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Abstract 

Gut microbiome composition has been associated with early preclinical Alzheimer’s disease 

(AD), as reflected by cerebrospinal fluid (CSF) amyloid beta pathology, and with mild 

cognitive impairment (MCI). However, the presence of distinct microbiota across different 

disease stages has not been fully characterized. We profiled gut microbiota in 50 

nondemented individuals by 16S ribosomal RNA sequencing and taxonomic profiles were 

compared between amyloid-based (amyloid-normal vs. amyloid-pathology) and clinically-

based (cognitively normal vs. MCI) diagnosis groups using linear models (adjusted for sex, 

age and diet). Elastic net regression model was used to assess the discriminative 

performance of microbiota for amyloid-pathology and MCI. Microbial diversity measures did 

not differ across groups. We identified specific genera associated with amyloid-pathology 

and MCI such as Oxalobacter, Marvinbryantia and Escherichia-Shigella, mostly linked to 

inflammation. Distinct genera were found to be unique to amyloid-pathology and MCI. 

Microbiota was shown to have a fairly good discriminative performance. Overall, we suggest 

the presence of distinct microbiota in early preclinical stage of AD and MCI, which needs to 

be further explored. 
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1. Introduction 

Alzheimer’s disease (AD)1 is the most common cause of dementia worldwide and a complex 

neurodegenerative disorder with significant burden for the society and the economy 

(Knopman et al. 2021). The diagnosis of AD is based on clinical criteria complemented with 

the biomarker-driven amyloid/tau/neurodegeneration (AT(N)) classification schema (Jack et 

al. 2018). This ATN framework characterizes the AD continuum by its biological presentation 

independently of clinical assessment of cognitive status. AD continuum begins from 

preclinical stages characterized by normal cognition and abnormal brain biomarkers, 

including amyloid-beta 42 (Aβ42), to mild cognitive impairment (MCI) and then to clinically 

apparent dementia (Tahami Monfared et al. 2023). Given that cerebrospinal fluid (CSF) Aβ42 

pathology has been consistently associated with clinical progression to cognitive decline 

(Dumurgier et al. 2017; Prosser et al. 2023; Tijms et al. 2017), understanding of the distinct 

molecular alterations of early preclinical stages, compared to MCI, is imperative to earlier 

diagnosis and may serve for potential treatment strategies. 

Accumulating evidence suggest that gut microbial dysbiosis is involved in AD pathogenesis 

probably via the gut-brain axis and by regulating peripheral and central inflammation through 

microbial metabolites (Chandra, Sisodia, and Vassar 2023). Recently, transplants of gut 

microbiota from patients with AD were shown to induce memory impairments in young 

animals (Grabrucker et al. 2023). Given that brain aggregation of amyloid Aβ42, the core 

pathology of AD (Knopman et al. 2021), seems to precede the development of significant 

cognitive decline and dementia (Insel et al. 2019), it is likely that the contribution of the gut 

microbiome to disease also occurs before symptom onset. To date, little information is 

                                                           

1 Abbreviations: AD, Alzheimer’s disease; Aβ42: amyloid-beta 42; MCI, Mild cognitive 
impairment; CSF, Cerebrospinal fluid; rRNA: ribosomal RNA; pTau: phosphorylated tau; 
tTau: total tau; APOE: Apolipoprotein E; MDS: Mediterranean Diet Score; ASV: Amplicon 
sequence variant; PERMANOVA, permutational multivariate analysis of variance; PCoA: 
Principal coordinate analysis; MaAsLin2, Microbiome multivariable Associations with Linear 
model; FDR, False discovery ratio; CLR, Centered log ratio; AUC, Area under the curve; 
PICRUSt2: Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States 2.  
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available on the role of the gut microbiome in these early preclinical stages of AD (Verhaar 

et al. 2021; Jung et al. 2022; Ferreiro et al. 2023). Given that amyloid deposition, although 

not determinant, may lead to the development of the clinical signs of the disease, including 

MCI and AD dementia (Jack et al. 2018), it will be key to define microbes that distinguish 

individuals with MCI from cognitively healthy controls. Several lines of evidence suggest a 

role of gut dysbiosis in the development of MCI (Chen et al. 2023; Fan et al. 2023; Yildirim et 

al. 2022) however, according to our knowledge, there are no microbiome studies exploring 

both amyloid pathology and clinical status in a single population sample. Profiling microbial 

communities in both early preclinical and clinical stages of the disease can reveal distinct 

microbiota that may be used as early detection markers and potential treatment targets for 

AD. 

Prediction models have a prominent role in healthcare research and clinical practice, as they 

can help physicians identify patients at risk of developing a disease and then recommend 

treatment plans (Eloranta and Boman 2022). Given that several lines of evidence suggest a 

role for gut microbes in the evolution of AD pathogenesis, it will be key not only to define 

differential gut microbiota across stages but also to investigate their discriminative capacity 

for amyloid pathology or MCI status. To date, little is known about the contribution of gut 

microbiome features in prediction models for amyloid pathology, highlighting microbes that 

produce short chain fatty acids (SCFAs) (Verhaar et al. 2021) or induce inflammation 

(Ferreiro et al. 2023), as the top taxonomic predictors. Given that CSF biomarkers are of 

limited clinical application due to discomfort during the lumbar puncture and/or high cost, the 

identification of low-cost and less invasive biomarkers, such as fecal microbiota, in further 

preclinical AD cohorts, would increase their use in clinical practice. Furthermore, 

identification of specific bacteria reflecting pathophysiological processes would help to 

identify biomarkers for AD pathology and MCI and contribute to further designing potential 

strategies to slow the rates of cognitive decline. 
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To this end, we performed 16s ribosomal RNA (rRNA) amplicon sequencing to profile and 

compare the gut microbiota composition between individuals with and without amyloid 

pathology and between cognitively normal individuals and those clinically diagnosed with 

MCI. We then investigated the presence of distinct microbiota alterations in amyloid-based 

and clinically-based comparisons. We further determined whether microbiota could 

discriminate for amyloid pathology and MCI and we investigated whether specific microbiota 

correlated with established AD biomarkers. 

