
1. Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, 

Anandapur Rd, Uchhepota, Kolkata, West Bengal 700150. 

*      Corresponding author: Dr. Surama Biswas, email: (surama.biswas@gmail.com) 

 

A New Differential Gene Expression Based Simulated Annealing for 1 

Solving Gene Selection Problem: A Case Study on Eosinophilic 2 

Esophagitis and Few Other Gastro-Intestinal Diseases  3 

Koushiki Sinha1, Sanchari Chakraborty1, Arohit Bardhan1, Riju Saha1, Srijan Chakraborty1, Surama Biswas1,* 4 

Abstract:  5 

Background: 6 

Identifying the set of disease-causing genes is crucial for understanding pathogenesis and 7 
developing therapies. This is particularly important to understand the pathophysiology of 8 
Eosinophilic Esophagitis (EoE) and other gastrointestinal diseases. Comparing and contrasting gene 9 
selection methods across these diseases can enhance our knowledge to identify potential therapeutic 10 
targets. 11 

Methods: 12 

This study introduces two approaches for gene selection in gastrointestinal diseases: the Ranked 13 
Variance (RV) method and Differential Gene Expression Based Simulated Annealing (DGESA). 14 
RV acts as an initial screener by prioritizing genes based on variance. DGESA refines gene selection 15 
further by employing simulated annealing with differential expression data. We compared the 16 
outcomes of both methods through a case study on EoE and other gastrointestinal diseases.  17 

Results: 18 

Result finds greater number of genes with negative fold changes compared to those with positive 19 
fold change in differential EoE dataset. RV Ranks top 40 genes with high variance of EoE which 20 
overlaps with the disease-causing gene set of EoE from DGESA. 40 gene pathways for each of 21 
EoE, Crohn's Disease (CD), and Ulcerative Colitis (UC) were identified as execution outcome of 22 
our method DGESA. Among these, 10 genes for EoE, 8 for CD, and 7 for UC were confirmed in 23 
the literature for their connection with respective diseases. For EoE, 10 such confirmed genes 24 
include KRT79, CRISP2, IL36G, SPRR2B, SPRR2D and SPRR2E. For CD, the literature 25 
confirmed set encompasses NPDC1, SLC2A4RG, LGALS8, CDKN1A, XAF1, and CYBA. The 26 
validated genes in UC final gene set includes TRAF3, BAG6, CCDC80, CDC42SE2, and HSPA9.  27 

Conclusion: 28 

The RV method, serving as an initial screener, and the more refined DGESA both effectively 29 
elucidate molecular signatures in gastrointestinal diseases. Identifying and validating genes like 30 
SPRR2B, SPRR2D, SPRR2E and STAT6 for EoE showcase efficacy of DGESA. Other genes in 31 
the same pathway are interesting targets for future laboratory validation. 32 

Introduction:  33 

Computational Genomics is one of the most emerging areas of biological research. It is empowered by the fusion of 34 
powerful computational algorithms and vast genomic datasets. Its pivotal role in answering complex biological 35 
questions is evident in its application across diverse domains, from tracing the origins of diseases like SARS to provide 36 
insights on cancer immunotherapy [1]. By utilizing statistical methods and computational tools, bioinformaticians 37 
decode the language of genomes, offer understanding of the evolutionary mechanisms, genomic variations and gene 38 
interactions. Recent strides in high-throughput sequencing technologies have amplified the volume and complexity of 39 
genomic data, necessitating sophisticated computational frameworks for data processing, analysis, and visualization. 40 
These frameworks enable researchers to mine large datasets effectively, discovering novel mechanistic insights into 41 
fundamental biological processes [2]. Moreover, as evidenced by the publicly available genomic databases and freely 42 
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downloadable program suits like Genomic Multi-tool (GEM), the democratization of computational tools fosters 43 
collaboration and innovation in the scientific community. Computational Genomics not only shades lights on the 44 
genetic factors of diseases but also escalates advancements in personalized medicine, drug discovery, and agricultural 45 
resilience to climate change [3]. As universities introduce interdisciplinary courses to train the next generation of 46 
bioinformaticians, the field continues to evolve, embracing emerging technologies like Machine Learning, Artificial 47 
Intelligence and other modern computational methodologies. Through continuous refinement of computational 48 
methodologies and the integration of diverse datasets, Computational Genomics promises to revolutionize our 49 
understanding of life's fundamental processes, driving forward the frontiers of both biological discovery and 50 
technological innovation [4]. 51 

 Understanding biological processes requires an understanding of gene expression data, which provide insight 52 
into how genes function within cells. There are many public repositories available. A notable instance of such a 53 
database is the Gene Expression Omnibus (GEO) from National Center for Biotechnological Information (NCBI). 54 
GEO provides high-throughput gene expression and functional genomics datasets in a consolidated manner, making 55 
important information accessible to researchers across the globe. Many genomic data categories, such as, chromatin 56 
structure, genome methylation, genome-protein interactions and gene expression studies are gathered in this database 57 
[5]. GEO guarantees the availability of raw data and metadata by following community-driven reporting standards, 58 
which promotes reliable research outputs. Scholars employ GEO's extensive collection to investigate a range of 59 
biological inquiries, capitalizing on its intuitive interface and web-based instruments to facilitate streamlined data 60 
retrieval, illustration, and examination. Scientific advancement and creativity are fueled by gene expression data from 61 
repositories like GEO [6], which is used to drive discoveries in domains including developmental biology, cancer 62 
research, and personalized medicine. 63 

