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Abstract 

Background: PRKN biallelic pathogenic variants are the most common cause of autosomal recessive 

early-onset Parkinson’s disease (PD). However, the variants responsible for suspected PRKN-PD 

individuals are not always identified with standard genetic testing.  

  
Objectives: Identify the genetic cause in two siblings with a PRKN-PD phenotype using long-read 

sequencing (LRS).  
  
Methods: The genetic investigation involved standard testing using successively multiple ligation 

probe amplification (MLPA), Sanger sequencing, targeted sequencing, whole-exome sequencing and 

LRS.  
  
Results: MLPA and targeted sequencing identified one copy of exon four in PRKN but no other 

variants were identified. Subsequently, LRS unveiled a large deletion encompassing exon 3 to 4 on 

one allele and a duplication of exon 3 on the second allele; explaining the siblings’ phenotype. MLPA 

could not identify the balanced rearrangement of exon 3. 
  
Conclusions: This study highlights the potential utility of long-read sequencing in the context of 

unsolved typical PRKN-PD individuals.  
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Introduction:  

 

Parkinson’s disease (PD) is the second most frequent neurodegenerative disorder after Alzheimer’s 

disease, affecting approximately 6 million people worldwide.
1
 It is characterized by both motor 

symptoms (bradykinesia, extra-pyramidal rigidity and resting tremor) and non-motor symptoms. Five 

to 10% of PD cases are monogenic, otherwise PD is generally known to be idiopathic. While more 

than a dozen genes that contain disease causing mutations have been identified to date, mutations 

in PRKN are most frequently associated with autosomal recessive inheritance and early-onset of 

disease.2,3 

PRKN spans 1.3 Mb, contains 12 coding exons and is located on chromosome 6q25.2-27.4 It encodes 

for Parkin, a 465 amino-acid E3 ubiquitin-protein ligase, whose main role is maintaining 

mitochondrial homeostasis.
5
 PRKN is located within FRA6E, a known genomic fragile site, subject to 

structural variations (SVs).6 Biallelic pathogenic variants of PRKN account for around 4.3% of isolated 

cases and 8 to 15% of familial young-onset PD ( < 50 years old).7,8 The phenotype is usually specific, 

consisting of a young or juvenile-onset Parkinsonism with a good and longstanding response to 

levodopa. Dystonia, dyskinesia, and motor fluctuations are typical while autonomic dysfunction, 

psychotic symptoms, and cognitive decline are usually absent.9–11  

The recent emergence of long-read sequencing (LRS) has enabled the identification of short tandem 

repeats and SVs, addressing some of the limitations of short-read sequencing.12 The application of 

LRS in cases of PD where a mutation is suspected, but resistant to identification using traditional 

methods, could illuminate the genetic cause by overcoming the limitations of short-read sequencing. 

Here, we describe the detection of complex structural variants by long-read sequencing of two early-

onset PD (EOPD) (< 50 years) siblings exhibiting PRKN-phenotype left undiagnosed for years after 

multiple genetic investigations.  

  

Subjects and Methods:  

  

Study participants 

Both participants were extracted based on their early age at onset and their family medical history 

from a large cohort of 1,587 probands enrolled through the French Parkinson Disease genetics Study 

Group and international collaborations between 1990 and 2018.9,13  PD was diagnosed among the 

cohort by clinical assessment of movement disorders based on diagnosis criteria from the UK 

Parkinson Disease Society Brain Bank. 

Written informed consent was obtained from participants, and local ethics committees approved 

genetic studies.  
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Multiplex ligation probe amplification (MLPA), Targeted panel and Whole exome sequencing 

MLPA quantifying exons one to 12 of PRKN was used to search for rearrangements according to the 

manufacturer’s instructions (Supplementary methods). A targeted sequencing panel and a whole 

exome sequencing was performed on individual II-1 as previously described (Supplementary 

methods).
14,15

 Single Nucleotide Variants (SNVs) were analyzed according to ACMG guidelines and 

Copy Number Variations (CNVs) to ACMG/AMP guidelines.16,17 

 

Oxford Nanopore Technologies long-read sequencing and breakpoint region analysis 

LRS was performed on II-1’s lymphoblasts sample. Sequencing was prepared according to our 

protocol reported previously (https://www.protocols.io/view/processing-frozen-cells-for-population-

scale-sqk-l-6qpvr347bvmk/v1) (Supplementary methods). We then performed a PCR at the junction 

breakpoints on both II-1 and II-2 to confirm deletion and duplication events identified with LRS 

sequences (Supplementary methods, Supplementary Table 1).  

