
1

Uncovering COVID-19 Transmission Tree:
Identifying Traced and Untraced Infections in
an Infection Network
Hyunwoo Lee 1,4, Hayoung Choi 1,4,∗, Hyojung Lee 2,4, Sunmi Lee 3,4 and
Changhoon Kim5,6

1Department of Mathematics, Kyungpook National University, Daegu, Republic of
Korea, 2Department of Statistics, Kyungpook National University, Daegu, Republic
of Korea, 3 Department of Applied Mathematics, Kyunghee University, Yongin-si,
Republic of Korea, 4 Nonlinear Dynamics & Mathematical Application Center,
Kyungpook National University, Daegu, Republic of Korea, 5 Department of
Preventive Medicine, College of Medicine, Pusan National University, Busan,
Republic of Korea, 6 Busan Center for Infectious Disease Control and Prevention,
Pusan National University Hospital, Busan, Republic of Korea
Correspondence*:
Hayoung Choi
hayoung.choi@knu.ac.kr

ABSTRACT2

We present a comprehensive analysis of COVID-19 transmission dynamics using an infection3
network derived from epidemiological data in South Korea, covering the period from January4
3, 2020, to July 11, 2021. This network, illustrating infector-infectee relationships, provides5
invaluable insights for managing and mitigating the spread of the disease. However, significant6
missing data hinder the conventional analysis of such networks from epidemiological surveillance.7
To address this challenge, our research suggests a novel approach for categorizing individuals8
into four distinct groups, based on the classification of their infector or infectee status as either9
traced or untraced cases among all confirmed cases. Furthermore, the study analyzes the10
changes in the infection networks among untraced and traced cases across five distinct periods.11
The four types of cases emphasize the impact of various factors, such as the implementation of12
public health strategies and the emergence of novel COVID-19 variants, which contribute to the13
propagation of COVID-19 transmission. One of the key findings of this study is the identification14
of notable transmission patterns in specific age groups, particularly in those aged 20–29, 40–69,15
and 0–9, based on the four type classifications. Moreover, we develop a novel real-time indicator16
to assess the potential for infectious disease transmission more effectively. By analyzing the17
lengths of connected components, this indicator facilitates improved predictions and enables18
policymakers to proactively respond, thereby helping to mitigate the effects of the pandemic on19
global communities.20

Keywords: COVID-19, infection network, contact tracing, reproduction number, untraced infection21

1 INTRODUCTION

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared22
a pandemic by the World Health Organization on March 11, 2020. According to the World Health23
Organization’s weekly epidemiological update released on February 2, 2021, the epidemic of COVID-1924
spread rapidly to more than 200 countries. Without effective control measures, the rapidly increasing25
number of COVID-19 cases will greatly increase the burden of clinical treatments. This situation may lead26
to a critical shortage of healthcare system capacity for severe cases, ultimately resulting in a sharp and27
alarming increase in mortality rates. Consequently, various control measures were implemented, leading28
to observed fluctuations in the efficacy of strategies like contact tracing and isolation of confirmed cases29
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throughout the pandemic (1). South Korea, first reporting its COVID-19 case on January 19, 2020 (2, 3), has30
experienced multiple waves of outbreaks, in response to which it actively implemented control measures31
such as social distancing, mask-wearing, lockdowns, and enhanced efforts in testing and contact tracing.32
Especially, active contact tracing has generated significant epidemiological data, enabling analysis of33
extensive infection networks (4). Understanding the infection network for COVID-19 is crucial for several34
reasons. First and foremost, it allows us to grasp the dynamics of the virus’s transmission within a35
population (5). By mapping out how individuals infect each other, we gain valuable insights into the36
patterns and pathways through which the virus spreads (1). Additionally, studying the infection network37
aids in the identification of key factors influencing the transmission (2). This includes factors such as38
age-specific patterns, which can help tailor public health measures to specific demographics, ultimately39
improving the effectiveness of containment strategies (6).40