 Gastrointestinal diseases encompass a diverse array of conditions affecting the digestive tract, ranging from 64 
inflammatory bowel diseases like Crohn's disease and ulcerative colitis to eosinophilic esophagitis (EoE) [7]. EoE, 65 
characterized by chronic immune-mediated inflammation of the esophagus, has emerged as a prominent source of 66 
upper gastrointestinal morbidity in recent years. With an estimated prevalence of 34.4/100,000 in Europe and North 67 
America, EoE presents symptoms such as esophageal strictures, dysphagia, and food impaction, affecting both 68 
children and adults [8]. Unlike other conditions associated with esophageal eosinophilia, EoE diagnosis requires 69 
symptoms of esophageal dysfunction alongside esophageal biopsies demonstrating at least 15 eosinophils per high-70 
power field. Genetic and environmental factors, including early exposure to antibiotics, are implicated in its etiology. 71 
Current treatment modalities for EoE include proton pump inhibitors, dietary therapy, topical steroid formulations, 72 
and endoscopic dilatation, tailored to individual patient needs and disease severity. As our understanding of EoE 73 
evolves, further research into its pathogenesis, natural history, and optimal management strategies remains essential 74 
for improving patient outcomes and quality of life [9 -11]. 75 

 Genetic factors play a significant role in the pathogenesis of gastrointestinal diseases, with Eosinophilic 76 
Esophagitis (EoE) standing out as a prime example. EoE, a chronic allergic condition characterized by eosinophilic 77 
infiltration of the esophageal mucosa, is influenced by both hereditary and environmental factors [12]. Studies have 78 
highlighted the substantial familial component of EoE, with evidence suggesting a higher likelihood of the condition 79 
in family members of affected individuals [15]. Environmental risk factors also contribute to modulating genetic risk 80 
in EoE, particularly through early-life events [13]. While rare genetic variations may account for a small subset of 81 
EoE cases, the majority of genetic risk is mediated by common genetic variations [15]. Genome-wide association 82 
studies (GWAS) have identified specific risk loci associated with EoE susceptibility, such as variants in genes like 83 
TSLP and CAPN14, shedding light on the molecular mechanisms underlying the disease [14]. Interestingly, many of 84 
these risk loci are located in non-coding regions of the genome, suggesting a role for gene regulation in EoE 85 
pathogenesis [15]. Understanding the genetic architecture of EoE not only enhances our comprehension of its 86 
molecular basis but also holds promise for the development of targeted therapeutic interventions and personalized 87 
treatment strategies based on individual genetic profiles [14]. Further research into the intricate interplay between 88 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.03.24306738doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306738


genetic predisposition, environmental triggers, and immune dysregulation is essential for advancing our understanding 89 
of EoE and improving patient care [12]. 90 

 The prevalence of eosinophilic esophagitis (EoE) in the Indian population appears to be gradually gaining 91 
recognition, although with limited data available. A study conducted in a hospital in the northern region of India 92 
reported a prevalence of 3.2% among patients with symptoms suggestive of gastroesophageal reflux disease (GERD) 93 
[16]. Similarly, another study noted an increase in diagnosed cases of EoE in their center over recent years, with 17 94 
out of 73 patients being diagnosed with EoE based on clinical, endoscopic, and histopathologic features [17]. These 95 
findings suggest that EoE exists in India and is gaining importance of clinical suspicion and diagnostic evaluation for 96 
its identification. However, the prevalence of EoE in the Indian population remains to be fully explained, highlighting 97 
the necessity for large-scale, multi-centric population-based studies to provide a more comprehensive understanding 98 
of the disease burden in the country [17]. 99 

 Gene selection, a critical task in gene expression studies, aims to identify subsets of genes that are relevant 100 
for distinguishing between disease and normal conditions. Traditional methods for gene selection often face challenges 101 
such as high within-class variation and the selection of an optimal subset of genes that can efficiently differentiate 102 
between classes. Recent advancements in artificial intelligence (AI) and machine learning (ML) have introduced novel 103 
approaches to address these challenges. For instance, in a study [18], a novel criterion was proposed for assessing the 104 
significance of individual genes based on their mean and standard deviation of distances from each sample to the class 105 
centroid. This method not only effectively tackles within-class variation but also offers a smaller number of genes 106 
without compromising discriminating power, thus supporting further biological and clinical research. Similarly, the 107 
utilization of ML techniques, such as random forest, has been demonstrated to be effective in gene selection for 108 
microarray data classification [19]. Random forest excels in handling large numbers of variables and noisy data, 109 
providing accurate predictions while simultaneously offering small sets of genes for classification. Additionally, 110 
machine learning-based approaches have been employed to enhance the stability of gene selection techniques under 111 
sample fluctuations. For example, a study by [20] introduced a framework of sample weighting to increase the stability 112 
of representative feature selection algorithms, leading to the identification of more stable gene signatures. 113 
Furthermore, the application of ML techniques extends beyond gene selection to various aspects of cancer research, 114 
including cancer subtype classification, prognosis prediction, and identification of biomarkers. Studies such as [21, 115 
22, 23, 24] highlight the utility of ML algorithms like XGboost and support vector machine (SVM) in classifying 116 
cancer subtypes and identifying potential biomarkers for hepatocellular carcinoma (HCC) and Crohn's disease (CD), 117 
respectively. These approaches leverage large-scale genomic data to facilitate personalized treatment strategies and 118 
improve patient outcomes. In summary, the application of AI and ML techniques holds great promise in addressing 119 
the gene selection problem by providing efficient, accurate, and stable methods for identifying disease-relevant genes 120 
and advancing our understanding of complex diseases [25, 26, 27]. 121 