 

Data Sharing  

Data used in the preparation of this article are available upon request to the authors.  

Results: 

Clinical features of the siblings 

We report two caucasian siblings presenting with EOPD (Figure 1). Parents were not related and 

there was no medical history of PD. Both patients presented in their early 30’ with an extrapyramidal 

syndrome with a good response to levodopa (80-90%), normal cerebral MRI and negative Wilson’s 

disease biomarkers. The disease slowly evolved and 10 to 15 years after disease-onset they showed 

no or little nonmotor symptoms. Overall, the clinical features of both individual were highly 

suggestive of PRKN-PD.  

Initial genetic investigations 

Since the frequency of PRKN-PD in early-onset familial PD is relatively high and the disease course 

was consistent with PRKN-PD, we first performed PRKN MLPA and Sanger sequencing, which 

revealed one copy of exon 4 for both individuals and the absence of pathogenic SNV (Figure 2). After 

the emergence of next generation sequencing, we performed targeted sequencing including PRKN on 

II-1 which confirmed the presence of one copy of exon 4, without any additional pathogenic variant. 

This result could be interpreted as a heterozygous exon 4 deletion which was not sufficient to explain 

the phenotype. In addition, WES was performed on II-1 and results were inconclusive with no 
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potential pathogenic variants identified. However, we observed from the raw data that most samples 

of the run displayed a low coverage of exon 4. Coverage comparison of exon 4 and surrounding 

exons in PRKN revealed a twofold decrease, suggesting that only one copy of exon 4 was present, 

which was in accordance with previous sequencing methods.  

 

Long-read exploration for potential causal variants 

We generated LRS data for II-1 using Oxford Nanopore Technologies in addition to the standard 

methods. Sample DNA QC results were sufficient to perform LRS (Supplementary Figure 1) and 

overall data output was good with an N50 of 30 and 32.6X estimated coverage (Supplementary table 

3).  

LRS identified a 106,727 bp (hg38) duplication including exon 3 of PRKN (c.(171+1_172-

1)_(412+1_413-1)) (Figure 2). Additionally, LRS identified a deletion spanning 178,991 bp (hg38) 

including exon 3-4 (c.(171+1_172-1)_(534+1_535-1)). Breakpoints are located in deep-intronic 

regions (supplementary table 2). Both breakpoints of the deletion are located in a short interspersed 

nuclear element (SINE), either mammalian-wide interspersed repeat (MIR) for intron 2 breakpoint 

(chr6:162,371,568) or Alu for intron 4 breakpoint (chr6:162,192,578). 5’ breakpoint of the duplication 

was located in a long interspersed nuclear element, whereas the 3’ breakpoint did not fall in any 

known specific element. Using Integrative Genome Viewer (IGV), we were able to confirm whether 

these variants were in trans (Figure 2). Exon 3 duplication and exon 3-4 deletions are present in the 

MDSgene (database), however no coordinates are reported and therefore it is not possible to assess 

if these are recurring variants. LRS did not identify any additional variants in PD genes 

(Supplementary table 4). PCR confirmed the presence of the two SVs in II-1 and revealed both 

variants in II-2 (Supplementary figure 2 and table 3). DNA was not available for other unaffected 

family members. Altogether, these results demonstrated that biallelic PRKN variants were the cause 

of PD in this family. 

