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Abstract 

Employing assays approved by the U.S. Food and Drug Administration (FDA) to assist in 

detection of brain injury in mild traumatic brain injury (TBI) patients, this study demonstrated 

that the astroglial protein, glial fibrillary acidic protein (GFAP) and the neuronal protein, 

ubiquitin C-terminal hydrolase (UCH-L1) were positively associated with age in COVID-19 

patients. Controlling for age, UCH-L1 and GFAP were significantly elevated in COVID-19 

patients compared to non-COVID-19 controls, and UCH-L1, but not GFAP, was elevated in 

patients with neurological alterations. Data from this study are also compared to historical data 

on levels of UCH-L1 and GFAP in brain injured and healthy normal patients. These data 

support further studies of an FDA approved assay format that could facilitate timely 

development, validation, and FDA approval of blood tests to detect neuronal and glial cell 

injuries following infection by SARS-CoV-2. Moreover, appropriately validated blood tests could 

detect brain injury originating from any systemic pathogen. 

 

Keywords: COVID-19, neurological deficits, ubiquitin C-terminal hydrolase (UCH-L1), glial 

fibrillary acidic protein (GFAP), Banyan Brain Trauma Indicator (BTI) Assay  
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes 

coronavirus disease 19 (COVID-19), is now endemic and continues to evolve into potentially 

more transmissible and pathogenic variants1, 2  that challenge vaccine updates.3 Future variants 

could pose greater global health threats due to ongoing antigenic evolution that could lead to 

new variants that evade immunity.2 These mutations have shown increasing escape from 

neutralizing immunity.4, 5 SARS-CoV-2 primarily affects the respiratory system, but it can also 

have effects on other organs and systems, including the brain. Vaccination before infection 

confers only partial protection from post-acute sequelae of SARS-CoV-2 (PASC), also known as 

“long COVID”, a poorly characterized syndrome including a variety of neurological systemic 

complications.6, 7 

While COVID-19 is primarily a respiratory illness, patients experience a variety of neurological 

symptoms resulting from poorly understood mechanisms.8, 9 Reported neurologic and 

psychiatric symptoms of PASC range from headaches, loss of taste and smell, sleep 

disturbances, cognitive impairment, depression and anxiety. This clinical challenge is 

complicated by the absence of simple, reliable technologies to diagnose neuropathology in 

these patients.  

COVID-19 patients can experience neuropathology indirectly from systemic complications such 

as hypoxia or coagulopathy-induced infarcts (for review, see10), and autoimmune responses 

have also been proposed.11  The primary proposed mechanisms of neuropathology in acute 

COVID-19 are systemic inflammation, neuroinflammation, and microvascular injury with leakage 

of blood products into the parenchyma and microthrombosis.12, 13  Some reports maintain that 

SARS-CoV-2 can directly infect the central nervous system (CNS) but with little evidence of 

virally mediated injury or inflammation.14-17  Acute elevations of fibrinogen and D-dimer relative 

to C-reactive protein predict cognitive deficits in COVID-19 patients six and 12 months after 
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hospitalization, consistent with a possible contribution of microthrombosis.18 Encephalitis is rare, 

but acute hemorrhagic encephalomyelitis19 or an acute disseminated encephalomyelitis20 have 

been reported. Severe COVID-19 is associated with molecular signatures of aging in the human 

brain,21 and cognitive decline can resemble 20 years of aging.22 COVID-19 patients also 

manifest increased incidences of neurological diseases and stroke.23, 24 

Most COVID-19 transmission occurs asymptomatically.25 COVID-19 symptoms persisting for 

months or longer, and PASC can occur in patients with initially asymptomatic or mild forms of 

the disease.26 Although data vary widely because of varying definitions and poor diagnostic 

criteria,27 PASC, including neurological complications, reportedly affects 6%-69% of patients 

diagnosed with COVID-1928-33 but may vary by SARS-CoV-2 variant.34, 35 The potential 

additional contributions of unexplained post-acute infection syndromes associated with other 

pathogens36, 37 further highlight the need for reliable screening and diagnosis of brain injuries 

after systemic infections. 