2. Methods 

2.1 Study population 

This research has been conducted within the ongoing ALBION (Aiginition Longitudinal 

Biomarker Investigation of Neurodegeneration) study initiated in 2018. The ALBION study 

sample consisted of individuals aged >40 years old, referred to the cognitive disorders’ 

outpatient clinic of Aiginition Hospital (Athens, Greece). Patients with a dementia diagnosis 

were excluded from ALBION, as well as patients with medical conditions associated with a 

high risk of cognitive impairment or dementia (including Parkinson’s disease, multiple 

sclerosis, hydrocephalus, epilepsy, Huntington’s disease, Down syndrome, active alcohol or 

drug abuse or major psychiatric conditions such as major depressive disorder, 

schizophrenia, and bipolar disorder). The baseline evaluation was completed by 198 

individuals from 2019 to 2023. In the present study, we included only ALBION participants in 

their baseline evaluation with available fecal samples, CSF biomarker results and screened 

for MCI diagnosis (n=53) (Fig. S1). Among these, three individuals were excluded due to 

antibiotics use within three months prior fecal sampling. A detailed description of ALBION’s 

study protocol can be found elsewhere (Kalligerou et al. 2019; Scarmeas et al. 2022). 

Written informed consent was obtained from all participants, and study procedures were 

approved by the Institutional Review Board and Ethics Committee of the Aiginition University 

Hospital, National and Kapodistrian University of Athens, Greece (Protocol code: 255, ΑΔΑ: 

ΨΘ6Κ46Ψ8Ν2-8ΗΩ, date of approval: 10 May 2022).   
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2.2 Cerebrospinal Fluid (CSF) collection and analysis 

All participants underwent comprehensive neuropsychological assessment by a certified 

neurologist. CSF was collected through lumbar puncture and stored following international 

guidelines (Teunissen et al. 2014). CSF was processed for biomarkers such as amyloid-β 1–

42 (Aβ42), phosphorylated tau at threonine 181 (pTau), and total tau (tTau). More details 

about CSF collection and analysis in ALBION can be found elsewhere (Kalligerou et al. 

2019; Sampatakakis et al. 2023; Scarmeas et al. 2022). CSF samples were analyzed using 

automated Elecsys assays (Roche Diagnostics). The reference ranges for a positive result 

(pathology) were as follows: Aβ42 ≤ 1000 pg/ml, pTau >27 pg/ml and tTau >300 pg/ml. Given 

the low number of studied individuals having tau pathology (7 out of 50 individuals) and that 

amyloid aggregation is the first event related to neuropathology of AD (Zhang et al. 2018), 

possibly starting earlier than the accumulation of Tau (Wegmann, Biernat, and Mandelkow 

2021), we restricted our analysis only on the amyloid status. Twenty-one out of 50 

participants were classified as having amyloid-pathology, while the remaining 29 individuals 

were classified as amyloid-normal. We also categorized individuals based on established 

clinical diagnosis criteria (Petersen et al. 2001) to cognitively normal (CN) (n=40) and those 

having MCI (n=10).  

2.3 APOE ε4 status and lifestyle data  

APOE ε4 genotyping procedures have been described previously (Sampatakakis et al. 

2023). Briefly, APOE ε4 genotyping was performed using a commercial kit (LightMix TIB 

MOLBIOL) in Roche Light Cycler 2 apparatus and hybridization probe method. Participants 

were classified as APOE ε4 carriers (at least one copy of the APOE ε4 gene) and APOE ε4 

non-carriers (no copies of the APOE ε4 gene). Dietary intake was assessed by four 24-h 

recalls as described in a previous work (Brikou et al. 2023) and adherence to Mediterranean 

diet was assessed using an eleven-item composite score, the Mediterranean Diet Score 

(MDS) (Panagiotakos, Pitsavos, and Stefanadis 2006). Smoking status (former or present) 

was also assessed for participants.  
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2.4 Fecal sample collection, DNA extraction, library preparation and sequencing 

Fecal samples were collected for all participants from November 2020 to January 2022. 

Each study participant was given a fecal collection container to collect a fecal sample at 

home. The participants were asked to store the sample in a freezer and to transport the 

samples to the hospital in a cooling bag the day following home collection. Fecal samples 

were then immediately stored at −80oC until DNA extraction. Microbial DNA samples were 

extracted using a QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) and shipped on 

dry ice to the Sequencing and Genomics Facility of the Institute of Applied Biosciences, 

Center for Research and Technology Hellas, Thessaloniki, Greece for 16s rRNA analysis. 

Bacterial diversity was assessed by sequencing the V3-V4 regions of the 16S rRNA gene 

(~460 bp) using the Illumina's 16S Metagenomic Sequencing Library Preparation protocol. 

For the amplification of the V3-V4 region, gene-specific primers were selected based on 

Klindworth et al. 2013 (Klindworth et al. 2013), by adding Illumina overhang adapter 

nucleotide sequences at the 5′ end. Libraries were sequenced in a MiSeq platform using the 

MiSeq® reagent kit v3 (2×300 cycles) (Illumina Inc., San Diego, CA, USA). 