 Gene expression variance plays a crucial role in computational genomics, influencing our understanding of 122 
complex genetic diseases and population genetics. Studies such as [28] have highlighted the significance of genetic 123 
variants in Alzheimer's disease (AD) risk, with known single nucleotide polymorphisms (SNPs) explaining only a 124 
portion of the phenotypic variance. This represents the importance of exploring additional sources of genetic variation, 125 
such as rare or unknown SNPs, to take into account the full genetic landscape of AD. Similarly, research on the 126 
ALDH2 gene variant, as discussed in [29], sheds light on how specific genetic variations can influence susceptibility 127 
to various diseases and physiological traits. Understanding the mechanisms underlying these associations is essential 128 
for precision medicine and disease prevention strategies. Furthermore, investigations into gene expression variance, 129 
as described in [30], provide insights into the regulatory mechanisms governing gene expression across different 130 
tissues and conditions. By observing patterns of transcriptional variance and its relationship with gene function, 131 
computational genomics can identify key regulatory elements and pathways underlying complex traits and diseases. 132 
Overall, the study of gene expression variance in computational genomics enhances our understanding of genetic 133 
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diversity, disease susceptibility, and molecular mechanisms, paving the way for more effective diagnostic and 134 
therapeutic interventions. 135 

 Simulated Annealing (SA) draws inspiration from metallurgy's annealing process, where material is 136 
gradually cooled to a stable state. Introduced by Kirkpatrick, Gelatt, and Vecchi [31], SA optimizes by navigating a 137 
solution space, occasionally accepting moves that increase the cost function value (in minimization). As it progresses, 138 
the algorithm gradually reduces the likelihood of accepting worse solutions, akin to cooling. SA's extensions include 139 
adaptations to combinatorial optimization and nonconvex problems [32-33]. In genomic feature selection, SA aids in 140 
identifying relevant genes from high-dimensional datasets, such as microarray gene expression data. Recent 141 
advancements like curious simulated annealing [34] and Simulated Annealing aided Genetic Algorithm (SAGA) [35] 142 
address SA's convergence limitations. They strike an optimal balance between exploring the search space and 143 
exploiting potential solutions.  144 

The gene selection problem, which focuses on identifying a set of genes that collectively cause a disease, is 145 
crucial for understanding complex medical conditions. Though many complex formulations are already available, a 146 
very simple, efficient and biologically plausible fact that optimization process needs guidance from the 147 
differentiability of diseased to normal genomic profiles was overlooked. This study introduces a new  Simulated 148 
Annealing based algorithm called Differential Gene Expression Based Simulated Annealing (DGESA) where a 149 
specially designed objective function has been introduced which aims to maximize the collective differentiability of 150 
the obtained genes in their diseased and normal genomic profiles. For an initial guess of differentiability in the gene 151 
expression data, an approach, termed here as Ranked Variance (RV) has been introduced that prioritize genes based 152 
on their variance. Through a case study on Eosinophilic Esophagitis (EoE) and other gastrointestinal diseases, we 153 
compare the outcomes of both methods. Notably, we find 10 common genes between RV and DGESA in EoE, 154 
indicating their complementary nature. Validation analyses show that 10 of the 40 final genes identified by DGESA 155 
for EoE are supported by existing literature, confirming their biological relevance. Similarly, for Ulcerative Colitis 156 
(UC) and Crohn's Disease (CD), 8 and 7 of the 40 genes, respectively, are validated by literature. Ten confirmed genes 157 
for EoE are as follows: KRT79, CRISP2, IL36G, SPRR2B, SPRR2D, and SPRR2E. The collection of CD that has 158 
been confirmed by literature includes NPDC1, SLC2A4RG, LGALS8, CDKN1A, XAF1, and CYBA. The final gene 159 
set from UC contains the validated genes TRAF3, BAG6, CCDC80, CDC42SE2, and HSPA9. These results 160 
underscore the efficacy of our framework and specifically DGESA in identifying significant molecular signatures 161 
associated with gastrointestinal diseases.  162 