Previous research focused on cluster analysis, reproduction number, and network analysis to address key41
transmission factors and assess the effectiveness of various interventions during COVID-19 pandemic (3, 6,42
7, 8, 9, 10, 11, 12). In (7, 8) authors investigated COVID-19 transmission by age group, aiding in identifying43
the primary age groups fueling the spread and formulating age-specific response strategies. It scrutinized44
the infection spread by clusters, offering insights into evaluating social distancing measures outlined in45
(3, 6, 9). Examining cluster type frequency in both the initial and subsequent epidemic waves enables the46
development of an effective strategy for controlling outbreaks (3). Network analysis facilitates assessing47
specific vertices’ importance and understanding the relationships between them (2, 5, 13). Furthermore,48
Wang et al.(10) and Zhang et al.(11) investigated the basic reproduction number R0 of COVID-19, which49
represents the transmission potential of an infectious disease in the early phase of an epidemic (12). The50
time-dependent reproduction number Rt represents the instantaneous reproduction number, indicating the51
expected number of secondary infections caused by an infector at a specific point in time (12).52

In the context of COVID-19 policies, our current knowledge of how infections spread through53
transmission networks is primarily based on virtual data and theoretical models (14, 15), with evidence54
from actual data (16, 17, 18) being limitedly available. The infection network generated from actual55
epidemiological data contains numerous missing data, resulting in many connected components, creating a56
disparity from analyses based on virtual data. Contact tracing is commonly recommended for controlling57
COVID-19 outbreaks, yet its effectiveness is unclear. Studies evaluating the effectiveness of contact58
tracing are categorized into observational studies (19, 20, 21, 22) and modeling studies (1, 23, 24, 25). Our59
study suggests that analyzing the classification of four types of confirmed cases in the infection network,60
along with the distribution of connected component lengths, can broaden insights into contact tracing and61
dynamics of disease transmission. A pivotal study analyzing changes in the infection pattern structure62
between infectors and infectees based on age groups (26) is also essential. Surprisingly, there has been63
no previous study on this specific topic for COVID-19 infection between infectors and infectees in South64
Korea.65

This paper is motivated by the recognition of differences in infection networks generated from actual66
data versus virtual data. This research has established an infection network by assigning an infector to67
all infectees from actual epidemiological data KDCA (27) from January 3, 2020, to July 11, 2021, in68
South Korea. It is shown that the established infection network comprises many connected components69
due to missing vertices (individuals) and edges (infection events). Consequently, we proposed a method of70
categorizing individuals as either (i) infectors, who are aware of the infectees they have transmitted the71
virus to, or (ii) infectees, who are cognizant of their infector. This method allows for the categorization of72
vertices in the numerous distinct connected components from a common perspective and facilitates the73
derivation of analysis for each vertex. Furthermore, several properties were established from the method.74
This paper analyzed the infection network in terms of time and age groups using a four-type categorization75
method and proposes a new real-time calculated indicator of infectious disease transmission potential. Next,76
the indicator was compared with the Cori reproduction number Rt (12). Age groups are evenly distributed77
into nine categories, up to 90 years old. To characterize each wave, the period is divided into five phases,78
accounting for epidemic control measures and the progression of epidemic waves.79

Our analysis focuses on the comprehensive infection network across age groups, revealing how infection80
spread patterns evolve over time, and concentrates on methods to obtain meaningful information in the81
presence of substantial missing data. This analytical approach, based on epidemiological data, emphasizes82
the role of active contact tracing by governments. Ultimately, our research suggests that active contact83
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tracing in real pandemic situations can offer policymakers data-driven insights for establishing more84
effective responses, thereby mitigating the pandemic’s impact on global communities.85

2 METHODS

2.1 Data and measurement86

A. Data description87

We utilize the COVID-19 data (27) provided by the Korea Disease Control and Prevention88
Agency (KDCA) from January 19, 2020, to July 11, 2021, to construct the infection network for COVID-1989
transmission. In this paper, we analyze the dataset containing 169,597 confirmed cases (real-time reverse90
transcription polymerase chain reaction test positive cases), focusing on four specific records as follows.91

(ID, age, date of report, ID of the infector)92

Here, the “ID” stands for the identity of the traced infectee, and “age” refers to the infectee’s age. If “ID93
of the infector” is not traced (untraced), it is assigned a value of 0. Each confirmed case is assigned an94
anonymized ID number ranging from 1 to 169,146 associated with age, which ranges from 0 to 128, the95
date of report, and the ID number of the infector. Remark that in general the date of the report may not be96
exactly the same as the date of infection. The date of the from January 19, 2020, to July 11, 2021.97

B. Defining five periods of COVID-19 progression98

The entire period was segmented into five distinct periods to observe the evolution of infection99
characteristics. This segmentation considered several critical factors like the emergence of new variants,100
vaccine rollout, change of social distancing levels, and other intervention measures (28).101