Discussion: 

PRKN is the most frequently mutated gene in autosomal recessive EOPD. However, the genetic cause 

of patients with a typical PRKN phenotype is sometimes elusive because of the limitations of 

traditional genetic methods to detect more complex structural mutations.
18 

Recently, Daida et al. used LRS to resolve a complex PRKN SV in monozygotic twins with PD.19 WES 

and MLPA had first identified a deletion of exon 3. The second variant was a large inversion of 7.4 

Mb, not detected by WES and MLPA. 
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In this study, we identified compound heterozygous SVs in PRKN in two siblings with PD. Age of onset 

and clinical symptoms were similar and suggestive of PRKN-PD. One copy of exon 4 was identified in 

earlier standard genetic investigations. Indeed, the accurate detection of CNV in short-read 

sequencing is dependent on the ability to detect breakpoints and depth of sequencing. Since both 

deletion and duplication breakpoints were located in deep intronic regions and genetic dosage of 

exon 3 was normal, they could not be detected by short-read sequencing. MLPA was consistent with 

the normal dosage of exon 3, as also shown in a large screening of PRKN in our French cohort and 

solely revealed one copy of exon 4.9 Importantly, LRS was able to detect the large 178 kb deletion 

and 106 kb duplication, encompassing exon 3-4 and exon 3, respectively. Both DNA loss and gain of 

the same exons 3 and 4 are described in typical PRKN-PD individuals as reported in the movement 

disorders society gene database (https://www.mdsgene.org/d/1/g/4). 

Deletions of exon 3 and exon 3-4 of PRKN are the most frequent exon rearrangements reported, 

suggesting recurrent event in intron 2.20,21 First, the size of intron 2 is equivalent to that of introns 4, 

6, 7, 9 and shorter than intron 1, thereby excluding the hypothesis of a higher frequency due to a size 

effect. In addition, Mitsui et al. showed that only a minority of breakpoints are recurrent and that 

various underlying mechanisms are implied in PRKN rearrangements.22 In contrast to usual 

techniques, LRS enables the analysis of the breakpoints and gives insights on the mechanism at play. 

Both deletion breakpoints are located within SINEs which are nonautonomous retrotransposons 

accounting for 13% of the human genome.23 The 5’ and 3’ deletion breakpoints were located in the 

two different most abundant SINE families: MIR and Alu, respectively. The sequence of the 

breakpoint junction (100 bp upstream and 100 bp downstream) is not associated with either 

homology nor microhomology. Therefore, a factor affecting replication timing, already known to be 

implied in PRKN rearrangements, is more likely to explain the deletion than a nonallelic homologous 

recombination or other mechanisms associated with homo and microhomology.22   

Standard sequencing techniques are able to identify simple (e.g. coding variants and non complex 

SVs) biallelic PRKN pathogenic variants. However complex PRKN SVs, such as balanced 

rearrangement and inversions, might remain invisible.9,18  In addition, patients carrying a single 

pathogenic variant, as the detected exon 4 deletion in our cases, might have a second hidden 

causative variant, highlighting the potential need of LRS for PRKN-PD diagnosis. In the continuous 

efforts of studying PD genetics, LRS appears as a useful tool to help identify complex variants (e.g 

SVs, STRs) and thus novel PD candidate genes. This is exemplified by the LRS identification and recent 

addition of RFC1 and NOTCH2NLC pathogenic expansions to the known genetic architecture of PD.
8,24
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Since short-read sequencing is unable to solve the genetic cause of many familial and early-onset PD 

cases, further studies using LRS are required to better decipher the full genetic landscape of PD. 
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Figures 

Figure 1. Family pedigree and PRKN genotype of the affected siblings (black symbols). The pedigree 

suggested an autosomal recessive inheritance. Both siblings have two compound heterozygous 

structural variants: exon 3-4 deletion and exon 3 duplication. 

Figure 2. Representation of long-read sequencing (A) and MLPA results (B). (A) Patient II-1 screenshot 

from Integrative Genome Viewer presenting exon 3-4 deletion (red) and exon 3 duplication in PRKN 

(blue). (B) Exon 3 balanced rearrangement was invisible for MLPA, which only exhibited one copy of 

exon 4 (ratio: 0.54), suggestive of a heterozygous deletion. 
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