2.5 Sequencing data processing  

Sequencing reads were denoised into amplicon sequence variants (ASVs) using DADA2 

(Callahan et al. 2016). Taxonomy was assigned to ASVs against the SILVA 132 16S rRNA 

database (Quast et al. 2013). Sequences classified as archaeal, chloroplastic or 

mitochondrial were removed. The final ASV table (3,027 ASVs in total) was imported into the 

phyloseq package in R for downstream analyses.  

2.6 Statistical analysis 

Continuous variables were summarized by mean and standard deviation, while categorical 

variables were presented by count and percent prevalence. To assess differences between 

the diagnosis groups, we used Welch’s t-test for the normally distributed data, Mann-
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Whitney U test for the non-normal data and Fisher’s exact test for categorical data. 

Statistical significance was set at a p-value <0.05. 

Rarefied data (21,325 sequences per sample) were used for calculating alpha and beta 

diversity indices. Alpha diversity indices (richness and Shannon diversity index) were 

calculated using the phyloseq (v1.42) estimate_richness function and compared between 

groups using the Wilcoxon rank sum test. Beta diversity, based on Bray-Curtis dissimilarity, 

was analyzed using permutational multivariate analysis of variance (PERMANOVA, 999 

permutations) from the vegan (v2.6-4) R package (“adonis2” function) (Oksanen J et al. 

2022). Results were plotted by principal coordinate analysis (PCoA).  

For differential abundance analysis, ASVs were aggregated at genus level and only genera 

with prevalence >0.1 (174 genera) were included. We applied Microbiome multivariable 

Associations with Linear model (MaAsLin2 v1.12.0) (Mallick et al. 2021) to detect 

differentially abundant genera, by fitting a zero-inflated negative binomial model in rarefied 

abundance data. Considering that the input data were rarefied, we turned off the default 

normalization and transformation methods implemented in MaAsLin2 function. Fixed effects 

included age, sex and MDS. P-values were adjusted for multiple testing using the false 

discovery rate (FDR). Genera with an adjusted p-value (q-value) lower than 10% were 

considered as differentially abundant genera.  

To explore the discriminative performance of gut microbiota for amyloid-pathology and MCI, 

we regressed binary variables (amyloid-pathology or MCI) against the 174 identified genera. 

Due to the high dimensionality, sparsity and multicollinearity of microbiota data, we applied 

an elastic net regularized logistic regression on centered log-ratio (CLR) transformed counts 

(R 1996). This method can perform both feature selection and regularization during model 

training, and can often identify a small number of highly relevant features that capture the 

underlying patterns in the data. To evaluate the model performance, we obtained a 2x2 

confusion matrix using the test dataset and calculated true positive, true negative, false 

positive, and false negative using predicted and observed classes. Then, we calculated and 
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adopted three metrics for the model’s performance evaluation: accuracy, F1-score and area 

under the curve (AUC), using true positive rate and false positive rate (FPR) (Chicco and 

Jurman 2020; Metz 1978). Further information is provided in the Supplemental Methods. 

To explore correlations of the levels of CSF biomarkers amyloid Aβ42, pTau and tTau with 

gut microbiome abundance data, we transformed counts with CLR (after applying a 

pseudocount of 0.0001) using clr function from the compositions R package (version 2.0-6). 

Spearman’s rank correlations were calculated using the cor.test function in R and 

considered statistically significant at p<0.05. To handle microbiome sparsity issues, we 

tested correlations only for genera harbored in at least 30% (≥15) of participants. The 

correlation heatmap was generated using the package ggcorrplot (v0.1.4.1). We used 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 

(PICRUSt2) (Douglas et al. 2020) to detect predicted functional differences in microbial 

communities across both comparisons (individuals with amyloid-pathology vs. amyloid-

normal and CN vs. MCI). Predicted functionalities were further clustered in different pathway 

hierarchies (levels 1, 2, and 3) and compared across groups using multivariable logistic 

regression analysis with LASSO penalty and minimum lambda. All statistical comparisons 

and data visualization were performed with the R statistical programming language (v.4.2.1). 

All p values were 2-tailed (α = 0.05).  

3. Results 

3.1 Characteristics of the study population 

We included 50 participants aged 64.3 (8.4), and 35 of them (70%) were female. Table 1 

summarizes the characteristics of the total sample and the diagnosis subgroups. Individuals 

with amyloid-pathology had lower amyloid values and were more likely to be carriers of 

APOE ε4, compared to amyloid-normal participants. Both groups were comparable in terms 

of sex, age, smoking status and MDS. When clinical diagnosis criteria were applied, 80% of 

overall participants (40 individuals) were classified as cognitively normal. As expected, age 
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differed across clinical groups, as individuals with MCI were older. In regard to the levels of 

CSF biomarkers, amyloid was lower and pTau was higher in the MCI group, whereas tTau 

trended to being significantly different across groups. MCI and CN individuals were 

comparable in terms of sex, APOE ε4 positive status, smoking status and MDS. Distributions 

of CSF amyloid Aβ, pTau and tTau levels are presented in Fig. S2. 