• P1 (January 19, 2020 ∼ April 29, 2020): Since the first confirmed COVID-19 case on January 19,102
2020, South Korea experienced a moderate rise in cases, peaking at about 694 on February 26, 2020,103
primarily in Daegu-Gyeongbuk due to a church-related outbreak. Despite subsequent outbreaks at104
another church and a Seoul call center, daily cases gradually declined. Measures like the first social105
distancing period (March 22 to April 7, 2020) and a ban on gatherings in entertainment venues (April106
8 to April 19, 2020) were enacted, resulting in an average of 145 daily confirmed cases during these107
periods.108

• P2 (April 30, 2020 ∼ July 14, 2020): During this period, there was the lowest number of daily109
confirmed cases compared to other periods. The average number of daily confirmed cases was 37.110

• P3 (July 15, 2020 ∼ October 12, 2020): The second epidemic wave in South Korea started with a111
major outbreak at a Seoul church, accounting for 12% of the total infections in period P3, and was112
further exacerbated by a large rally on August 15 contributing to 6% of infections. In response, the113
government escalated Seoul’s social distancing to level 2 on August 16, expanded it nationwide on114
August 23, and then increased it to level 2.5 in the metropolitan area by August 30. The peak of this115
wave was on August 24, 2020, with 418 cases, and the average daily confirmed cases during this period116
was 125.117

• P4 (October 13, 2020 ∼ February 25, 2021): On October 12, the social distancing level was eased118
to level 1. P4 coincides with the third epidemic wave, and it started with a gradual increase in119
daily confirmed cases without any apparent major events. The third epidemic wave peak occurred on120
December 23, 2020, with 1206 cases. The government raised the social distancing level on December 1121
and then again on December 8 and increased screening clinics. During this period, the average number122
of daily confirmed cases was 463.123

• P5 (February 26, 2021 ∼ July 11, 2021): South Korea began its vaccination campaign on February 26,124
2021, and then saw an increase in delta variant cases starting April 18, 2021. During this period, the125
average number of daily confirmed cases was 571.126

2.2 Infection network of infector and infectee127

Network, also called graph mainly in mathematics, has been used as an explanatory tool to describe the128
dynamics of disease transmission (29). The terms “individuals (confirmed cases)” and “contacts (infects)”129
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Figure 1. The established infection network comprises many connected components due to missing
vertices (individuals) and edges(infection events). An infection network’s vertices can be classified into
four types (u-t, u-u, t-u, t-t) based on the classification of their infector or infectee status as either traced or
untraced. Also, the infection network evolves as an infectious disease spreads over time.

in epidemiology can be considered as “vertices” and “edges” in graph theory, respectively. For more details130
on network epidemiology, see the review (30, 31) and references therein.131

Denote the set of all confirmed IDs from January 19, 2020 to July 11, 2021 as I, and let the set of132
all infection events (m−1,m0) for the infector m−1 ∈ I and its infectee m0 ∈ I as E . We consider the133
directed network G = (I, E) as an infection network. For complete sampling, the infection network G134
must be weakly connected (replacing all its directed edges with undirected edges produces a connected135
undirected graph). However, due to the existence of unreported infection cases, it is natural to assume that136
the network is constructed by incomplete sampling of all confirmed individuals in a population (missing137
vertices) and incomplete sampling of infection events between individuals (missing edges). So the infection138
network G generated by real data consists of many weakly connected (or just connected components in this139
paper) due to many missing vertices and edges, i.e., unreported individuals and infections. Hence analysis140
of unreported infections is crucial for a better understanding of the real infection network in South Korea141
and other countries.142

2.3 Four type classifications143

Each polymerase chain reaction (PCR)-confirmed case m0 can be classified into four different types144
based on (i) as an infector m−1, whether the infectees they have transmitted the virus to have been traced145
or (ii) as an infectee m1, whether they are aware of their infector being traced.146

(i) An individual m0 ∈ I is said to be “untraced-untraced” type, denoted by u-u, if {m0 ∈147
I|(m−1,m0) ∈ E} = ∅ and {m0 ∈ I|(m0,m1) ∈ E} = ∅, i.e., its infector is missing (untraced) and148
its infectee is missing or does not exist. Such an individual is represented as an isolated vertex on the149
network.150