Methodology: 163 

The method section of this study details two distinct approaches employed for gene selection and analysis: the RV 164 
method and DGESA. The RV method prioritizes genes based on their variance, providing an initial perspective on 165 
potential biomarkers. In contrast, DGESA utilizes simulated annealing to identify sets of genes exhibiting significant 166 
differences in expression between diseased and normal states, facilitating the discovery of disease-associated genetic 167 
signatures. Each method offers unique insights into gene selection and contributes to our understanding of molecular 168 
mechanisms underlying disease pathogenesis (see Figure 1). 169 

Prior to analysis, several preprocessing steps were implemented to ensure data quality and compatibility. 170 
Firstly, rows lacking valid gene names were removed to maintain consistency across datasets. Subsequently, a 171 
normalization procedure was applied to each dataset, wherein gene expression values (𝑒𝑖,𝑗) were mapped to the range 172 

[0, 1]. This normalization step helped maintain potential biases arising from variations in gene expression magnitude 173 
across samples. Finally, transposition of the datasets was performed to prepare the data matrix (denoted as X) for 174 
subsequent processing, facilitating the application of required analytical techniques. These preprocessing steps 175 
collectively ensured that the gene expression data were standardized and conducive to meaningful analysis and 176 
interpretation. 177 
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The Ranked Variance (RV) method employed in this study focused on using gene expression variability as a 178 
means of discerning potential biomarkers associated with disease states. By computationally analyzing the variance 179 
of gene expression across samples, the RV method identified genes exhibiting significant variations in expression 180 
levels. This approach facilitated the separation of disease-associated genes from those with relatively stable expression 181 
patterns, thereby providing valuable insights into the molecular mechanisms underlying disease pathogenesis. 182 
Moreover, the identification of genes with pronounced expression variations enabled subsequent association studies, 183 
wherein these genes could be further investigated for their roles in disease development, progression, and potential 184 
therapeutic targeting. Overall, the RV method served as a powerful tool for examining the genetic signatures 185 
associated with various diseases, contributing to our understanding of their underlying biological processes and aiding 186 
in the discovery of novel biomarkers. 187 

 DGESA is a methodology devised to address gene selection challenges in the context of biological diseases. 188 
At its core, DGESA operates on a transposed gene expression matrix (denoted as X), where each row represents an 189 
observation (diseased or normal person) and each column corresponds to a gene. The method begins by defining a 190 
candidate solution, represented as a set of gene indices, which is iteratively refined through a simulated annealing 191 
process. During each iteration, a perturbation is applied to the current solution by randomly altering a gene index from 192 
the gene expression matrix X that is not already present in the solution set s. The fitness of each candidate solution is 193 
evaluated using a devised fitness function, represented by Equation (1): 194 

|∑(𝐷(𝑒𝑖)̅̅ ̅̅ ̅̅ ̅)

𝑔

𝑖=1

− (𝑁𝑜𝑟𝑚(𝑒𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)|                    (1) 195 

Here, g represents the number of genes in the candidate solution s. For each gene index i in s, the expression 196 
profile (𝑒𝑖) is considered. The mean expression profile of the i-th gene in the candidate solution s for diseased samples 197 

is denoted by (𝐷(𝑒𝑖)̅̅ ̅̅ ̅̅ ̅), while the mean expression profile for normal samples is denoted by (𝑁𝑜𝑟𝑚(𝑒𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). The fitness 198 

function computes the absolute difference between the mean expression profiles of diseased and normal samples 199 
across all genes in the candidate solution. This difference serves as a measure of the discriminative power of the 200 
selected genes in distinguishing between diseased and normal states. 201 
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 202 

Figure 1: Overview of the Study Workflow. This figure illustrates the comprehensive workflow of the study, beginning 203 
with data acquisition and preprocessing steps that include cleaning, normalization, and transposition to produce the gene 204 
expression matrix (samples as rows, genes as columns). The gene marker identification methodologies encompassing 205 
RV and DGESA, are applied to datasets of EOE, CD, and UC to identify disease-specific gene markers. The final step 206 
involves the validation process, which compares the effectiveness of the two methods across the three diseases and 207 
validates the identified markers against existing literature. 208 

In DGESA, the Temperature (𝑇) is first initialized into a very high value. Then few simulated annealing steps 209 
have been performed until the stopping criteria are not met. In each such step, 𝐿 neighborhood search iterations, 210 
followed by a reduction of 𝑇 by a fraction of Cooling Factor 𝐶 have been performed. In each neighborhood search 211 
state, we select a neighbor 𝑠′ from the neighborhood of s and replace 𝑠 by 𝑠′  if 𝑠′ is better than 𝑠 in terms of fitness 212 
value otherwise 𝑠 may be replaced by 𝑠′ depending on a small probability.  Through this iterative optimization process, 213 
DGESA aims to identify a set of genes that collectively exhibit significant differences in expression patterns between 214 
diseased and normal samples. The output of DGESA, denoted as 𝑠∗, represents the final selection of genes maximizing 215 
the discrimination between diseased and normal conditions in gene expressions, thereby facilitates the identification 216 
of potential biomarkers and provides insights into disease mechanisms.  217 