Despite appropriate existing technology,10 there is still no FDA approved blood test to assist in 

the diagnosis, prognosis and management of these patients. Increased levels of blood 

biomarkers of brain injuries have been reported in COVID-19 patients,38-46 including glial 

fibrillary acidic protein (GFAP),43, 46 a marker of glial injury, ubiquitin C-terminal hydrolase (UCH-

L1),46 a marker of neuronal injury and neurofilament light (NfL) and total tau,42, 43, 46 markers of 

axonal damage. GFAP was elevated in a severity dependent manner43, 46 and persisted at four 

months following infection.43 UCH-L1 was increased in COVID-19 patients to values greater 

than seen in non-COVID-19 controls with mild cognitive impairment or Alzheimer’s disease.46 

NfL was increased in a severity dependent manner,43, 46 and improved mortality prediction.42 

Total tau was increased in a severity dependent manner46 and elevations were delayed until 

four months following infection.43 Elevations of GFAP, but not NfL, have also been reported in 
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PASC patients, although GFAP elevations were not associated with subjective symptom 

reports.47 

In this study we employed an assay measuring levels of GFAP and the neuronal protein 

ubiquitin C-terminal hydrolase (UCH-L1) developed by Banyan Biomarkers, Inc. and approved 

by the FDA to assist in detection of brain injury in mild traumatic brain injury (TBI) patients.48 

The assay format can also be used to predict functional recovery after TBI.49, 50 As we have 

pointed out elsewhere,10 the use of an FDA approved assay platform significantly facilitates the 

development, validation and ultimate FDA approval of blood tests to detect brain pathology 

following infection by SARS-CoV-2. Moreover, appropriately validated blood tests could detect 

brain injury originating from any systemic pathogen.10 

 

Methods 

Study populations and sample collection procedures 

The primary study was performed on a subgroup of subjects who presented to the Barnes-

Jewish Hospital Emergency Department (ED) in St. Louis during a one-month period from 

March 27, 2020 through April 27, 2020 with signs or symptoms of COVID-19 who were 

prospectively enrolled in the study and consented to having serial blood samples obtained 

during their hospitalization and stored for future analysis. We analyzed 71 serum samples from 

33 unique patients with signs or symptoms of COVID-19 and a positive RT-PCR test for SARS-

CoV-2 at some point during their hospitalization. Serum samples were obtained, when feasible, 

at the time of presentation and day 3, day 7, day 14, and day 28 for patients still in the hospital. 

The blood sample was spun down to serum and stored at -80ºC. The serum samples were sent 

to the Naval Medical Research Command, Biological Defense Research Directorate, Ft. Detrick, 

MD for analyses. We compared the serum concentration of UCH-L1 and GFAP in patients with 
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neurologic signs or symptoms to those without. We further stratified results by the day on which 

the serum sample was obtained.  

Our study population consisted of 24 men and 9 women, ranging in age from 27 years to 88 

years, with a mean age of 64 ± 14 years. Eleven patients had no neurologic signs or symptoms, 

while the remainder, 22, had signs/symptoms ranging from anosmia to altered mental status 

and unresponsiveness (see Supplemental Table 1). Overall, the prevalence of neurological 

deficits in COVID-19 positive subjects in males and females were 71% and 56%, respectively, 

but the difference was not statistically significant (P = 0.4376, Fisher’s exact test). Twenty-five 

patients (including all 11 without neurologic signs or symptoms) did not have neuro-imaging. 

The findings of the imaging on the 15 patients who underwent it, the time of sampling, and the 

serum concentration of UCH-L1 and GFAP stratified by neurologic and imaging findings is 

available in the Supplemental Table 1.  