(ii) An individual m0 is said to be “traced-untraced” type, denoted by t-u, if {m0 ∈ I|(m−1,m0) ∈151
E} ≠ ∅ and {m0 ∈ I|(m0,m1) ∈ E} = ∅, i.e., its infector is confirmed (traced) but its infectee is152
missing or does not exist. Such an individual is represented as a leaf of a directed tree graph.153

(iii) An individual m0 is said to be “untraced-traced” type, denoted by u-t, if {m0 ∈ I|(m−1,m0) ∈154
E} = ∅ and {m0 ∈ I|(m0,m1) ∈ E} ≠ ∅, i.e., its infector is not confirmed but its infectee is155
confirmed. Such an individual is represented as a root of a directed tree graph.156

(iv) An individual m0 is said to be “traced-traced” type, denoted by t-t, if {m0 ∈ I|(m−1,m0) ∈ E} ̸= ∅157
and {m0 ∈ I|(m0,m1) ∈ E} ≠ ∅, i.e., infector is confirmed and infectee is confirmed. Such an158
individual is represented as neither a root nor a leaf in a directed tree graph.159

Given an infection network, one can find the following properties due to the characteristics of infectious160
disease transmission:161
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Figure 2. Categorized daily and cumulative confirmed cases over various periods are presented: (Upper)
Entire period, (Lower) P1 to P5, along with representative control measures implemented in South Korea.
The contrasting background colors distinguish each period.

• The number of connected components with more than two vertices (individuals) equals the number of162
individuals (vertices) of the u-t type.163

• The number of individuals excluding the u-u type represents the total sum of the number of individuals164
across all connected components with more than two vertices.165

• The quotient of the number of individuals excluding the u-u type and the number of u-t type individuals166
represents the average number of individuals per connected component.167

• The quotient of the number of t-t type individuals and the number of u-t type individuals represents the168
average number of t-t type individuals per connected component.169

2.4 Experimental settings170

Data preprocessing was performed before conducting the simulation. Firstly, 2,546 infection events171
(m−1,m0) ∈ E were excluded due to missing report dates. Next, we identified 474 individuals, m0 ∈ I,172
linked to multiple infectors, m−1 ∈ I, due to uncertainty about who the actual infector is, resulting in a173
total of 1042 infection events, (m−1,m0) ∈ E . Among the identified 1042 infection events (m−1,m0) ∈ E ,174
480 of these cases were of the u-t type for m−1 ∈ I. Finally, we excluded the connected components that175
include the u-t type from our data. Through all these preprocessing steps, the total number of confirmed176
cases obtained is 164,314. All simulations were done in Python version 3.9. The calculation of Rt was177
carried out using the Epyestim library, employing Epyestim’s default distributions and parameters. This178
library is described in Thompson et al. (32).179

3 RESULTS

3.1 Analysis for infection network by time periods180

Analyzing daily confirmed cases alone is insufficient to fully understand the transmission dynamics of181
infectious disease. Therefore, as depicted in Figure 2, confirmed cases have been categorized into four182
types, and a period analysis was conducted. In Figure 2 upper panel, the period with the highest proportion183
of u-u type cases among the four types was P1. In contrast, the highest proportions for the remaining three184
types were observed in P4. Moreover, the cumulative number of confirmed cases during P4 shows a sharp185
increase, especially in the number of t-u type cases. On February 23, 2021, the cumulative number of u-t186
type cases surpassed that of u-u type. However, starting from April 26, 2021, the cumulative number of u-u187
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Figure 3. (Upper) Age distribution categorized according to four types for both P1 and P4. (Lower) The
proportion of each case type within specific age groups over the cumulative period. The left panels display
heatmap for u-u and t-u types, while the right panels show those for u-t and t-t types, with dotted lines in
the figure marking the divisions between periods P1 to P5.

type cases began to increase sharply. The number of cumulative confirmed cases for u-t type is almost the188
same as the number for t-t type over P4, P5.189

3.2 Analysis for infection network by time periods and age group190

The transmission dynamics might be related to the contact pattern between age groups (7, 26, 33). Figure191
3 upper panel displays the age distribution of four types for both P1 and P4. During P1, a high number192
of confirmed cases were observed in individuals in their 20–29 and 50–59. Among all age groups of193
confirmed cases, 79% were classified as the u-u type. The highest proportion of u-u type cases was found194
in the 20–29 age group, accounting for 88% of the cases in this age group, while the lowest was in the195
0–9 age group, with 49%. However, in P4, there was a distinct shift with the majority of confirmed cases196
being of the t-u type. This was most pronounced in the 0–9 age group, which had the highest proportion of197
t-u type cases at 62%, whereas the 60–69 age group had the lowest at 42%. Additionally, throughout the198
entire period under study, the 0–9 age group consistently exhibited the highest proportion of t-u type cases,199
accounting for 47%. For the age distribution in other periods, refer to Appendix Figure 7. Figure 3 lower200