The methods applied in this study, including RV method and DGESA, have provided valuable insights into 218 
gene selection and analysis within the context of gastrointestinal diseases. The RV method effectively identified genes 219 
with significant expression variations, aiding in disease gene separation and association studies. On the other hand, 220 
DGESA upgrades simulated annealing to pinpoint genes exhibiting differential expression patterns between diseased 221 
and normal samples, thereby contributing to the discovery of disease-associated genetic signatures. By employing 222 
these complementary methodologies, the understanding of molecular mechanisms underlying disease pathogenesis 223 
have been advanced and a robust framework for biomarker discovery and disease classification is presented.  224 
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 225 

Figure 2: DGESA Algorithm. This figure depicts the details of the DGESA algorithm. The process involves simulated annealing 226 
with a specially designed objective function to effectively select gene markers from differential gene expression data. 227 

Results: 228 

The data collection for this study involved retrieving two gene expression datasets from GEO, NCBI. The first dataset, 229 
GSE228083, comprised samples from patients with EoE compared to normal samples, facilitating the investigation of 230 
gene expression patterns specific to this condition. The second dataset, GSE24287, encompassed gene expression 231 
profiles from patients with UC, CD, and normal samples. From GSE24287, two distinct datasets were prepared by 232 
segregating samples into UC vs. Normal and CD vs. Normal categories. 233 

 234 

Figure 3. Volcano Plot of Gene Expression Data for EOE: This figure presents a volcano plot illustrating the gene expression data 235 
for EOE. The x-axis represents the log2 fold change, while the y-axis denotes the -log10 P-value. The plot highlights a greater 236 
number of genes with negative fold changes compared to those with positive fold changes, indicating differential gene expression 237 
patterns in EOE. 238 
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 Hyper-parameter tuning of DGESA is a critical aspect of optimizing its performance in gene selection tasks. 239 
This iterative process involves systematically adjusting parameters that control the learning process, known as hyper-240 
parameters, through experimentation with different configurations. In the case of DGESA, key hyper-parameters 241 
include the number of genes (𝑔) in the candidate solution, the maximum number of iterations, the initial temperature 242 
(𝑇), and the cooling rate (𝐶). By systematically adjusting these hyper-parameters, the DGESA model can be fine-243 
tuned to enhance its efficiency in identifying disease-associated genes. In this study, after thorough experimentation 244 
and analysis of resulting performance of the algorithm to convergence, the final hyper-parameter configurations were 245 
determined as follows: 𝑔 =  40 genes in the candidate solution, 200,000 iterations, T = 106, and a cooling rate of 0.9. 246 
These optimized hyper-parameters ensure the effectiveness of DGESA in identifying relevant genetic signatures 247 
associated with gastrointestinal diseases, thereby advancing our understanding of disease mechanisms and aiding in 248 
biomarker discovery. 249 

To gain insight into the differential expression patterns of genes in the EoE dataset, a volcano plot was 250 
generated, depicting the relationship between the log2 fold change and the log10 p-values of various genes. In this 251 
plot, the x-axis represents the log2 fold change, which quantifies the magnitude of gene expression differences 252 
between EoE samples and normal samples. Meanwhile, the y-axis displays the -log10 p-values, which serve as a 253 
measure of the statistical significance of these expression differences. The volcano plot (see Figure 3) revealed that 254 
the majority of genes exhibited negative fold changes, indicating under-expression in EoE compared to normal 255 
samples. This observation suggests a potential downregulation of gene expression associated with EoE pathology. 256 
However, it's essential to interpret these findings in conjunction with additional analyses to elucidate the specific genes 257 
and biological pathways underlying the disease's pathogenesis and progression. 258 

 The application of the RV method to the EoE vs. normal dataset yielded insightful results regarding the 259 
variability of gene expression across samples. By plotting the curve (see Figure 4) where the x-axis represents the 260 
gene index and the y-axis denotes the corresponding variance, it was observed that approximately 40 genes exhibited 261 
decreasing variance. This observation suggests a notable reduction in the variability of expression levels for these 262 
genes in EoE samples compared to normal samples. Such a trend of decreasing variance may indicate a degree of 263 
regulatory homogeneity or consistent downregulation of gene expression within this subset of genes in the context of 264 
EoE pathology. These findings highlight the potential significance of these genes in contributing to the molecular 265 
mechanisms underlying EoE development and progression. The variance graph of CD and UC are available on 266 
Supplement 1 and 2 respectively. 267 
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 268 

Figure 4. Variance of Top 40 Genes in EOE Gene Expression Data: This figure shows a line plot of the variance of the top 40 269 
genes in the EOE gene expression dataset. The x-axis represents the gene names with the highest variance, and the y-axis indicates 270 
the variance values. The plot reveals that the initial few genes exhibit very high variance, which gradually flattens down for the 271 
subsequent genes. 272 

