PhD10,11,12,13; 

Christopher T. Rentsch, PhD8,14; Henry R. Kranzler, MD3,4; Joshua C. Gray, PhD1 

 

*Equal contributions 

 

Affiliations: 
1 Uniformed Services University of the Health Sciences, Department of Medical and Clinical 

Psychology, Bethesda, MD 20814, United States 
2 Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 

20817, United States 
3 Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, 

Philadelphia, PA 19104, United States 
4 Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United 

States  
5 Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, United States 
6 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, United 

States 
7 Department of Biomedical Informatics and Data Science, Yale University School of Medicine, 

New Haven, CT 06510, United States 
8 Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, United 

States 
9 Yale University School of Public Health, New Haven, CT 06510, United States 
10 Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational 

Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol 

Abuse and Alcoholism, National Institutes of Health, Baltimore, MD 21224, United States 
11 Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, 

School of Public Health, Brown University, Providence, RI 02903, United States 
12 Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins 

University, Baltimore, MD 21287, United States 
13 Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, 

United States 
14London School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom 

 

Corresponding author 

Joshua C. Gray, PhD 

Uniformed Services University of the Health Sciences 

4301 Jones Bridge Rd 

Bethesda, MD 20814 

Joshua.gray@usuhs.edu 

410-707-1180 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:Joshua.gray@usuhs.edu
https://doi.org/10.1101/2024.05.03.24306773


   

 

1 

 

Funding Source: This work was supported by funding from the National Institute on Alcohol 

Abuse and Alcoholism (R01 AA030041 and R01 AA030056), the Department of Defense 

(HU0001-22-2-0066), and the Veterans Integrated Service Network 4 Mental Illness Research, 

Education and Clinical Center of the Crescenz Veterans Affairs Medical Center. LL is a federal 

employee and is supported by the National Institute on Drug Abuse and the National Institute on 

Alcohol Abuse and Alcoholism Intramural Research Programs. 

Disclaimer: The opinions and assertions herein are those of the authors and do not necessarily 

reflect the official views of the Henry M. Jackson Foundation for the Advancement of Military 

Medicine, Inc. Moreover, the opinions and assertions herein do not necessarily reflect the official 

views of the Department of Defense, Uniformed Services University, the National Institute on 

Alcohol Abuse and Alcoholism, the US Government, and do not imply endorsement by the 

Federal Government. 

Disclosures: HRK is a member of advisory boards for Dicerna Pharmaceuticals, Sophrosyne 

Pharmaceuticals, Enthion Pharmaceuticals, and Clearmind Medicine; a consultant to Sobrera 

Pharmaceuticals; the recipient of research funding and medication supplies for an investigator-

initiated study from Alkermes; and a member of the American Society of Clinical 

Psychopharmacology’s Alcohol Clinical Trials Initiative, which was supported in the last three 

years by Alkermes, Dicerna, Ethypharm, Lundbeck, Mitsubishi, Otsuka, and Pear Therapeutics. 

JG and HRK hold U.S. patent 10,900,082 titled: "Genotype-guided dosing of opioid agonists," 

issued 26 January 2021. JG is paid for editorial work for the journal “Complex Psychiatry."  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306773


   

 

2 

 

Abstract 

Background: The prevalence of co-occurring heavy alcohol consumption and obesity is 

increasing in the United States. Despite neurobiological overlap in the regulation of alcohol 

consumption and eating behavior, alcohol- and body mass index (BMI)-related phenotypes show 

no or minimal genetic correlation. We hypothesized that the lack of genetic correlation is due to 

mixed effect directions of variants shared by AUD and BMI. 

  

Methods: We applied MiXeR, to investigate shared genetic architecture between AUD and BMI 

in individuals of European ancestry. We used conjunctional false discovery rate (conjFDR) 

analysis to detect loci associated with both phenotypes and their directional effect, Functional 

Mapping and Annotation (FUMA) to identify lead single nucleotide polymorphisms (SNPs), 

Genotype-Tissue Expression (GTEx) samples to examine gene expression enrichment across 

tissue types, and BrainXcan to evaluate the shared associations of AUD and BMI with brain 

image-derived phenotypes.  

  

Results: MiXeR analysis indicated polygenic overlap of 80.9% between AUD and BMI, despite 

a genetic correlation (rg) of -.03. ConjFDR analysis yielded 56 lead SNPs with the same effect 

direction and 76 with the opposite direction. Of the 132 shared lead SNPs, 53 were novel for 

both AUD and BMI. GTEx analyses identified significant overexpression in the frontal cortex 

(BA9), hypothalamus, cortex, anterior cingulate cortex (BA24), hippocampus, and amygdala. 