Twenty-four non-COVID-19 controls with equal gender proportion (not significantly different from 

the COVID-19 group, P=0.1, Fisher’s exact test) and ranging in age from 23 years to 84 years, 

with an average age of 50 ± 19 years were obtained from the University of Florida (UF) Clinical 

and Translational Science Institute Biorepository. These specimens were originally obtained 

from the UF Health System’s outpatient population prior to 2019, and were therefore not 

exposed to SARS-CoV-2 and did not have COVID-19 symptoms. Some of the non-COVID-19 

controls carried cancer or benign tumor diagnosis, but specimens from individuals with 

conditions including brain trauma, cerebral vascular events, or dementia were excluded. 

Samples were stored and shipped for analyses as with Barnes-Jewish samples.   
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Brain biomarker measurements 

All de-identified sera samples were evaluated with the Banyan Brain Trauma Indicator (BTI) 

assay according to manufacturer’s guidelines. For primary data analyses, the biomarker 

concentrations were adjusted to reportable ranges of the FDA approved BTI assay as described 

elsewhere,48 whereas for additional analyses to further explore associations of biomarker levels 

with COVID-19 diagnosis, neurological outcomes and demographic variables using quantile 

regression analysis, actual device readings were used in samples with UCH-L1 or GFAP 

concentration below the reportable BTI assay ranges, if available, or analytically determined 

actual concentration in the samples with biomarker concentration above the reportable ranges 

(see Supplemental Table 1). If the concentration was above the upper limit of quantitation for 

the assay in selected samples (2 UCH-L1 samples and 2 GFAP samples of a total of 95 

samples tested in each assay), then a dilution of the serum was made, and the sample was re-

run and the concentration was reported incorporating the dilution factor. Nine of 65 (13%) and 6 

of 24 (25%) of GFAP samples assessed in COVID-19 group and non-COVID-19 control group, 

respectively, were below the lower limit of quantitation (LLOQ), whereas no UCH-L1 samples 

felt below the LLOQ. The samples that were below the LLOQ for the GFAP assay are indicated 

as <10. 

 

Statistical analyses 

Demographic data were tested for normality, if appropriate (e.g., age), using the Shapiro–Wilk 

test and proportions of males and females between COVID-19 and non-COVID-19 control 

groups as well as proportions of neurological deficit prevalence between genders were 

assessed using Fisher’s exact test (GraphPad Prism 8, GraphPad Software, Boston, MA).  
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Since the main focus of this study was to explore the ability of the FDA-approved Banyan BTI 

assay to detect biomarkers of CNS injury in critical COVID-19 patients, primary data analyses 

(the data described in Figures 1 and 2) reflected reportable ranges for its intended clinical 

application (see also48). The data were analyzed using GraphPad Prism 8 software. Details of 

statistical analyses are included in the figure legends or in the text of the article. In general, to 

handle the analyses of the data of the serial sample collection with missing time points, we 

applied a mixed-model statistical approach with one-way analysis and multiple comparison 

between groups, which assumes fixed main factors in random study subjects (see also51, 52).  

In additional analyses, to evaluate the association between UCH-L1 or GFAP and COVID-19 

positivity, neurological symptoms, age and sex, quantile regression estimating the conditional 

median was performed since not all conditions of linear regression were met. To perform the 

aforementioned quantile regression analyses, average UCH-L1 and GFAP values for days 0, 3, 

7, 14 and 28 were determined for the COVID-19 positive individuals. UCH-L1 and GFAP values 

were assessed at a single time point for the non-COVID-19 control individuals. Data were 

analyzed in Stata version 14.2 (StataCorp LLC, College Station, TX). 

P values less than 0.05 were considered significant. Non-continuous and mixed data were 

presented as median and min-to-max and interquartile ranges or 95% confidence interval (CI). 

Numerical descriptive statistic values of normally distributed data (e.g., age) were reported as 

mean ± SD. 