The application of the DGESA method to the EoE vs. normal dataset yielded a convergence curve that 273 
provides valuable insights into the optimization process. In this curve, the x-axis represents the iterations, reflecting 274 
the number of iterations or steps taken during the simulated annealing optimization procedure. Meanwhile, the y-axis 275 
denotes the corresponding fitness values, which quantify the effectiveness of the candidate solutions at each iteration. 276 
The observed convergence of the curve indicates that as the optimization progresses through iterations, the fitness 277 
values gradually stabilize or improve, eventually reaching an optimal or near-optimal solution. This convergence 278 
phenomenon signifies the effectiveness of DGESA in iteratively refining the selection of genes to maximize their 279 
discriminative power between EoE and normal samples. The convergence curve represents the robustness and 280 
efficiency of DGESA in (see Figure 5) identifying disease-associated genetic signatures and highlights its potential as 281 
a valuable tool for biomarker discovery. Showcasing the consistency, the optimization curves obtained from CD vs. 282 
normal and UC vs. normal datasets show convergence (see Supplement 3 and 4 respectively).  283 
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   284 
Figure 5. Optimization Process for Identifying 40 Discriminative Genes in EOE: This figure illustrates the optimization process 285 
aimed at selecting a set of 40 genes that collectively maximize the discrimination between EOE and control samples in the gene 286 
expression dataset. The curve shows the convergence of the optimization process, stabilizing near 130,000 epochs.  287 

The Venn diagram analysis comparing the gene sets identified by the DGESA and RV methods in the context 288 
of EoE versus normal samples revealed important findings (see Figure 6). Specifically, the diagram indicated that 10 289 
genes were shared between DGESA and RV (see Table 1 for the common gene names), suggesting a degree of 290 
consistency or agreement between the two methods in identifying potential biomarkers associated with EoE. However, 291 
notably, no overlap was observed between the gene sets identified for EoE and the combined UC and CD versus 292 
normal dataset. This absence of connection between the gene sets for EoE and UC-CD may reflect distinct molecular 293 
mechanisms underlying these two gastrointestinal diseases. The lack of shared genes highlights the specificity of gene 294 
expression profiles associated with each disease entity and emphasizes the importance of tailored approaches for 295 
biomarker discovery and therapeutic targeting. Further investigation into the unique genetic signatures of EoE and 296 
UC-CD could offer deeper insights into their pathogenesis and facilitate the development of more precise diagnostic 297 
and therapeutic strategies. 298 

The final gene set identified by the DGESA algorithm for EoE presents a compelling alignment with previous 299 
literature, demonstrating its potential significance in the context of EoE pathology. Among the 40 genes listed (see 300 
Table 2), 10 genes, including KRT79 [36], SPRR2E [37], CRISP2 [38], IL36G [39], SPRR2B [37, 40], SPRR2D [37, 301 
40] and RORC [41] have been previously implicated in EoE and are highlighted in blue in Table 2 to denote their 302 
strong confirmation of association with the disease. These genes represent key players in various molecular pathways 303 
relevant to EoE, such as immune regulation, epithelial barrier function, and tissue remodeling. Interestingly, CCND1 304 
[42] linked with allergy in cow milk, appeared in our result. It might have an indirect link with EoE because cow milk 305 
allergy has been considered as one of the factors causing EoE. Additionally, the presence of other genes in the final 306 
gene set, although not explicitly highlighted, suggests potential connections to EoE based on their co-appearance with 307 
established EoE-associated genes. This comprehensive gene set derived from DGESA not only validates known 308 
associations but also offers new insights into the molecular mechanisms underlying EoE pathogenesis, paving the way 309 
for further research into diagnostic and therapeutic interventions for this complex disease. The unique genes of CD 310 
and UC by DGESA are available on Table 3 and 4 respectively. 311 
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 312 

Figure 6. Venn diagram of Common Genes Identified by RV and DGESA Methods in EoE and UC-CD Combined 313 
Datasets. This figure shows a Venn diagram comparing the common genes identified by Ranked Variance (RV) and Differential 314 
Gene Expression Based Simulated Annealing (DGESA) methods in the EoE gene expression dataset (left side) and the common 315 
genes identified using DGESA in the UC-CD combined dataset. The diagram reveals 10 common genes between the RV and 316 
DGESA methods for EoE, but no overlapping genes between the EoE dataset and the UC-CD combined dataset. 317 

Table 1: Common genes of EoE obtained using RV and DGESA 318 

CRISP2 FAM43B PPP2R1B MTHFD2L EXOC3 RECQL STAT6 ARC FAM217B ZFAND4 

Table 2: Final unique genes of EoE using DGESA: Here the genes highlighted with blue have confirmed their connection with 319 
state-of-the-art literature as related with CD. For example, KRT79 [36], SPRR2E [37], CRISP2 [38], IL36G [39], SPRR2B [37, 320 
40], SPRR2D [37, 40], RORC [41] and CCND1 [42] are confirmed connection with EoE. 321 

HSPA12A DPCR1 FAM25G FAM43B IVD PPP2R1B MTHFD2L SPRR2E GGT6 KRT79 

RORC CRISP2 ZNF562 OAZ3 C18orf54 EXOC3 IL36G TPPP2 ANXA8 CSN2 

RECQL RPAP3 SPINK13 TAF4B LYPD6 COX6B1 CPB1 SPRR2B SPRR2D DMKN 

FAM217B HIP1 ARC ZFAND4 CCND1 RMI1 LOC388780 CSNK1A1L ADGRB1 STAT6 

 Table 3: Final unique genes of CD using DGESA: Here the genes highlighted with blue have confirmed their existence in state-322 
of-the-art literature as related with CD. For example, NPDC1 [43], SLC2A4RG [44], LGALS8 [45], CDKN1A [46], XAF1 [47], 323 
CYBA [48] etc. are confirmed connection with Inflammatory Bowel Syndrome (IBD) like CD.       324 