Amygdala and caudate nucleus gray matter volumes were significantly associated with both 

AUD and BMI in BrainXcan analyses. 

   

Conclusions:  More than half of variants significantly associated with AUD and BMI had 

opposite directions of effect for the traits, supporting our hypothesis that this is the basis for their 

lack of genetic correlation. Follow-up analyses identified brain regions implicated in executive 

functioning, reward, homeostasis, and food intake regulation. Together, these findings clarify the 

extensive polygenic overlap between AUD and BMI and elucidate several overlapping 

neurobiological mechanisms. 
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Introduction 

Alcohol use disorder (AUD) and obesity adversely impact millions of individuals and 

contribute to hundreds of billions of dollars in combined annual economic cost (Apovian, 2016; 

Sacks et al., 2015). The detrimental health impacts of AUD include increased risk for cancers of 

the liver, head, and neck; cardiovascular disease; and liver disease including cirrhosis (Kranzler, 

2023). Obesity, typically defined as a body mass index (BMI) of greater than 30 kg/m2 (Apovian, 

2016), is associated with increased risk for hypertension, type II diabetes, coronary artery 

disease, liver disease, and various cancers (Hruby et al., 2016). The incidence and prevalence 

rates of co-occurring heavy alcohol consumption and obesity are increasing in the United States 

(Raza et al., 2023). 

Substance use disorders, including AUD, are thought to share pathophysiological 

mechanisms with obesity. For example, the neurotransmitter dopamine plays integral roles in 

both eating and substance use behaviors by impacting motivation, self-regulation, and 

reinforcement (Volkow et al., 2008, 2017). Evidence of other overlapping neurocircuitry-based 

mechanisms that contribute to addiction and pathological overeating has also accumulated 

(Moore et al., 2017), which supports the concept of obesity as an addictive disorder (Lindgren et 

al., 2018), though this remains controversial (Gearhardt & Hebebrand, 2021). There is also 

overlap in the interaction of both alcohol and food with appetite-related neuroendocrine 

pathways such as ghrelin (Deschaine & Leggio, 2022; Farokhnia et al., 2019) and glucagon-like 

peptide-1 (GLP-1) (Klausen et al., 2022). Interest in this putative overlap has been heightened by 

recent reports that GLP-1 receptor agonists (GLP-1RAs)—approved for treating type 2 diabetes 

and obesity—may represent potential new pharmacotherapies for AUD (Leggio et al., 2023). 

Similarly, medications used to treat AUD reduce weight in individuals with obesity (Elmaleh-
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Sachs et al., 2023). For example, topiramate, recommended as an off-label treatment for AUD 

(Perry et al., 2022; Reus et al., 2018), is approved in combination with phentermine as a weight 

loss medication.  

Both AUD and obesity have substantial genetic contributions, with an estimated 

heritability of 50% for AUD (Verhulst et al., 2015) and 40-70% for obesity (Loos & Yeo, 2022). 

Despite shared neurobiological pathways and a high rate of co-occurrence in some populations, 

the genetic correlation between alcohol- and BMI-related phenotypes is non-significant 

(Saunders et al., 2022; Zhou et al., 2023). In the two largest studies to date, null genetic 

correlations were reported between obesity and problematic alcohol use (i.e., a phenotype that 

combines AUD diagnoses and a quantitative measure of harmful drinking; rg = -0.03) and drinks 

per week (rg = 0.03) in European-ancestry individuals (Saunders et al., 2022; Zhou et al., 2023).  

Although these findings are consistent with a modest amount of shared genetic variation 

between the two traits, an alternative hypothesis is that the presence of shared variants with both 

concordant and discordant effects across the two phenotypes obscures evidence of genome-wide 

correlation. Other analytic methods, such as bivariate causal mixture models, are not influenced 

by the directionality of the variants’ effects making them more appropriate to evaluate the extent 

of polygenic overlap between the two conditions (Frei et al., 2019). For example, accounting for 

concordant and discordant variant effects has revealed substantial shared genetic relationships 

between psychiatric and medical or cognitive traits despite small or null genetic correlations 

(Hindley et al., 2022). 