We profiled the gut microbiota through 16s rRNA amplicon sequencing and generated a total 

of 1,936,604 high-quality reads with an average of 38,732 reads per sample. Among all 50 

participants included in this analysis, the dominant phyla were Firmicutes and Bacteroidetes, 

which made up 67% and 25% of the total abundance, respectively (Fig. S3, S4). The 

Firmicutes/Bacteroidetes ratio did not differ either between CSF amyloid-based diagnosis 

groups (mean [SD], amyloid-normal 2.84 [0.95]; amyloid-pathology 3.03 [1.41], P=0.60) or 

between clinically-based diagnosis groups (mean [SD], CN 2.83 [0.96]; MCI 3.29 [1.75], 

P=0.44). The predominant bacterial families, overall, were Lachnospiraceae (~30.8%), 

Ruminococcaceae (~24%), and Bacteroidaceae (~15.5%) (Fig. S3, S4). The most abundant 

five genera across all individuals were Bacteroides (~15.5%), Faecalibacterium (~8.5%), 

Blautia (~5.8%), Eubacterium hallii group (~4.3%) and Ruminococcus 2 (~3.5%) (Fig. S3, 

S4), however no differences were found across the diagnosis groups. Similarly, no 

differences in alpha diversity, measured with richness and Shannon diversity index, and in 

beta diversity (PCoA, Bray-Curtis) were found in either comparison type (Fig. 1, Table S1). 

3.2 Associations of microbiota with amyloid pathology and MCI status 

Differential abundance (DA) analysis revealed that gut microbiota of individuals with amyloid-

pathology showed significantly altered abundances of 21 genera (FDR<0.10) relative to the 

amyloid-normal group, with 10 genera more abundant and 11 genera less abundant in 

amyloid-pathology group (Table S2). Genera detected in at least 30% of participants and 

most associated with amyloid-pathology status by magnitude of their model coefficients 

included Oxalobacter (coefficient=1.06, standard error=0.28, q-value=0.003), Coprobacter 

(coefficient=0.81, standard error=0.33, q-value=0.099) and Marvinbryantia (coefficient=0.71, 
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standard error=0.26, q-value=0.049). Enterococcus (coefficient=-2.55, standard error=0.95, 

q-value=0.053) and Enterobacter (coefficient=-1.24, standard error=0.38, q-value=0.013) 

were found to be the top two genera associated with amyloid-normal status (Fig. 2). When 

individuals with MCI were compared to CN individuals, we found 27 differentially abundant 

genera (FDR<0.10), of which 19 were more abundant in the MCI group (Table S3). The top 

three genera detected in at least 30% of participants and most associated with MCI status by 

magnitude of their model coefficients included Escherichia-Shigella (coefficient=2.60, 

standard error=1.03, q-value=0.072), Family XIII AD3011 group (coefficient=1.61, standard 

error=0.46, q-value=0.007) and Enterobacter (coefficient=1.39, standard error=0.43, q-

value=0.014). Dialister (coefficient=-1.92, standard error=0.51, q-value=0.003) was the 

genus most associated with CN status (Fig. 2).  

3.3 Common and distinct microbiota between amyloid pathology and MCI status 

Of the DA genera identified at both comparisons, six genera (after removal of unclassified 

genera) were shared (Fig. S5), of which only Enterobacter showed opposite direction of 

effect, i.e. lower abundance in individuals with amyloid-pathology and higher abundance in 

individuals with MCI (Fig. 2). The remaining 28 DA genera were found to uniquely 

differentiate amyloid-based or clinically-based diagnosis groups, with their direction of effect 

reported in Fig. S5. Based on the MaAsLin2 association p-values (Tables S2, S3) and 

genera prevalence (detected in at least 30% of individuals), Oxalobacter, Coprobacter, 

Marvinbryantia and Enterococcus may differentiate only amyloid-based pathology groups, 

through lack of statistically significant association in the clinically-based comparison. 

Similarly, genera Bilophila, Actinomyces and Escherichia-Shigella may differentiate only 

clinically-based diagnosis groups, through lack of statistically significant association in the 

amyloid-based comparison. 

3.4 Discriminative capacity of microbiota for amyloid pathology and MCI status 
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The elastic net analyses comparing participants with or without CSF amyloid-pathology 

identified two microbial genera discriminating the amyloid status, with Coprobacter over-

represented and Oscillibacter under-represented in pathology (Fig. 3A, Table S4). The 

overall predictive accuracy of the classification model (AUC) was 0.778 (95%CI=0.774-

0.783, sensitivity=0.992, specificity=0.574). Our model had moderate diagnostic accuracy 

based on the confusion matrix, the F1 score (0.781) and the overall prediction accuracy 

(0.752). These microbial genera remained in the model after adjusting for age, sex and MDS 

(Table S4). For MCI status, the identified signature achieved a greater AUC of 0.928 

(95%CI= 0.926-0.931, sensitivity=0.789, specificity=0.703) with Escherichia-Shigella and 

Lachnospiraceae UCG-004 over-presented, and GCA-900066575 under-represented (Fig. 

3B, Table S5). Based on the confusion matrix, the F1 score (0.896) and overall accuracy 

(0.850), our model has high diagnostic accuracy. Sensitivity analysis did not affect our 

unadjusted model results, however two new genera (Oxalobacter; coefficient=0.035; 95% 

CI: 0.020, 0.049 and Enterobacter; coefficient=0.052, 95%CI: 0.037, 0.067) were added as 

important features (Table S5). Of note, Escherichia-Shigella and Enterobacter were defined 

as DA genera from MaAsLin2 analysis and in the same direction (i.e. higher in the MCI 

group) (Fig. 2).  

3.5 Correlation of microbiota with CSF biomarkers for AD 

We calculated Spearman’s rank correlations between the CLR-transformed abundance of 

genera identified as differentially abundant or as important features through elastic net 

models and the three measured CSF biomarkers (amyloid, pTau and tTau) (Fig. 4). The 

MCI-abundant Escherichia-Shigella (rho=-0.33, P=0.010) and the amyloid-pathology 

abundant Marvinbryantia (rho=-0.27, P=0.026) were significantly negatively correlated with 

amyloid levels, while Oscillibacter, a genus with lower abundance in the amyloid-pathology 

group based on the elastic net regression model, was significantly negatively correlated with 

pTau levels (rho=-0.22, P=0.046) (Fig. S6). None correlation survived FDR<5% correction. 