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 90−99

P1 0.92 0.21 0.07 0.20 0.21 0.18 0.16 0.17 0.19 0.16
P2 0.95 0.64 0.45 0.28 0.46 0.93 1.16 1.63 1.13 1.40
P3 0.86 0.77 0.41 0.44 0.50 0.50 0.56 0.57 0.73 0.48
P4 2.68 2.20 1.16 1.19 1.38 1.45 1.31 1.26 1.79 2.03
P5 0.87 0.61 0.38 0.44 0.46 0.53 0.55 0.59 0.85 0.80

Entire 1.32 0.94 0.51 0.62 0.67 0.76 0.77 0.79 1.14 1.28

Table 1. It represents the ratio of the number of traced infectors to the number of untraced infectors for
each period and age group. The red (resp. blue) color stands for the age group with the maximum (resp.
minimum) ratio for each period.
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Figure 4. The comparison of infector identification for traced (t-u, t-t type) and untraced (u-u, u-t type)
cases is shown in each age group.

panel presents a heatmap representing the proportion of each case type within specific age groups over201
the cumulative period. For instance, on the u-u type heatmap, if the y-axis is labeled 20-29 and the x-axis202
indicates 400 days (February 28, 2021), the value corresponds to the proportion of 20-29 age group cases203
that are classified as u-u type up to 400 days. Due to the low number of cumulative confirmed cases in the204
early stages of COVID-19 spread, this paper will not interpret the results for this period. When considering205
the entire cumulative period, the age groups with the highest proportions of u-t type and t-t type cases206
are 70–79 and 50–59, respectively, each accounting for 13% and 11%. The heatmaps for each type are207
examined in sequence. Firstly, examining the u-u type heatmap, it is observed that until the mid-period of208
P4, the majority of confirmed cases in the 20–29 age group were of the u-u type. This trend is not exclusive209
to the 20–29 age group; up until the mid-period of P4, a high proportion of u-u type cases is evident across210
most age groups. However, post the mid-period of P4, there is a significant reduction in the proportion of211
u-u type cases in all age groups except for 20–29. Next, the t-u type heatmap shows a pattern opposite to212
that of the u-u type. The u-t type heatmap indicates an increase in the proportion of u-t type cases among213
the 40–79 age group after the mid-period of P4. Lastly, the t-t type heatmap reveals an increase in the214
proportion of t-t type cases among the 40–69 age group posts the mid-period of P4. We also analyzed the215
relationship between each type in terms of age group and period. As shown in Table 1, the value obtained216
from dividing the number of confirmed cases with traced infectors (or just traced infectors) by the number217
of confirmed cases with untraced infectors (or just untraced infectors) was calculated for each period and218
age group. In all periods except for P2, the age group of 9 years and under has higher values compared to219
other age groups, and the 20−29 age group has the lowest values. Furthermore, this paper investigated220
the number of traced infectors and the number of untraced infectors across different age groups over time.221
These values were processed using a smoothing function with a uniform kernel of 10 points, where each222
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Figure 5. The figure upper panel presents the power law approximation of the distribution of connected
component length for each period (Middle) and the same distributions on a log scale (Right), respectively.
For convenience, y-axis value (log value of the number of cases) of −1 indicates log 0. The lower panel
represents the number of connected components by length over time.

point is weighted equally (1/10), to enhance data visualization and analysis. As shown in Figure 4, in P4,223
for individuals aged 20 and above, the number of untraced infectors is almost the same as the number of224
traced infectors. However, in the age group below 20, there were more cases with a traced infector than225
with an untraced one. During P5, there was a significant increase in the number of untraced infectors in226
the 0–59 age group.227