In this study, we utilized MiXeR to investigate the overall shared genomic  

architecture between AUD and BMI. MiXeR is a statistical method that estimates the potential 

causal variants for each trait and the total degree of overlap between two traits without regard to 
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the direction of variants’ effects, thereby identifying the extent of unique and shared genetic 

architecture (Frei et al., 2019). MiXeR has been used to identify genetic overlap across multiple 

psychiatric disorders (Hindley et al., 2022), psychiatric disorders and irritable bowel syndrome 

(Tesfaye et al., 2023), and psychiatric disorders and cognitive traits such as educational 

attainment (Demontis et al., 2023; Hope et al., 2023). To complement MiXeR’s overarching 

approach, we also used the conjunctional false discovery rate (conjFDR) method to identify 

specific overlapping loci (Smeland et al., 2020). We hypothesized that the absence of genetic 

correlation between AUD and BMI is attributable to the presence of shared variants with 

inconsistent directions of effect and that this would be evidenced by both (1) greater genetic 

overlap than would be predicted by the observed genetic correlation and (2) shared loci showing 

a mixture of consistent and inconsistent effect directions. After testing that hypothesis, we 

conducted follow-up functional annotation and drug repurposing analyses on shared loci 

identified by conjFDR. Additionally, we examined the associations of AUD and BMI risk with 

brain image-derived phenotypes (IDPs) to identify potential shared neural underpinnings.  In 

doing so, we aimed to uncover the genomic architecture and physiologic pathways shared by 

AUD and BMI to advance our understanding of mechanisms contributing to their comorbidity 

and aid in the development of physiologically-informed interventions.    

Methods 

Samples 

We used summary statistics from two large-scale GWAS for AUD (N = 753,248; Ncase = 

113,325) (Zhou et al., 2023) and BMI (N = 681,275) (Yengo et al., 2018). The AUD GWAS 

summary statistics were derived from a meta-analysis of several cohorts of individuals with 

AUD or alcohol dependence (AD) diagnoses and controls with no diagnosis. Despite differences 
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in the specific criteria used for diagnosis across cohorts, the genetic correlation across diagnostic 

categories and cohorts was very high (Million Veteran Program AUD and Psychiatric Genomics 

Consortium AD rg = .98) (Zhou et al., 2020). We excluded UK Biobank participants from the 

AUD GWAS to minimize the overlap of participants between the two studies and inflation by 

cross-trait enrichment (Smeland et al., 2020). The BMI GWAS summary statistics were derived 

from a meta-analysis of two cohorts: the Genetic Investigation of Anthropometric Traits 

(GIANT) consortium and the UK Biobank. All participants were of European ancestry (for more 

details, see original publications and Supplemental Table 1). 

Characterizing polygenic overlap 

MiXeR (Frei et al., 2019; Holland et al., 2020) was applied to investigate the overall 

shared genetic architecture between AUD and BMI. Univariate MiXeR analyses were first 

conducted to estimate each trait’s polygenicity (i.e., the number of potential causal variants 

required to explain 90% of single nucleotide polymorphism [SNP] heritability) and 

discoverability (i.e., the average estimated effect size of causal variants). Next, bivariate models 

were implemented to identify the number of unique and shared causal variants for each pair of 

traits. These models also provide estimates of the proportion of causal variants with concordant 

directions of effect. The Dice coefficient, an indicator of the proportion of polygenic overlap, is 

also computed. Conditional Q-Q plots were produced to visualize cross-trait enrichment. These 

plots show the distribution of p-values for a primary phenotype as a function of its association 

with the secondary phenotype at three p-value strata (p ≤ 0.1, 0.01, and 0.001). As a secondary 

analysis, we used MiXeR to examine the shared genetic architectures of AUD and BMI with 

other psychiatric traits (major depressive disorder, attention-deficit/hyperactivity disorder 

[ADHD], schizophrenia) and height (Demontis et al., 2023; Howard et al., 2019; Trubetskoy et 
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al., 2022; Yengo et al., 2018). This secondary analysis shows how the shared genetic architecture 

of AUD and BMI compares with that of other psychiatric traits and height. Also, for all traits, 

LD Score regression (LDSC) v1.0.1 was used to calculate heritability (Bulik-Sullivan et al., 

2015), genetic correlations, and standard errors. 

We used conjFDR (Andreassen et al., 2013; Smeland et al., 2020) analysis to detect loci 

significantly associated with both phenotypes, including variants with opposite directions of 

effect. To achieve this, conditional false discovery rate (condFDR) estimates were first obtained 

by conditioning the primary phenotype’s (i.e., AUD) test statistics on a secondary phenotype’s 

(i.e., BMI’s) SNP associations. A condFDR value for the second phenotype conditioned on the 

first’s SNP associations was calculated by reversing the order of phenotypes from the first 

condFDR assessment. ConjFDR defines the value for each association as the maximum of the 

two condFDR values for the given SNP, providing a conservative estimate of the SNP 

association with both phenotypes. Statistical significance was defined as a conjFDR value < 

0.05. 