No genera were significantly correlated with tTau levels.  
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3.6 Prediction of metagenomes 

A multivariable logistic regression analysis using LASSO penalty with minimum lambda was 

applied to detect significant KEGG pathways that differentiate diagnosis groups. When 

individuals with amyloid-pathology were compared to amyloid-normal individuals, we found a 

decrease in the pathway (i.e. gene content) related to environmental adaptation (2nd level) in 

the amyloid-pathology group.  When individuals with MCI were compared to CN individuals, 

in level 3, pathways related to endocytosis, polycyclic aromatic hydrocarbon degradation and 

stilbenoid, diarylheptanoid and gingerol biosynthesis (3rd level) were increased in the MCI 

group (Fig. S7).  

4. Discussion 

We profiled the gut microbiota in both early preclinical stage of AD (as reflected from amyloid 

pathology) and MCI in a well-characterized cohort of nondemented individuals. Our analysis 

demonstrated that distinct microbial alterations may be present in each stage of the disease 

continuum. Furthermore, we developed microbiota signatures that have good discriminative 

performance for amyloid pathology and MCI status and showed that levels of differentially 

abundant microbiota were correlated with CSF biomarkers of AD pathology. Our findings 

add to the emerging literature highlighting the potential utility of gut microbiota as 

complementary early prognostic markers for AD. 

Our DA analysis revealed higher levels of Oxalobacter in individuals with amyloid pathology, 

a finding that has not been previously reported in other microbiome studies exploring 

preclinical stage of AD  (Verhaar et al. 2021; Jung et al. 2022; Ferreiro et al. 2023). We also 

found over-representation of Oxalobacter in MCI individuals through elastic net analysis, 

however results on this genus in relation to MCI are inconsistent across different studies 

(Chuang 2022; Fan et al. 2023). Oxalobacter has been shown to metabolize oxalate (Daniel 

et al. 2021), which in turn may be involved in the formation of amyloid aggregates in the 

entorhinal cortex of AD specimens, however its role in cognitive decline remains unclear 
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(Heller, Coffman, and Jarvis 2020). Oxalate has been also shown to promote inflammation 

and systemic oxidation through inducing reactive oxygen species (Liu et al. 2021). Another 

finding of an amyloid-pathology abundant genus is Marvinbryantia. We found an opposite 

direction of effect compared to the findings of a study of individuals from the Netherlands 

(Verhaar et al. 2021), which revealed an association of lower levels of Marvinbryantia with 

higher odds of amyloid positivity. This discrepancy may be due to the 3-fold smaller sample 

size of our study and subsequent lack of power or due to other factors including 

methodological differences, confounding effects of factors influencing gut microbiome 

composition (e.g. living environment, lifestyle) or differences in analysis pipelines. In our 

study, Marvinbryantia was the only genus associated with amyloid-pathology, and also 

correlated with lower CSF amyloid levels. To our knowledge, there are no other studies 

reporting an association of this microbe and AD biomarkers. Marvinbryantia belongs to the 

Lachnospiraceae family, known for the production of SCFAs such as butyrate, which 

regulates gut permeability and stimulates the inflammatory response  (Siddiqui and Cresci 

2021). We also report an association of lower abundance of Enterococcus with amyloid-

pathology, in line with a previous study (Jung et al. 2022). Enterococcus, a lactic-acid 

producer, has been shown to have anti-inflammatory properties (Carasi et al. 2017) and, 

thus, lower levels of Enterococcus may accelerate brain amyloid-β deposition through 

increased inflammation (Kinney et al. 2018). 

We highlight Escherichia-Shigella among the top genera associated with MCI status. This 

pathogenic microbe was found at higher levels in individuals with MCI, and also correlated 

with lower amyloid levels. Consistent to our findings, a study of individuals from Turkey also 

reported an association of this genus with MCI (Yildirim et al. 2022). Escherichia-Shigella 

belongs to the Enterobacteriaceae family, which can produce endotoxins (e.g. 

lipopolysaccharide) that are released into the blood circulation and thus induce systemic 

inflammation. The abundance of Escherichia-Shigella has been previously positively 

correlated with levels of proinflammatory cytokines such as IL-1β and NLRP3 (Cattaneo et 
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al. 2017). On the other hand, Dialister was the top genus associated with CN status, in 

accordance with previous study (Vogt et al. 2017), implying a protective role against 

development or progression of AD pathology. 

Our analyses allowed us to identify microbiome features that specifically differentiate 

amyloid-pathology and clinically-based diagnosis groups. We revealed that the microbiota 

alterations that we observed in individuals with amyloid pathology are only partly found in 

individuals with MCI. Our findings extent recent literature reporting stage-specific microbial 

alterations in MCI and AD (Troci et al. 2024) by revealing distinct microbial communities in 

the early preclinical stage of CSF amyloid-based pathology, where clinical symptoms are 

absent. Among the overlapping microbiota, notably, only Enterobacter showed opposite 

directionality of effects i.e. lower in amyloid pathology and higher in MCI. Enterobacter has 

been previously shown to increase steadily from healthy controls to MCI and dementia stage 

(Chen et al. 2023; Liu, Wu, et al. 2019), consists of pro-inflammatory species and correlates 

with brain structural signatures in regions related to memory, emotional processing and 

cognition (Tsai et al. 2022). Different abundance levels of Enterobacter between early 

preclinical stages and MCI may indicate a progressive change of gut microbiota composition 

during AD continuum, potentially opening future opportunities for gut-directed interventions 

that could interdict progression to clinical AD. Studies in larger cohorts are needed to 

validate our results. 