3.3 Length of the connected components of infection network228

Infection order refers to the number of subsequent infections traced back to a single confirmed case.229
For instance, if person A infects person B, and person B then infects person C, B and C are considered230
the 2nd and 3rd order infected individuals, respectively, originating from A. In this paper, we define the231
length of a connected component as n-1, where n is the highest order of an infector originating from a232
u-t type individual in the connected component. As shown in Figure 5 (Middle), in P1, the proportion of233
connected components with a length of 1 is the highest at 81%, compared to other periods. Conversely,234
the lowest period is P2 with 61%. For the distribution of connected component length in other periods,235
refer to Appendix Figure 8. In Figure 5 (Right), for the entire period and P4, the slopes of the log scale for236
the number of cases according to length, from length=1 to lenght=2, ..., and from length=8 to length=9,237
all exhibit similar values. Another observation is that the slope from length=2 to length=3 being closest238
to 0 occurs during period P2. The lower panel displays the number of connected components with the239
length being either 1 or greater than 2, spanning the period from January 19, 2020, to July 11, 2021. During240
each epidemic wave P1, P3 and P5 at their respective peaks, the number of connected components with241
a length of 2 or more is significantly smaller compared to the number of connected components with a242
length of 1.243

3.4 Daily confirmed cases relationship244

Figure 6 (Upper) represents the average number of individuals per connected component for each day245
from January 19, 2020, to July 11, 2021. For instance, the value for November 31, 2020, is calculated as246
the sum of t-t and t-u type individuals on November 31, 2020, divided by the number of u-t type individuals247
on the same date. The observation revealed that the value and the daily confirmed cases exhibited opposing248
trends. During the epidemic waves of P1 and P3, the value is lower compared to periods not experiencing249
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Figure 6. The right y-axis and the black line represent daily confirmed cases, while the left y-axis represents
all other values. (Upper) The average number of individuals (vertices) per connected component for each
day. (Lower) The average number of secondary cases for each type and time-dependent reproduction
number Rt over time.

an epidemic wave. Following the surge in daily confirmed cases in P4, the value remains consistent without250
significant increases. Figure 6 (Lower) illustrates the average number of secondary cases for both u-t and251
t-t types, calculated with a window size of 30, from March 22, 2020, to July 11, 2021, and also depicts the252
time-dependent reproduction number Rt (12). The value is an indicator derived from the infection network253
analysis. For instance, the average number of secondary cases for the u-t (resp. t-t) type on August 1, 2020,254
is defined as the real-time calculated average value of confirmed cases directly infected by the u-t (resp. t-t)255
type within the infection network identified between July 1, 2020, and August 1, 2020. For instance, if256
within the identified infection network for the period, there are 3 connected components, and the number257
of individuals infected by each u-t type individual is 2, 6, and 1, respectively, then the average number of258
secondary infections for the u-t type on August 1, 2020, is calculated as (2+6+1)/3=3. The time-dependent259
reproduction number Rt did not show a significant increase before an increase in daily confirmed cases260
during P4 and P5. However, the circular markers in Figure 6 (Lower) indicate a significant increase in the261
average number of secondary cases for u-t type.262

4 DISCUSSION

Despite having a large volume of epidemiological data due to its active contact tracing efforts compared263
to other countries, South Korea’s infection network, generated from the data, comprises many connected264
components as a result of numerous missing vertices (individuals) and edges (infection events). This article265
analyzed the infection network using vertices of four types: u-u, u-t, t-u, and t-t based on whether their266
infector or infectee falls into the traced or untraced category. We analyzed the dynamics of the infection267
network based on each type, time, and age group, deriving insights. Our results showed a significant268
surge in the number of t-u type cases (i.e., traced infector - untraced infectee type) during P4 when269
the government upgraded the social distancing level twice as well as expanding the screening clinics in270
Figure 2. A significant surge in the cumulative number of u-u type cases was also observed, beginning271
in the mid-phase of P5, coinciding with the spread of the Delta variant. The average number of t-t type272
individuals per connected component close to 1 in P4 and P5 indicates active contact tracing in response to273
mass infection. In other words, the proposed method allows for the analysis and evaluation of phenomena274
induced by various events such as the implementation of public health policies, the emergence of new275
variants, and more.276