 

Results 

Figures 1A and B present the time courses of UCH-L1 and GFAP levels in COVID-19 positive 

patients vs. non-COVID-19 controls. Levels of UCH-L1 were elevated throughout the 28-day 

sample collection period. Levels of GFAP were more variable and elevated only on days 0, 3 
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and 14. The UCH-L1 and GFAP concentrations were not significantly different between time 

points in the COVID-19 positive subjects. Figures 1C and D present the time courses of UCH-

L1 and GFAP in COVID-19 positive patients with vs. without neurological changes. Only UCH-

L1 showed significant elevations in neurologically altered patients on the day of study 

enrollment (day 0). 

In order to add context to the observed magnitude of changes in biomarkers, Figure 2 

compares biomarker levels in samples collected in the current study to levels observed in 

patients experiencing a TBI who are at risk for intracranial bleeding,48 in patients who have had 

hemorrhagic or ischemic stroke53 and in a healthy population. Necessary for valid comparisons, 

all assays were conducted using the same FDA approved assay format.54 Median levels of 

UCH-L1 in the COVID-19 group calculated for each subject from the available time points from 

day 0 through day 28 were similar to levels in stroke and TBI patients. Levels of GFAP in 

COVID-19 positive patients were only exceeded by levels in hemorrhagic stroke patients. The 

levels of UCH-L1 and GFAP in non-COVID-19 controls were markedly elevated compared to 

community healthy controls, both males and females. Statistical analyses presented in Figure 2 

further demonstrate significant differences between both UCH-L1 and GFAP biomarker values 

in non-COVID-19 controls and median biomarker values (P < 0.001 and P < 0.01 for UCH-L1 

and GFAP, respectively). Comparison between non-COVID-19 control group with a sub-group 

of COVID-19 positive subjects with neurological deficits demonstrate significant differences, as 

well (P < 0.001 and P < 0.05 for UCH-L1 and GFAP, respectively), whereas there were no 

significant differences between non-COVID-19 control group and a sub-group of COVID-19 

positive subjects without neurological deficits. Interestingly, there was statistically significant 

differences between median values of UCH-L1 concentrations in sub-groups of COVID-19 

positive subjects with and without neurological deficits (P < 0.05), but not for GFAP 

concentrations. 
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Importantly, additional statistical analyses comparing nadir and peak UCH-L1 concentrations 

calculated for individual subjects in COVID-19 group with the biomarker values in non-COVID-

19 controls yielded similar results to those comparing of median values shown in Figure 2. 

When compared to non-COVID-19 controls, both nadir and peak UCH-L1 values were 

statistically different in COVID-19 positive subjects (P < 0.01 and P < 0.001 for nadir and peak 

values, respectively) and in the subgroup of COVID-19 positive subjects with neurological 

deficits (P < 0.01 and P < 0.001 for nadir and peak values, respectively), whereas only peak 

GFAP values were statistically different (P < 0.01 for both comparisons). When controlling for 

gender using the same statistical analyses, median and peak UCH-L1 values were significantly 

different in COVID-19 positive subjects regardless of neurological status (P < 0.05 and P < 0.01 

for men, and P < 0.05 for women, respectively) as well as in sub-groups of COVID-19 positive 

subjects with neurological deficits (P < 0.01 for men and P < 0.05 for women, respectively) as 

compared to the biomarker concentrations in non-COVID control subjects. The median and 

peak GFAP values in women were also significantly different in COVID-19 positive subjects 

regardless of neurological status (P < 0.05) as well as the nadir, median and peak GFAP values 

in sub-groups of COVID-19 positive subjects with neurological deficits (P < 0.05) as comparing 

to the biomarker concentrations in non-COVID control subjects, whereas only peak GFAP 

values in male COVID-19 positive subjects were significantly different compared to non-COVID 

controls (P < 0.05).  

Quantile regression analysis demonstrated that UCH-L1 was associated with age (in years) in 

men (β=5.67, 95% CI 0.94, 10.4, p<0.05), but not in women. Controlling for age and sex, UCH-

L1 concentrations were significantly higher (95% CI 68.81, 277.68, p<0.01) in COVID-19 

patients presenting with neurological complications compared to non-COVID-19 controls.  