The use of gut microbiota as predictive markers for AD has shown promise (Ferreiro et al. 

2023; Verhaar et al. 2021). There is a clear attraction in the development of a gut microbiota-

based summary signature that can be used in both early preclinical stage of AD and MCI for 

risk stratification. Here, we demonstrated a fairly good discriminative capacity of gut 

microbiota for both amyloid pathology and MCI. Two genera, Oscillibacter and Coprobacter, 

were found as important features for amyloid-pathology status. Oscillibacter has been 

previously associated with preclinical AD and reported as an important predictor (Ferreiro et 

al. 2023), however, the direction of effect was opposite (higher abundance associates with 
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preclinical AD) compared to our study. This supports the need to expand microbiome studies 

in different populations and highlights the importance of host and environmental context, 

disease stage and strain-specific effects. Oscillibacter spp. are known to correlate to 

decreased colonic epithelial integrity (Lam et al. 2012), while Oscillibacter sp. 57_20 has 

been associated with positive indicators of cardiometabolic health in a recent microbiome-

wide association study (Asnicar et al. 2021). Moreover, Oscillibacter showed significant 

alterations from MCI to AD but not from normal cognition to MCI (Zhu et al. 2022). Notably, 

in our study, lower abundance of Oscillibacter correlated with higher pTau levels but not with 

total tau, which is a marker of neurodegeneration (Craig-Schapiro, Fagan, and Holtzman 

2009), in line with previous report (Ferreiro et al. 2023). Coprobacter, also found as amyloid-

pathology abundant in our study, is a SCFA-producer, that has been found in higher levels in 

amnestic MCI (Duan et al. 2021) and in children with autism spectrum disorder (Liu, Li, et al. 

2019). The increase of Coprobacter could act as a compensation mechanism to maintain 

high levels of SCFAs during the initial phases of the disease, however this warrants further 

elucidation. For MCI status, a signature of three genera, namely Escherichia-Shigella, 

Lachnospiraceae-UCG-004 and GCA-900066575, demonstrated a high level of 

discriminative performance. Escherichia-Shigella was also found as DA genus associated 

with MCI. Our results add to current knowledge that gut microbiome may be helpful for 

detecting or screening early stages of the disease, however larger studies are needed to 

confirm our findings. 

Our research has several strengths. We revealed distinct gut microbiota profiles associated 

with amyloid-β pathology, and with MCI. The availability of both CSF samples and clinical 

data from early disease stages allowed us to perform simultaneous comparison of 

participants based on both clinical evaluation and the assessment of early biomarkers, 

making our study novel. Second, the study population was derived from the very well-

characterized ALBION cohort that has been recruited in a specialist clinic of a tertiary 

university hospital. In addition, clinical diagnosis was established by a panel of experts after 
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an extensive standardized neuropsychological assessment. Third, we used advanced 

modeling analysis techniques to profile gut microbiota of individuals from different stages of 

AD continuum. Microbiota composition was determined by 16s rRNA amplicon sequencing, 

which is a widely used sequencing method. Machine learning model helped us identify gut 

microbiota features with good discriminative capacity for amyloid pathology and MCI status. 

Finally, our study sample includes adults across a broad age range, in contrast to past 

literature that has primarily focused in older (mean age >73yrs) adult populations (Jung et al. 

2022; Ferreiro et al. 2023). However, there are important limitations that need to be 

considered. First, due to the cross-sectional study design, we cannot infer causal 

associations of gut microbiota with brain Aβ deposition. However, longitudinal fecal sampling 

and biomarkers assessments within ALBION study are ongoing (so far up to five years for a 

few participants), enabling us to identify gut microbiome changes that associate with 

progression of individuals to MCI or symptomatic AD. Second, although we adjusted for 

relevant confounders as age, sex and Mediterranean Diet Score (as surrogate for dietary 

intake), we cannot rule out unmeasured and residual confounding effects. Other confounding 

variables such as obesity, physical inactivity, hypertension and hypercholesterolemia, which 

have been shown to be important dementia risk factors(Bransby et al. 2024), also need to be 

further controlled. Furthermore, we did not consider the time interval between CSF 

assessments and fecal sampling, raising the possibility that biomarker values used in the 

analysis may differ from true biomarker levels at the time of fecal sampling. Third, our study 

interrogated gut microbiota profiling through 16s rRNA amplicon sequencing. As a result, we 

cannot define species, but also, functional pathways, precisely. We revealed pathways 

involved in amyloid-β dynamics and pathology (e.g. environmental adaptation, (Kress et al. 

2018)) or brain deficits in the onset of MCI (e.g. endocytosis, (Zadka et al. 2024)), however a 

cautious interpretation of PICRUSt2 findings is warranted. Finally, the sample size was 

relatively small compared to other studies (Ferreiro et al. 2023; Verhaar et al. 2021), thus 

making it difficult to reveal subtle differences between groups. However, we were able to 
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provide an overview of gut microbiota profiles of both diagnosis groups defining microbiome 

differences at a stringent FDR threshold (5%). 

5. Conclusions 

In summary, our findings suggest that distinct gut microbiome features may associate with 

early preclinical stage for AD as reflected by CSF amyloid-β pathology, and with MCI. We 

further demonstrate a discriminative capacity of gut microbiota for amyloid pathology and 

MCI status. Overall, our findings may contribute to the discovery of diagnostic markers 

potentially be used from the clinicians as early detection markers and potential therapeutic 

targets for AD. However, additional research is needed to validate our results in broader 

preclinical AD cohorts, assess causal effects and investigate whether these associations 

extend to individuals with AD symptoms. 