Our result also found age-specific transmission patterns for the four types in Figure 3. Individuals of the277
u-u type pose a significant risk of causing mass infections in the community. Across periods P1 to P5, the278
highest proportion of u-u type cases (57.4%) was observed in the 20–29 age group. This can be inferred to279
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be due to the 20–29 age group’s wider range of activities and frequent interactions with various people.280
The 0–9 (47.6%), 10–19 (40.9%), and 80–89 (46.5%) age groups had the highest rates of t-u type cases,281
indicating these demographics may serve as key points for interrupting transmission chains. By focusing282
on these patterns in the implementation of public health policies, it may be possible to more effectively283
contain outbreaks and prevent wider community spread. Individuals of the u-t type, as initial infectors in a284
connected component, help identify which age groups had more asymptomatic COVID-19 cases and were285
more engaged in contact tracing, based on their age-wise proportions. Across periods P1 to P5, the highest286
proportion of u-t type cases (13%) was observed in the 70–79 age group. From mid P4, it was observed287
that the proportion of u-t type cases in the 30-79 age group was higher compared to other age groups. The288
proportion of t-t type cases by age group also allows for the inference of which age groups were more289
actively involved in contact tracing. Across periods P1 to P5, the highest proportion of t-t type cases (11%)290
was observed in the 50–59 age group. After mid P4, the 40–69 age group showed a higher proportion of t-t291
type cases compared to other age groups. Furthermore, the analysis of the value obtained from dividing292
the number of confirmed cases with traced infectors (or just traced infectors) by the number of confirmed293
cases with untraced infectors (or just untraced infectors) across age groups revealed a sequence of 0–9 >294
90–99 > 80–89 > 10–19 > 70–79 > 60–69 > 50–59 > 40–49 > 30–39 > 20–29. For the 0–9 and 80–99295
age groups, where the number of contacts is limited, contact tracing was more manageable; however, in296
age groups like 20–39, which have a higher number of contacts, contact tracing was found to be more297
challenging. These analyses provide valuable information for understanding the transmission dynamics298
of COVID-19, allowing us to suggest strengthening or relaxing control measures for specific age groups299
based on the period’s characteristics.300

Our results also investigated the distribution of the lengths of connected components within the infection301
network. In P2, the proportion of connected components with a length of 1 was the lowest, while the302
proportions with lengths of 2 and 3 were the highest. This indicates that during P2, which had the lowest303
daily average of 37 confirmed cases, the infection network had fewer missing edges (infection events).304
Further investigation across the entire period, as shown in the lower panel of Figure 5, revealed an increase305
in the number of connected components with a length of 1 during surges in daily confirmed cases. The306
earlier results motivated the hypothesis that the average number of individuals per connected component307
for each day would decrease during spikes in infections. This was indeed observed in the upper panel308
of Figure 6. It means that when the number of daily confirmed cases surges, it becomes challenging to309
contact trace high-order transmissions. This phenomenon may stem from changes in the government and310
the public’s willingness to engage in contact tracing and limitations of existing contact tracing methods in311
the face of a highly infectious virus spreading worldwide. For this reason, this article proposed the average312
value of confirmed cases directly infected by the u-t type as an indicator of infectious disease transmission313
potential. Utilizing the infection network up to 30 days prior allows for real-time calculation, and this314
indicator shows high values before a surge in daily confirmed cases. Due to the indicator allowing for an315
approximation of real-time unreported cases, it is more sensitive compared to Rt and increases before the316
third epidemic wave. We anticipate it to be a useful indicator in situations like in South Korea, where active317
contact tracing is conducted.318