Genomic loci definition and gene-set enrichment 

SNPs having a conjFDR<.05, indicating significant SNP effects on both AUD and BMI, 

were input into Functional Mapping and Annotation (FUMA) v1.5.2 (Watanabe et al., 2017) to 

identify LD-independent genomic loci. Independent significant SNPs were identified using a LD 

block distance for merging of < 250 kb, r2 < 0.6, and the European ancestry 1000 Genomes 

reference panel (Auton et al., 2015). Of the independent SNPs, lead SNPs were identified using 

r2 < 0.1. Each locus is represented by a single lead SNP with the lowest conjFDR value. The 

novelty of lead SNP was determined by examining whether variants were genome-wide 

significant (p < 5x10-8) in the AUD and BMI summary statistics. Lead SNPs were assigned to 
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genes based on presence within the gene or otherwise distance to the nearest gene transcription 

start site. Annotations for the lead SNPs corresponding to Variant Effect Predictor (VEP), 

Combined Annotation Dependent Deletion (CADD) scores, and nearest transcription start site 

were sourced from OpenTargets (https://genetics.opentargets.org/ v22.10) (Ochoa et al., 2023). 

The presence of lead SNPs within genes was confirmed using dbGaP 

(https://www.ncbi.nlm.nih.gov/gap/). Genes linked to the lead SNPs were then used to conduct 

gene expression, tissue enrichment specificity, and gene-set enrichment analyses in FUMA 

(Watanabe et al., 2017). Analyses were corrected for multiple comparisons using the False 

Discovery Rate (FDR) correction. 

Drug repurposing 

We integrated drug-protein interaction/druggability information from the Target Central 

Resource Database (TCRD) (Kelleher et al., 2023) and OpenTargets (Ochoa et al., 2023). We 

searched for each gene in each database (https://pharos.nih.gov/ v3.18.0; 

https://platform.opentargets.org/ v23.12). The TCRD divides target development/druggability 

into four levels: (1) Tclin targets have approved drugs with known mechanisms of action; (2) 

Tchem targets have drugs or small molecules that satisfy activity thresholds; (3) Tbio targets 

have no known drugs or small molecules that satisfy thresholds, but have Gene Ontology (GO) 

leaf term annotations or Online Mendelian Inheritance in Man (OMIM) phenotypes, or meet at 

least two of three conditions: a fractional PubMed count >5, >3 National Center for 

Biotechnology Gene Reference Intro Function annotations, or >50 commercial antibodies; and 

(4) Tdark targets—proteins that have been manually curated in UniProt but do not meet criteria 

for the above categories. OpenTargets was utilized to identify approved drugs and drugs in 

development that target identified druggable genes.    
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BrainXcan 

 We used BrainXcan software (Liang et al., 2021) to evaluate the associations of AUD 

and BMI with 327 brain image-derived phenotypes (IDPs) obtained from structural (T1-

weighted) and diffusion magnetic resonance imaging (dMRIs). BrainXcan infers trait-IDP 

associations using GWAS summary statistics, brain feature prediction weights, and reference LD 

data. Prediction weights for BrainXcan were derived by training a ridge regression model on 

brain IDPs in 24,409 individuals from the UK Biobank. Effect sizes and p-values of trait-IDP 

associations were adjusted using LD block-based permutation, and Bonferroni correction was 

used to account for multiple testing (T1: 0.05/109 = 4.59 x 10-4; dMRI = 0.05/218 = 2.29 x 10-4). 

Based on these results, we identified brain IDPs that were associated with both AUD and BMI. 

We also examined the concordance of effect direction for brain IDPs across the two traits.  

Results 

Shared genomic architecture (MiXeR) 

MiXeR analysis yielded an overall level of polygenic overlap between AUD and BMI of 

80.9% (as quantified by the Dice coefficient) despite a minimal genetic correlation (rg = -0.03, 

SE = .02). Of the 10.5K and 11.2K potential causal variants linked to AUD and BMI, 

respectively, 8.8K were shared by the two traits (Figure 1). The estimated proportion of shared 

variants with a concordant direction of effect was 48.4%. Conditional Q-Q plots demonstrated 

enrichment of SNP associations with AUD that increased with the significance of the 

associations with BMI, and vice versa for BMI, both reflecting polygenic overlap (Supplemental 

Figure 1).  