 325 

EPHX3 NRG1 PC NPDC1 VTI1A ZNF646 TCEA1 SLC2A4RG LGALS8 VDAC3 

G2E3 ATXN1 KTN1 PLEK2 CDKN1A ACOT8 GLB1 XAF1 CYBA WDR85 

NF1 ANXA2P1 PSAT1 ABHD11 HPN PEX19 MAPK1 MKLN1 PSMD5 RBMX2 

PNPO ARID3B PRPS1 GJD3 TECPR1 CAPS ZIM2 H3F3A POPDC2 BHLHE22 
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 326 

Table 4: Final unique genes of UC using DGESA: Here the genes highlighted with blue have confirmed their existence in state-of-327 
the-art literature as related with UC. For example, TRAF3 [49], BAG6 [50], CCDC80 [51], CDC42SE2 [52] and HSPA9 [53] are 328 
confirmed connection with Inflammatory Bowel Syndrome (IBD) like UC.        329 

 330 

Discussion 331 

The identification of genes implicated in complex diseases is pivotal for advancing our understanding of their 332 
underlying biological mechanisms. In this study, we introduce the Differential Gene Expression Based Simulated 333 
Annealing (DGESA) algorithm, which employs a novel objective function to enhance the differentiability of gene 334 
expression profiles between diseased and normal states. This method addresses a significant gap in existing gene 335 
selection strategies by emphasizing the importance of collective differentiability, a concept that has been overlooked 336 
in previous research. 337 

Our results from applying DGESA to datasets of Eosinophilic Esophagitis (EoE), Ulcerative Colitis (UC), 338 
and Crohn's Disease (CD) demonstrate its potential in uncovering biologically relevant genes. By comparing the 339 
outcomes of DGESA with the Ranked Variance (RV) approach, we found a noteworthy overlap, particularly in the 340 
EoE case study, where 10 common genes were identified. This convergence underscores the complementary nature 341 
of these methods and suggests that the integration of multiple approaches can enhance the robustness of gene selection 342 
processes. 343 

The validation of our findings against existing literature further supports the efficacy of DGESA. 344 
Specifically, 10 of the 40 genes identified for EoE, 8 for CD, and 7 for UC were corroborated by previous studies, 345 
highlighting their biological relevance. For instance, genes such as KRT79, CRISP2, and IL36G in EoE, and CDKN1A 346 
and CYBA in CD, have established roles in the pathophysiology of these diseases, which reinforces the credibility of 347 
our method. These validated genes also provide valuable targets for future research and potential therapeutic 348 
interventions. 349 

The introduction of the Ranked Variance (RV) approach as an initial step in the DGESA process is 350 
particularly noteworthy. By prioritizing genes based on their variance, RV offers a biologically plausible preliminary 351 
filter that simplifies the subsequent optimization process. This step not only enhances the efficiency of DGESA but 352 
also ensures that the selected genes are inherently variable and thus more likely to be differentially expressed between 353 
diseased and normal states. 354 

Our framework's ability to identify significant molecular signatures associated with gastrointestinal diseases 355 
holds promise for broader applications. The DGESA method can be adapted to various other diseases and datasets, 356 
potentially uncovering critical genes that have been missed by traditional methods. Moreover, the integration of 357 
DGESA with other bioinformatics tools and databases could further enhance its utility and accuracy. 358 

Despite the promising results, several limitations should be acknowledged. The reliance on existing literature 359 
for validation, while necessary, may introduce bias, as genes not yet studied or published may be equally important 360 
but remain unrecognized. Additionally, the performance of DGESA should be evaluated on larger and more diverse 361 
datasets to ensure its generalizability across different populations and disease contexts. 362 

C9orf25 TRAF3 CNOT1 BAG6 ZNF658 ARL3 KPNA3 NOP16 C1orf182 HOXD9 

EME1 RPL22 XPO6 LNX1 CCDC80 DMXL2 QRSL1 WDR55 SLC4A7 HCP5 

GPR137 PJA2 GOLGB1 BSG CYP4F12 SLC35A2 RSPO3 PPP6C C6orf115 TNPO1 

SEC61G CDC42SE2 FKBP1A SRSF1 FOXO1 LOC401022 PRODH PRPF18 HSPA9 C10orf125 
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Future research should focus on refining the objective function and exploring alternative strategies for initial 363 
gene prioritization. Integrating additional layers of biological data, such as protein-protein interactions and pathway 364 
analyses, could provide a more comprehensive understanding of the selected genes' roles in disease. Furthermore, 365 
experimental validation of the identified genes through laboratory studies will be crucial in confirming their functional 366 
relevance and potential as therapeutic targets. 367 