Funding 

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

CRediT authorship contribution statement 

KR: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, 

Resources, Visualization, Writing - Review & Editing, Writing - Original Draft. EM: 

Investigation, Methodology, Resources. EN: Investigation, Methodology, Resources. MP: 

Investigation, Methodology. MA: Investigation, Methodology. CE: Formal analysis 

Methodology. NNF: Data Curation, Formal analysis, Methodology, Visualization, Writing – 

Review & Editing. MB: Methodology. ASD: Conceptualization, Resources, Writing - Review 

& Editing. CP: Conceptualization, Data Curation, Formal analysis, Visualization, Writing – 

Review & Editing. MY: Conceptualization. AA: Conceptualization, Resources, Supervision. 

NS: Conceptualization, Project administration, Supervision, Writing - Review & Editing. 

Data availability statement 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

19 
 

All data used in the analyses of this study are available within the manuscript and its 

supplemental information files. The raw sequencing data generated from this study have 

been deposited in NCBI SRA (https://www.ncbi.nlm.nih.gov/sra) under the accession 

number PRJNA1066101.  

Declaration of interest 

The authors have no actual or potential conflicts of interest. 

Submission declaration and verification 

We declare that this manuscript has not been published previously nor being considered for 

publication elsewhere. All authors have given their approval for submission of the manuscript 

to be considered for publication in Neurobiology of Aging.  If accepted, it will not be 

published elsewhere in the same form, in English or in any other language, including 

electronically without the written consent of the copyright-holder. 

Acknowledgements 

We thank all the members of Aiginition Hospital of Athens for their contribution. We also 

sincerely thank the participants for their participation in this study.  

References 

Asnicar, F., S. E. Berry, A. M. Valdes, L. H. Nguyen, G. Piccinno, D. A. Drew, E. Leeming, R. 

Gibson, C. Le Roy, H. A. Khatib, L. Francis, M. Mazidi, O. Mompeo, M. Valles-

Colomer, A. Tett, F. Beghini, L. Dubois, D. Bazzani, A. M. Thomas, C. Mirzayi, A. 

Khleborodova, S. Oh, R. Hine, C. Bonnett, J. Capdevila, S. Danzanvilliers, F. 

Giordano, L. Geistlinger, L. Waldron, R. Davies, G. Hadjigeorgiou, J. Wolf, J. M. 

Ordovas, C. Gardner, P. W. Franks, A. T. Chan, C. Huttenhower, T. D. Spector, and 

N. Segata. 2021. 'Microbiome connections with host metabolism and habitual diet 

from 1,098 deeply phenotyped individuals', Nat Med, 27: 321-32. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

20 
 

Bransby, L., N. Yassi, E. Rosenich, R. Buckley, Q. X. Li, P. Maruff, M. Pase, and Y. Y. Lim. 

2024. 'Associations between multidomain modifiable dementia risk factors with AD 

biomarkers and cognition in middle-aged and older adults', Neurobiol Aging, 138: 63-

71. 

Brikou, D., S. Charisis, A. Drouka, S. M. Christodoulakou, E. Ntanasi, E. Mamalaki, V. C. 

Constadinides, N. Scarmeas, and M. Yannakoulia. 2023. 'Daily Energy Intake 

Distribution and Cognitive Performance in Non-Demented Individuals', Nutrients, 15. 

Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. Johnson, and S. P. Holmes. 

2016. 'DADA2: High-resolution sample inference from Illumina amplicon data', Nat 

Methods, 13: 581-3. 

Carasi, P., S. M. Racedo, C. Jacquot, A. M. Elie, M. L. Serradell, and M. C. Urdaci. 2017. 

'Enterococcus durans EP1 a Promising Anti-inflammatory Probiotic Able to Stimulate 

sIgA and to Increase Faecalibacterium prausnitzii Abundance', Front Immunol, 8: 88. 

Cattaneo, A., N. Cattane, S. Galluzzi, S. Provasi, N. Lopizzo, C. Festari, C. Ferrari, U. P. 

Guerra, B. Paghera, C. Muscio, A. Bianchetti, G. D. Volta, M. Turla, M. S. Cotelli, M. 

Gennuso, A. Prelle, O. Zanetti, G. Lussignoli, D. Mirabile, D. Bellandi, S. Gentile, G. 

Belotti, D. Villani, T. Harach, T. Bolmont, A. Padovani, M. Boccardi, G. B. Frisoni, and 

India-Fbp Group. 2017. 'Association of brain amyloidosis with pro-inflammatory gut 

bacterial taxa and peripheral inflammation markers in cognitively impaired elderly', 

Neurobiol Aging, 49: 60-68. 

Chandra, S., S. S. Sisodia, and R. J. Vassar. 2023. 'The gut microbiome in Alzheimer's 

disease: what we know and what remains to be explored', Mol Neurodegener, 18: 9. 

Chen, G., X. Zhou, Y. Zhu, W. Shi, and L. Kong. 2023. 'Gut microbiome characteristics in 

subjective cognitive decline, mild cognitive impairment and Alzheimer's disease: a 

systematic review and meta-analysis', Eur J Neurol, 30: 3568-80. 