Notably, in comparison overlap between BMI and other psychiatric phenotypes, rgs 

between BMI and other psychiatric phenotypes ranged from -0.11 for schizophrenia to 0.30 for 
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ADHD. There were substantial shared genetic variants between BMI and other traits, including 

8.7K of the 10.1K schizophrenia variants (Dice coefficient = 82.0%; concordance = 45.3%), 

7.1K of the 7.5K MDD variants (Dice coefficient = 75.9%; concordance = 54.4%), and 5.8K of 

the 7.9K ADHD variants (Dice coefficient = 60.9%; concordance = 68.4%).  

There were moderate genetic correlations (rgs = .35-.41) and shared genetic variants 

between AUD and other psychiatric traits, including 7.3K of the 10.1K schizophrenia variants 

(Dice coefficient = 71.1%; concordance = 67.3%), 4.2K of the 7.5K MDD variants (Dice 

coefficient = 46.3%; concordance = 95.6%), and 4.0K of the 7.9K ADHD variants (Dice 

coefficient = 43.2%; concordance = 94.3%). MiXeR analysis indicated that of the 3.8K causal 

variants linked to the control condition height, 0.9K (Dice coefficient = 12.7%; concordance = 

36.7%) and 2.4K (Dice coefficient = 32.5%; concordance = 41.1%) were shared with AUD and 

BMI, respectively (Figure 1). 

Shared genetic loci (cond/conj FDR) 

At conjFDR<0.05, we identified 132 significant loci associated with both AUD and BMI 

(Figure 2), 121 of which were unique from the AUD GWAS and 53 of which were unique from 

the BMI GWAS. Notably, all 53 loci that were novel for BMI were also novel for AUD 

(Supplemental Table 2). Of the shared loci, 56 lead SNPs (42.4%) had consistent effect 

directions for AUD and BMI and 76 (57.6%) had opposite effect directions. This supports the 

hypothesis that the lack of genetic correlation is due to mixed effect directions of variants shared 

by AUD and BMI.  

The two most significant loci exerted opposite directions of effect for BMI and AUD. 

The first was an intronic variant (rs9939973) in the well-known obesity risk gene, FTO (also 

linked to numerous other traits, including substance use disorders, major depression, and 
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schizophrenia; Chang et al., 2022). The second was an intronic variant (rs13114738) in the 

highly pleiotropic gene SLC39A8 (Pickrell et al., 2016). The most significant locus (rs10511087) 

with a concordant direction of effect was CADM2, which encodes cell adhesion molecule 2 and 

has been linked to array of cognition, pain, substance use, and metabolic phenotypes (Pasman et 

al., 2022; Sanchez-Roige et al., 2023). 

Functional annotations 

The Variant Effect Predictor (VEP) analysis of the 132 lead SNPs in the loci shared 

between AUD and BMI indicated that 74 were intronic, 31 intergenic, 7 downstream, 6 non 

coding transcript exon variant, 5 missense, 4 upstream, 3 in the 3’UTR, 1 synonymous, and 1 

regulatory (Supplemental Table 2). Ten of the 132 variants had CADD scores > 12.37, indicating 

possible deleteriousness (Kircher et al., 2014).  

Analysis of Genotype-tissue Expression (GTEx) (Aguet et al., 2020) samples showed that 

genes linked to the lead SNPs were significantly overexpressed in the brain (Supplemental 

Figure 2). Specifically, 47 genes were significantly upregulated in the frontal cortex (BA9), 

hypothalamus, cortex, anterior cingulate cortex (BA24), hippocampus, and amygdala (Figures 3 

and 4).  

GO gene-set analysis identified 30 biological processes where shared genes were 

significantly enriched, with “cell morphogenesis involved in differentiation”, “cell 

morphogenesis”, “axon development”, and “presynaptic active zone organization” being the top 

four processes (Supplemental Table 3). Additionally, genes were enriched for seven GO cellular 

component processes, including “synapse”, “GABAergic synapse”, and “presynapse”. Finally, 

the genes were enriched for 21 cell type signatures (La Manno et al., 2016), the top seven of 

which were in the midbrain and included “HGABA”, “HNBGABA”, “HDA1”, “HDA”, 
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“HDA2”, “HNBML5”, and “HSERT”. These cell types are GABAergic, dopaminergic, 

serotonergic, and neuroblast-related (see Supplemental Table 3 for more information). 