Conclusion 368 

The identification of gene sets that collectively cause a disease, known as the gene selection problem, is a critical area 369 
of study in understanding complex diseases. This research introduces two innovative approaches for gene selection in 370 
the context of various gastrointestinal diseases: the RV method and DGESA. The RV method prioritizes genes based 371 
on their variance, providing an initial perspective on potential biomarkers by identifying genes with significant 372 
variability in expression between diseased and normal samples. DGESA, on the other hand, utilizes the principles of 373 
simulated annealing to integrate differential gene expression data, refining the selection process by iteratively 374 
optimizing gene sets to maximize their discriminative power. 375 

Through a focused case study on EoE and other gastrointestinal diseases like CD and UC, we systematically 376 
compare the outcomes of both methods. The RV method initially identifies genes with high variance, offering a broad 377 
overview of potential candidates. In contrast, DGESA fine-tunes this selection by incorporating a fitness function that 378 
assesses the difference in mean gene expression between diseased and normal states, thus honing in on genes with the 379 
most significant impact. 380 

Our results reveal a notable intersection between the two methods, with 10 common genes identified in EoE, 381 
highlighting their complementary nature and the robustness of the selection process. Further validation analyses 382 
demonstrate that 10 out of the 40 final genes identified by DGESA for EoE are confirmed by existing literature, 383 
showcase their biological relevance and potential role in disease pathogenesis. Similarly, in the contexts of UC and 384 
Crohn's Disease CD, 8 and 7 genes, respectively, from the final 40 identified by DGESA are supported by literature 385 
evidence, indicating their significance in these diseases. KRT79, CRISP2, IL36G, SPRR2B, SPRR2D, and SPRR2E 386 
are among the ten confirmed genes for EoE. NPDC1, SLC2A4RG, LGALS8, CDKN1A, XAF1, and CYBA are 387 
included in the literature-confirmed CD set. TRAF3, BAG6, CCDC80, CDC42SE2, and HSPA9 are among the 388 
validated genes in the UC final gene collection. 389 

These findings underscore the efficacy of both RV and DGESA in elucidating molecular signatures associated 390 
with gastrointestinal diseases. The complementary strengths of the RV method and DGESA provide a robust 391 
framework for identifying key genetic contributors to disease, enhancing our understanding of disease mechanisms, 392 
and identifying potential therapeutic targets. By integrating these approaches, we can more accurately pinpoint the 393 
genes that play pivotal roles in disease development, paving the way for advancements in diagnostics and personalized 394 
medicine. 395 

List of ORCID IDs for the authors: https://orcid.org/0009-0003-6825-3709, https://orcid.org/0009-0007-6196-2253, 396 
https://orcid.org/0009-0003-1823-3574,  https://orcid.org/0009-0000-1988-4430, XXXX, https://orcid.org/0000-0001-5979-3605.  397 
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Figure 1: Overview of the Study Workflow. This figure illustrates the comprehensive workflow of the study, beginning with data acquisition and 

preprocessing steps that include cleaning, normalization, and transposition to produce the gene expression matrix (samples as rows, genes as 

columns). The gene marker identification methodologies encompassing RV and DGESA, are applied to datasets of EOE, CD, and UC to identify 

disease-specific gene markers. The final step involves the validation process, which compares the effectiveness of the two methods across the three 

diseases and validates the identified markers against existing literature. 
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Figure 2. DGESA Algorithm: This figure depicts the details of the DGESA algorithm. The process involves simulated annealing with a specially 

designed objective function to effectively select gene markers from differential gene expression data. 
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Figure 3. Volcano Plot of Gene Expression Data for EOE: This figure presents a volcano plot illustrating the gene expression data for EOE. The 

x-axis represents the log2 fold change, while the y-axis denotes the -log10 P-value. The plot highlights a greater number of genes with negative 

fold changes compared to those with positive fold changes, indicating differential gene expression patterns in EOE. 
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Figure 4. Variance of Top 40 Genes in EOE Gene Expression Data: This figure shows a line plot of the variance of the top 40 genes in the EOE 

gene expression dataset. The x-axis represents the gene names with the highest variance, and the y-axis indicates the variance values. The plot 

reveals that the initial few genes exhibit very high variance, which gradually flattens down for the subsequent genes. 
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Figure 5. Optimization Process for Identifying 40 Discriminative Genes in EOE: This figure illustrates the optimization process aimed at selecting 

a set of 40 genes that collectively maximize the discrimination between EOE and control samples in the gene expression dataset. The curve shows 

the convergence of the optimization process, stabilizing near 130,000 epochs.  
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Figure 6. Venn diagram of Common Genes Identified by RV and DGESA Methods in EoE and UC-CD Combined Datasets. This figure shows a 

Venn diagram comparing the common genes identified by Ranked Variance (RV) and Differential Gene Expression Based Simulated Annealing 

(DGESA) methods in the EoE gene expression dataset (left side) and the common genes identified using DGESA in the UC-CD combined dataset. 

The diagram reveals 10 common genes between the RV and DGESA methods for EoE, but no overlapping genes between the EoE dataset and the 

UC-CD combined dataset. 
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