However, no statistically significant association was observed for UCH-L1 in COVID-19 positive 

patients without neurological complications compared to non-COVID-19 controls.  
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Similar to UCH-L1, the median GFAP value was associated with age (in years) in men (β=0.96, 

95% CI 0.30, 1.63, p<0.01) but not in women. Controlling for age and sex, no statistically 

significant association was observed for GFAP in COVID-19 positive patients with or without 

neurological complications compared to non-COVID-19 controls. 

 

Discussion 

Although this retrospective study employs opportunistic samples and modest sample sizes, the 

research employs an FDA cleared assay format and documents the feasibility of future research 

examining an accelerated pathway to an FDA approved diagnostic assay for rapid diagnosis of 

neuropathology in COVID-19 patients. In addition to UCH-L1 and GFAP, future studies should 

consider additional biomarkers including NfL. Even mild respiratory COVID-19 can result in loss 

of myelin, oligodendrocytes and myelinated axons,39 and NfL is elevated in COVID-19 

patients.42, 43  Previous studies have demonstrated that SARS-CoV-2 directly infects brain 

astrocytes.15, 16, 55 Our study did not detect differences in GFAP between patients with and 

without neurological alterations, although GFAP was elevated in COVID-19 patients vs. non-

COVID-19 controls. Future research should more thoroughly examine astroglial involvement in 

COVID-19 patients. 

As reviewed above, a predominance of studies employing different COVID-19 patient cohorts, 

times of biomarker assessments and assay formats have reported increased levels of brain 

injury biomarkers including GFAP and UCH-L1. Our limited data precludes examinations of 

relationships of biomarker changes to the extent of brain injuries or magnitudes/durations of 

neurological deficits, important goals of future studies. Moreover, comparisons to historical data 

in Figure 2 using the same FDA approved brain injury format suggest the possibility of clinically 

important brain injury in some COVID-19 patients. The statistical differences in the UCH-L1 

levels at early time points (e.g., day 0 in our study) in COVID-19 positive subjects even with and 
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without neurological alterations suggests the utility of this biomarker for prediction of 

neurological complication in COVID-19.18 Further, the statistical differences in nadir, median and 

peak UCH-L1 and GFAP concentrations from serial sampling also suggest a possible extended 

application of this FDA approved assay to provide evidence-based clinical decisions to improve 

COVID-19 patient management. Elevations of UCH-L1 and GFAP in non-COVID-19 controls 

used in this study, which might be potentially associated with a concomitant medical condition 

(e.g., cancer), over levels seen in healthy population also merits further study. 

Since the same assays used in this study could potentially detect neuronal and glial cell injury 

from infections by any systemic pathogens, this research can provide urgently needed 

technology to diagnose currently unrecognized increased risks for neurodegenerative diseases 

from numerous other infections.36, 37, 56 SARS-CoV-2 can also potentially result in opportunistic 

infections by other neurotropic viruses such as the human herpes virus which has been reported 

in 79% of severe COVID-19 patients.57  Thus, it could be important to screen for other 

neurotropic pathogens in COVID-19 patients with neurological deficits. 

 

Transparency, Rigor, and Reproducibility Summary 

Samples were collected under institutional review board (IRB) approval from their respective 

institutions: Barnes-Jewish Hospital ED-in St. Louis, IRB#202007018 utilizing samples collected 

in a COVID-19 repository approved under IRB#202003085; University of Florida, utilizing 

samples collected by Clinical and Translational Science Institute Biorepository under 

IRB#202001993. All samples were de-identified and sent to the Naval Medical Research 

Command (NMRC), Biological Defense Research Directorate, Ft. Detrick, MD. The protocol for 

this study was approved by the NMRC Institutional Review Board in compliance with all 

applicable federal regulations governing the protection of human subjects.  This study is not a 

subject of clinical trial registration requirements. Biomarker analyses in de-identified samples 
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were performed using an FDA-approved BTI assay directly supplied from the manufacturer. The 

assay was performed by an investigator blinded to patients’ clinical characteristics including the 

presence or absence neurological manifestations. The reportable ranges for this assay are 80–

2560 pg/mL for the UCH-L1 assay and 10–320 pg/mL for the GFAP assay. The assay results, 

patient clinical characteristics and selected unidentified demographic data are provided as 

supplemental materials. The further details on human sample collection, technical assay 

procedures, statistical analyses are described in the corresponding method sections. 
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Figure legends 

Figure 1: UCH-L1 and GFAP levels in COVID-19 positive patients, with and without 

neurological changes, vs. non-COVID-19 control subjects. 