Drug repurposing analysis  

Of the 131 unique genes associated with the 132 lead SNPs, six (OPRM1, RET, DPYD, 

ADH1A, PDE4B, PRKCB) were located in the gene or nearest to the transcription start site of 

genes associated with FDA-approved drugs (i.e., Tclin; Supplemental Table 2), including 

naltrexone (OPRM1) among others. Eleven other genes were Tchem (i.e., known to bind to small 

molecules with high potency), followed by 101 Tbio and 13 Tdark (Kelleher et al., 2023). Two 

of the 11 Tchem targets are targeted by known drugs in OpenTargets. Specifically, FTO is 

targeted by bisantrene for acute myeloid leukemia (Phase II), and GRM2 is targeted by four 

investigational drugs for central nervous system disorders including schizophrenia, major 

depressive disorder, perceptual disorders, bipolar disorder, psychosis, methamphetamine 

dependence, post-traumatic stress disorder, and seizure disorder.   

BrainXcan  

AUD was significantly associated with gray matter volume in four subcortical brain 

regions after applying p-value corrections for LD structure and multiple testing: the bilateral 

caudate nucleus (positive association), left amygdala (negative association), and right thalamus 

(positive association) (Supplemental Table 4, Supplemental Figures 4 and 5). After p-value 

adjustments, BMI had a total of 98 significant associations with brain IDPs. Approximately 

three-quarters of the BMI associations were with diffusion MRI IDPs (n = 74; 75.51%), with the 

remainder coming from structural MRIs. The top associations for BMI were with the medial 

lemniscus, a white matter tract that is part of the somatosensory pathway responsible for 

transmitting tactile, proprioceptive, and other sensations from the body to higher brain centers 
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(Warren et al., 2017). All significant associations for AUD had the same direction of effect for 

BMI (Figure 5), 76 of the BMI associations had the same direction of effect as AUD, and 22 had 

effects in the opposite direction for the two traits (Supplemental Table 4, Supplemental Figures 6 

and 7). Gray matter volume in three brain regions—the bilateral caudate and the left amygdala—

was significantly associated with both AUD and BMI.   

Discussion 

Analyses revealed several key findings regarding the genetic relationship between AUD 

and BMI. Both MiXeR and conjFDR analyses showed that more than half the variants shared by 

AUD and BMI exerted opposite directions of effect on the traits, supporting our hypothesis that 

this underlies their lack of genetic correlation. Leveraging conjFDR, we identified 132 shared 

genomic loci, including 53 that were novel from the original GWAS for AUD and BMI. 

Expression analysis of genes linked to both phenotypes identified heightened expression in brain 

regions implicated in executive functioning, reward, homeostasis, and food intake regulation. 

BrainXcan analyses of brain IDPs from the UK Biobank reinforced these findings, identifying 

significant shared associations with caudate nucleus and amygdala. Overall, these findings detail 

the extensive polygenic overlap between AUD and BMI, elucidate several overlapping 

neurophysiological mechanisms, and suggest possible targets for intervention. 

The low genetic correlation found in the present and prior studies (Saunders et al., 2022; 

Zhou et al., 2023) is explained by the mixed directionality of genetic effects of the phenotypes. 

MiXeR analysis indicated high polygenic overlap (81%) between AUD and BMI, with 48% 

concordance in the variants’ effect directions. Similarly, using conjFDR, 42.4% (n = 56) of the 

132 loci significantly associated with both AUD and BMI had the same direction of effect. 

Comparison analyses examining the overlap of AUD and BMI with other psychiatric phenotypes 
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(ADHD, MDD, schizophrenia) yielded a range of genetic correlations and effect direction 

concordance, all showing substantial genetic overlap, consistent with prior work (Bahrami et al., 

2020; Torgersen et al., 2022; Zhou et al., 2023). AUD and BMI exhibited among the highest 

proportions of estimated shared causal variants of all other phenotype pairings, despite having 

the lowest absolute genetic correlation of any pairing, which underscores the importance of 

accounting for variants’ effect direction. 

The FTO and SLC39A8 gene loci exhibited the most significant discordant effects, and 

the CADM2 gene locus exhibited the most significant concordant effects. Specifically, the effect 

allele of rs9939973, intronic within the FTO gene, was associated with a reduced likelihood of 

AUD and increased BMI. While BMI and alcohol-related GWAS have identified intronic FTO 

variants (Kranzler et al., 2019; Loos & Yeo, 2014; Zhou et al., 2023), this conjunctional analysis 

highlights this locus as the region that is most significantly associated with both phenotypes. 