Our study has several limitations. Firstly, we do not consider unreported cases including asymptomatic319
individuals, those with mild symptoms who were not tested, and unreported self-tests from the surveillance320
pyramid (34). Considering unreported cases is a key research topic for understanding and predicting the321
scale of infections (35, 36, 37). Acknowledging the constraints imposed by unreported cases, especially322
concerning COVID-19 transmission within contact networks, we recognize the potential of methods such323
as multiple imputation techniques (35) and data augmentation through link prediction (36) to provide324
valuable insights. Furthermore, the exploration of machine learning-based approaches (37) presents325
another promising avenue for addressing data gaps. Studies that have not estimated unreported cases326
but have specifically limited unreported cases to environmental factors include Myall et al. (38), which327
analyzed patient-contact networks using patient contacts obtained from hospital health records. Despite328
its limitations, the KDCA data we analyzed remains trustworthy. According to the KDCA, based on329
serological surveillance and contact tracing data, the rate of unreported cases in South Korea from January330
19, 2020, to July 30, 2022, was approximately 19.5%. This rate is notably lower than those seen in331
international contexts, a difference attributed to the widespread availability of testing and the public’s332
adherence to control measures (39, 40). Secondly, our study did not quantitatively assess contact tracing333
effectiveness. There are several previous studies about the effectiveness of contact tracing strategies for334
COVID-19 (41, 42, 1). Kretzschma et al. (41) analyzed contact tracing effectiveness using a stochastic335
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model, finding that immediate tracing and testing are crucial for reducing the spread of COVID-19. Delays336
in testing and tracing significantly diminish the potential to keep the effective reproduction number below337
1. Korean government implemented the contact tracing described in (42). Contact tracing for COVID-19338
was performed using information from credit card records, handwritten visitor logs, QR codes through339
KI-Pass, and the Safe Call system after interviews in Korea. Hellewell et al. (1) found tracing and isolation340
could control outbreaks within 12 weeks. There are previous studies to investigate the infection network341
of COVID-19 in (2, 43, 44). Luo et al. (43) in 2021 developed an infection network considering the342
history of exposure and transmission source. The visualization method, which identifies vertices in the343
infection network as clusters of infected individuals, revealed a highly central infection cluster in (44).344
However, we developed an infection network, categorizing infector-infectee pairs by age group and periods,345
specifically focusing on untraced cases. Jo et al. (2) emphasized the importance of gathering network data346
and examining network structures to improve the effectiveness of governmental responses to COVID-347
19. Additionally, in future research, we intend to expand our analysis to encompass infection networks348
incorporating spatial information, as discussed in (45).349

The current research reveals that, despite active contact tracing efforts, South Korea’s infection network,350
derived from a large volume of epidemiological data, comprises many connected components due351
to numerous missing entities (individuals) and infection events (edges). The presence of numerous352
connected components complicates the inference of relationships between vertices. Therefore, a four-type353
classification method for vertices (confirmed cases) is proposed. This method enables the categorization354
of vertices within the numerous distinct connected components from a common perspective, thereby355
facilitating the analysis and interpretation for each vertex type. The changes in the number of cases356
for each type over time relate to the emergence of new coronavirus variants (such as Delta) or the357
implementation of control measures. When analyzed by age group, it was observed that certain age groups358
are more sensitive to these events. Additionally, we analyzed the infection network from the perspective359
of connected components, proposing a new indicator and comparing it with Rt. Despite limitations, the360
study’s categorization of epidemiological data into four types not only offers a robust foundation for361
evaluating public health policies and comprehending the dynamics of COVID-19 transmission but also362
serves as a foundational health planning tool for resource management and tool selection/development for363
contact tracing.364

In conclusion, South Korea’s epidemiological data generated from active contact tracing enables novel365
infection network analysis. Our analysis reveals significant age-specific transmission patterns, particularly366
in the 20–29, 40–69, and 0–9 age groups. The patterns show a distinct shift around the midpoint of P4,367
with the 20–29 (57.4%) age group exhibiting the highest proportion of u-u type cases, the 40–69 age group368
predominantly showing u-t and t-t types, and the 0–9 (47.6%) age group having the highest rate of t-u type369
cases across entire periods. This suggests a relationship between age groups and the four-type classification.370
A significant increase in t-u and u-u type cases was observed during certain periods, providing opportunities371
for analysis and evaluation of phenomena induced by various events, such as the implementation of public372
health policies, the emergence of new COVID-19 variants, and more. Also, through the investigation of the373
distribution of lengths of connected components within the infection network, we found that the average374
number of individuals per connected component tends to decrease during surges in daily confirmed cases,375
indicating that tracing high-order transmissions becomes more challenging. Accordingly, we propose the376
average value of confirmed cases directly infected by the u-t type as an indicator to assess the potential for377
infectious disease transmission. Additionally, this approach could facilitate the early detection of changes378
in willingness among individuals to participate in tracing, or in the reduced capacities of contact tracing379
systems. The investigation of infection networks is crucial for advancing our capacity to control and380
mitigate the transmission of infectious diseases. Recognizing the necessity for a more thorough age-based381
categorization, the study emphasizes potential areas for future research improvements in comprehending382
and refining public health strategies. Additionally, our study presents a new real-time indicator using contact383
tracing data collected during actual infection spread, ultimately providing support for decision-makers and384
contributing to reducing the pandemic’s impact on global communities.385
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APPENDIX486

Figure 7. Additional information for Figure 3. Age distribution categorized according to four types for
both P2, P3, P5 and Entire.

Figure 8. Additional information for Figure 5. The figure presents the distribution of connected component
length for each period.
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