A and B, The UCH-L1 and GFAP levels in COVID-positive patients at different time points 

compared to non-COVID-19 controls.  Box and whiskers graphs represent the median, 

min-to-max and interquartile ranges. The numbers above the X axes represent sample 

sizes per group per time point. Asterisks indicate statistical significance of comparison 

biomarker values at corresponding time points using Kruskal-Wallis test with Dunn's post-

hoc test vs. non-COVID-19 control group (*P < 0.05, **P < 0.01 and ***P < 0.001). “ns” 

indicates not statistically different (P > 0.05). There were no statistically significant 

differences between biomarker values between time points in the COVID-19 positive 

subjects. C and D, Time courses of UCH-L1 and GFAP levels in COVID-19 positive 

subjects grouped based on the presence or absence neurological changes. Box and 

whiskers graphs represent the median, and min-to-max and interquartile ranges. The 

numbers above the X axes represent sample sizes per group per time point. Asterisks 

indicate statistical significance of comparison biomarker values of samples from subjects 

with and without neurological changes at corresponding time points using Kruskal-Wallis 

test with Dunn's post-hoc test (**P<0.01). Other biomarker values were not statistically 

significantly different. 

 

Figure 2: UCH-L1 and GFAP levels in COVID-19 positive patients vs. non-COVID-19 

controls and historical data on TBI and stroke patients and healthy populations. 

A and B, UCH-L1 and GFAP levels in COVID-19 positive patients compared to non-

COVID-19 controls from this study (white filled bars) and historical cutoff values in 

neurological injuries48, 53 and healthy control populations shown for comparison (black 

filled bars), respectively. COVID-19 (all), COVID-19 (ND+) and COVID-19 (ND+) denote 

group of all COVID-19 positive subjects and subgroups of COVID-19 positive subjects 

with and without neurological changes, respectively. Dotted lines indicate lower and upper 
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reportable range values of the BTI assay (i.e., 80–2560 pg/mL for the UCH-L1 assay and 

10–320 pg/mL for the GFAP), if applicable. For groups of non-COVID-19 control and 

COVID-19 positive subjects, bars represent median and “error” bars represent 95% CI. 

Values for each bar in each COVID-19 positive subjects were calculated as median 

biomarker levels of the serial samples, if applicable. The numbers above the X axes 

represent sample sizes per group. Asterisks indicate statistical significance of comparison 

biomarker values between corresponding groups (*P < 0.05, **P < 0.01 and 

****P < 0.0001) and “ns” indicates not statistically different (P > 0.05). For comparison two 

groups [i.e., non-COVID-19 control vs. COVID-19 (all)], two-tailed Mann Whitney test was 

used, whereas for comparison multiple groups [i.e., non-COVID-19 control vs. COVID-19 

(ND+) vs. COVID-19 (ND+)], Kruskal-Wallis test with Dunn's multiple comparison post-hoc 

test was used. 
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Study Design
Group 1: 
Critical COVID-19 Hospital Patients (n=33)

Group 2:
Control Non-COVID-19 Ambulatory Patients (n=24)

Single blood sample:
Clinic visit

YES

Clinical outcome: Neurological deficit (ND) present?

Sub-group 1a: 
COVID (ND+) (n=22)

Sub-group 1b:
COVID (ND-) (n=11)

NO

Blood Biomarker Analyses

FDA-approved Assay:
Banyan Brain Trauma Indicator (BTI)

Serial blood sample time points:

0 3 7 14 28
Admission
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Figure 1. 
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Figure 2. 
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