Obesity research suggests that the FTO gene region alters the function of nearby genes (IRX3 

and IRX5), which impact the involvement of fat cells in thermogenesis (Laber et al., 2021; Zhang 

et al., 2023). The psychiatric literature suggests that this region also affects neuronal activity, 

namely dopamine receptor type 2 and 3 function (Hess et al., 2013; Zhang et al., 2019). The 

SLC39A8 gene, which encodes the metal ion transporter protein ZIP8 (Nebert & Liu, 2019), was 

associated with both AUD and BMI, but with opposite directions of effect. This locus is highly 

pleiotropic and has been linked to an array of psychiatric and neurological diseases and Crohn’s 

disease, possibly due its role in maintaining manganese homeostasis (Pickrell et al., 2016; 

Sazonovs et al., 2022; Sunuwar et al., 2020). Conversely, the most significant variant with 

concordant effects on AUD and BMI was rs10511087, intronic within the CADM2 gene. 

CADM2 is expressed in some brain regions implicated in the present study, namely the frontal 
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cortex (BA9) (Figure 3), and has been associated with cognition, pain, impulsivity, substance 

use, other risky behaviors, obesity, and other metabolic traits (Arends et al., 2021; Koller et al., 

2024; Morris et al., 2019; Pasman et al., 2022; Sanchez-Roige et al., 2023). 

Drug repurposing analysis yielded targets of FDA-approved drugs and others that are in 

development or have not been examined. In particular, PDE4B, which is targeted by FDA-

approved medications for chronic obstructive pulmonary disease and psoriasis/psoriatic arthritis, 

has shown evidence of reducing alcohol consumption (Grodin et al., 2021; Grigsby et al., 2023) 

and is under investigation as a treatment target for AUD (NCT05414240), weight loss, and other 

metabolic conditions (Crocetti et al., 2022; Ferguson et al., 2022; Wu & Rajagopalan, 2016). 

Additionally, OPRM1 is targeted by naltrexone, which is FDA-approved for treating AUD and 

opioid use disorder, and as a combination drug, naltrexone-bupropion, for the treatment of 

obesity (Grunvald et al., 2022; Reus et al., 2018). Importantly, both the PDE4B and OPRM1 loci 

exhibited concordant effects on AUD and BMI. However, studies have not examined the 

effectiveness of these medications in treating both conditions simultaneously and this study 

underscores the relevance of examining treatment options focused on genes linked to both 

phenotypes.  

Several brain regions and neural cell types were identified across the various downstream 

analyses. Genes linked to the lead SNPs were significantly up-regulated in the prefrontal cortex, 

hypothalamus, hippocampus, and amygdala. Additionally, amygdala and caudate nucleus gray 

matter volumes were significantly associated with AUD and BMI risk in BrainXcan analyses. 

Furthermore, GO gene-set analysis yielded enrichment for signatures in the midbrain, including 

GABAeric, dopaminergic, and serotonergic cell types. The brain regions and cell types identified 

here consistently been implicated in obesity (Gómez-Apo, 2021; Meng et al., 2020), binge eating 
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disorder (Donnelly et al., 2018; Giel et al., 2022), and AUD (Fritz et al., 2022; Koob & Volkow, 

2016). The prefrontal cortex and amygdala are dysregulated after drug use, resulting in 

withdrawal, craving, impulsivity, and negative affect, which drive continued use (Koob & 

Volkow, 2010, 2016). Similarly, the frontal cortex, amygdala, caudate, and hypothalamus exhibit 

hyperreactivity to food-associated cue exposure in obese and overweight individuals (Meng et 

al., 2020). Evidence also suggests that the caudate nucleus plays a key role in mediating external 

stimuli and internal preferences to guide behavior (Doi et al., 2020). The hypothalamus is 

integral to stress responses and homeostatic regulation of caloric intake to meet real and 

perceived nutrition needs (Gupta et al., 2020; Stover et al., 2023). Dysfunction in these areas is 

progressive with eating and drug use, resulting in altered reward processing and a shift in ‘liking’ 

vs. ‘wanting’ the hyper-fixated substance (Bodell et al., 2023; Morales, 2022; Morales & 

Berridge, 2020). Overall, these findings underscore the utility of leveraging human genomic and 

transcriptomic data analysis and align with insights from preclinical and human neuroimaging 

studies on the neurophysiological mechanisms driving AUD and obesity.  

 There are notable limitations to this study. BMI may not optimally measure obesity, 

because there is no distinction between weight from fat, bone, or muscle mass. However, BMI is 

easily and inexpensively measured, and is a longstanding, well-studied surrogate measure of 

obesity (Fryar et al., 2015). Nonetheless, future studies should expand these analyses to examine 

complementary phenotypes, such as body composition, waist-to-hip ratio (Pulit et al., 2019), and 

binge-eating disorder (Munn-Chernoff et al., 2021), and to clinical subpopulations (e.g., through 

GWAS of BMI in individuals with and without AUD) (Polimanti et al., 2017).  

A second limitation is that the data used in this study are limited to individuals of 

European ancestry to ensure compatible genetic architectures. As sample sizes increase, a high 
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priority must be placed on including individuals of non-European ancestry. The potential 

consequences of excluding diverse ancestral groups include the inequitable distribution of the 

benefits of genetic research and exacerbation of existing health disparities (Lofton et al., 2023; 

Ogden et al., 2020; Zapolski et al., 2014). Thus, future studies should replicate these findings 

using more diverse ancestral samples as biobanks continue to grow. This shift towards more 

diverse samples will improve result generalizability and understanding of cross-population 

genetic variation.  

Conclusions 

 In summary, our study found that the absence of genetic correlation between AUD and 

BMI is attributable to the presence of shared variants with opposite directions of effect (i.e., a 

variant protective for obesity increases risk for AUD and vice versa). Follow-up analyses 

specified overlapping genomic loci and identified brain regions implicated in executive 

functioning, reward, homeostasis, and food intake regulation. Together, these findings increase 

our understanding of the shared polygenic architecture of AUD and BMI and lend further 

support to the notion that eating behavior and AUD share overlapping neurobiological 

mechanisms. 
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Figure 1. MiXeR Venn diagrams showing the estimated number of shared causal variants and 

genetic correlations (rg) of AUD and BMI with each other, psychiatric disorders, and height. 

h2
SNP = SNP-based heritability. Standard errors for genetic correlations and heritability estimates 

are included in parentheses. 
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Figure 2. Manhattan plot of variants jointly associated with AUD and BMI. The plot depicts 

log10 transformed conjFDR values for each SNP on the y-axis and chromosomal position on the 

x-axis. The horizontal line is the threshold for significant shared associations between AUD and 

BMI (conjFDR < 0.05). Independent lead SNPs are green. The results are also shown in 

Supplemental Table 2. 
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Figure 3. Significant up-regulated differential gene expression (DEG) in the frontal cortex 

(BA9), hypothalamus, cortex, anterior cingulate cortex (BA24), hippocampus, and amygdala. 

Tissues are significantly enriched at Bonferroni corrected p-value ≤ 0.05 for 53 GTEx tissue 

types. Only genes with a Bonferroni corrected p-value and absolute log fold change ≥ 0.58 for a 

given tissue are included. For full results across all brain tissues, regardless of significance, see 

Supplemental Figure 3. 
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Figure 4. Differential gene expression (DEG) in 53 GTEx tissue types for genes linked to lead 

SNPs in distinct loci significantly associated with AUD and BMI. Significant enrichment (p < 

.05 after Bonferroni correction) is highlighted in red. 

 

 

 

 

 

 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306773


   

 

38 

 

Figure 5. Brain visualization of subcortical features significantly associated with AUD and BMI. 

Z-scores of the associations of the brain regions significant after false discovery rate correction 

(bilateral caudate, right thalamus, left amygdala) are shown, with orange indicating positive 

associations and blue indicating negative associations. 

 

  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306773


   

 

39 

 

Supplemental Figure 1. Conditional Q-Q plots showing the distribution of observed versus 

expected –log10 p-values for the primary phenotypes (AUD and BMI) for SNPs conditional on 

associations of a secondary trait at three p-value strata (p < 0.1, 0.01, and 0.001).  
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Supplemental Figure 2. A) Differential gene expression (DEG) in 30 general GTEx tissues for 

genes linked to lead SNPs in distinct loci significantly associated with both AUD and BMI. 

Significant enrichment (p<.05 after Bonferroni correction) is highlighted in red. B) Gene 

expression heatmap for 30 GTEx general tissues for genes linked to lead SNPs in distinct loci 

significantly associated with both AUD and BMI. 
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Supplemental Figure 3. Gene expression heatmap for 53 GTEx tissues for genes linked to lead 

SNPs in distinct loci significantly associated with both AUD and BMI.  
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Supplemental Figure 4. Structural brain features associated with AUD risk. LD-adjusted Z-

scores are provided for region-specific associations of structural IDPs with AUD risk.  
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Supplemental Figure 5. Diffusion features associated with AUD risk. LD-adjusted Z-scores are 

provided for region-specific associations of diffusion MRI IDPs with AUD risk. 

  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306773


   

 

46 

 

Supplemental Figure 6. Structural features associated with BMI risk. LD-adjusted Z-scores are 

provided for region-specific associations of structural IDPs with BMI risk. 
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Supplemental Figure 7. Diffusion features associated with BMI risk. LD-adjusted Z-scores are 

provided for region-specific associations of diffusion MRI IDPs with BMI risk.  

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306773