Chicco, D., and G. Jurman. 2020. 'The advantages of the Matthews correlation coefficient 

(MCC) over F1 score and accuracy in binary classification evaluation', BMC 

Genomics, 21: 6. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

21 
 

Chuang, YF. 2022. 'The Gut Microbiota in Mild Cognitive Impairment in Community‐Dwelling 

Older Adults in Taiwan', Alzheimer's & Dementia 18: e063866. 

Craig-Schapiro, R., A. M. Fagan, and D. M. Holtzman. 2009. 'Biomarkers of Alzheimer's 

disease', Neurobiol Dis, 35: 128-40. 

Daniel, S. L., L. Moradi, H. Paiste, K. D. Wood, D. G. Assimos, R. P. Holmes, L. Nazzal, M. 

Hatch, and J. Knight. 2021. 'Forty Years of Oxalobacter formigenes, a Gutsy 

Oxalate-Degrading Specialist', Appl Environ Microbiol, 87: e0054421. 

Douglas, G. M., V. J. Maffei, J. R. Zaneveld, S. N. Yurgel, J. R. Brown, C. M. Taylor, C. 

Huttenhower, and M. G. I. Langille. 2020. 'PICRUSt2 for prediction of metagenome 

functions', Nat Biotechnol, 38: 685-88. 

Duan, M., F. Liu, H. Fu, S. Lu, and T. Wang. 2021. 'Preoperative Microbiomes and Intestinal 

Barrier Function Can Differentiate Prodromal Alzheimer's Disease From Normal 

Neurocognition in Elderly Patients Scheduled to Undergo Orthopedic Surgery', Front 

Cell Infect Microbiol, 11: 592842. 

Dumurgier, J., B. J. Hanseeuw, F. B. Hatling, K. A. Judge, A. P. Schultz, J. P. Chhatwal, D. 

Blacker, R. A. Sperling, K. A. Johnson, B. T. Hyman, and T. Gomez-Isla. 2017. 

'Alzheimer's Disease Biomarkers and Future Decline in Cognitive Normal Older 

Adults', J Alzheimers Dis, 60: 1451-59. 

Eloranta, S., and M. Boman. 2022. 'Predictive models for clinical decision making: Deep 

dives in practical machine learning', J Intern Med, 292: 278-95. 

Fan, K. C., C. C. Lin, Y. C. Liu, Y. P. Chao, Y. J. Lai, Y. L. Chiu, and Y. F. Chuang. 2023. 

'Altered gut microbiota in older adults with mild cognitive impairment: a case-control 

study', Front Aging Neurosci, 15: 1162057. 

Ferreiro, A. L., J. Choi, J. Ryou, E. P. Newcomer, R. Thompson, R. M. Bollinger, C. Hall-

Moore, I. M. Ndao, L. Sax, T. L. S. Benzinger, S. L. Stark, D. M. Holtzman, A. M. 

Fagan, S. E. Schindler, C. Cruchaga, O. H. Butt, J. C. Morris, P. I. Tarr, B. M. Ances, 

and G. Dantas. 2023. 'Gut microbiome composition may be an indicator of preclinical 

Alzheimer's disease', Sci Transl Med, 15: eabo2984. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

22 
 

Grabrucker, S., M. Marizzoni, E. Silajdzic, N. Lopizzo, E. Mombelli, S. Nicolas, S. Dohm-

Hansen, C. Scassellati, D. V. Moretti, M. Rosa, K. Hoffmann, J. F. Cryan, O. F. 

O'Leary, J. A. English, A. Lavelle, C. O'Neill, S. Thuret, A. Cattaneo, and Y. M. 

Nolan. 2023. 'Microbiota from Alzheimer's patients induce deficits in cognition and 

hippocampal neurogenesis', Brain. 

Heller, A., S. S. Coffman, and K. Jarvis. 2020. 'Potentially Pathogenic Calcium Oxalate 

Dihydrate and Titanium Dioxide Crystals in the Alzheimer's Disease Entorhinal 

Cortex', J Alzheimers Dis, 77: 547-50. 

Insel, P. S., M. Weiner, R. S. Mackin, E. Mormino, Y. Y. Lim, E. Stomrud, S. Palmqvist, C. L. 

Masters, P. T. Maruff, O. Hansson, and N. Mattsson. 2019. 'Determining clinically 

meaningful decline in preclinical Alzheimer disease', Neurology, 93: e322-e33. 

Jack, C. R., Jr., D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S. B. Haeberlein, D. M. 

Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Liu, J. L. Molinuevo, T. Montine, C. 

Phelps, K. P. Rankin, C. C. Rowe, P. Scheltens, E. Siemers, H. M. Snyder, R. 

Sperling, and Contributors. 2018. 'NIA-AA Research Framework: Toward a biological 

definition of Alzheimer's disease', Alzheimers Dement, 14: 535-62. 

Jung, J. H., G. Kim, M. S. Byun, J. H. Lee, D. Yi, H. Park, D. Y. Lee, and Kbase Research 

Group. 2022. 'Gut microbiome alterations in preclinical Alzheimer's disease', PLoS 

One, 17: e0278276. 

Kalligerou, F., E. Ntanasi, P. Voskou, G. Velonakis, E. Karavasilis, E. Mamalaki, A. Kyrozis, 

E. Sigala, N. T. Economou, K. Patas, M. Yannakoulia, and N. Scarmeas. 2019. 

'Aiginition Longitudinal Biomarker Investigation Of Neurodegeneration (ALBION): 

study design, cohort description, and preliminary data', Postgrad Med, 131: 501-08. 

Kinney, J. W., S. M. Bemiller, A. S. Murtishaw, A. M. Leisgang, A. M. Salazar, and B. T. 

Lamb. 2018. 'Inflammation as a central mechanism in Alzheimer's disease', 

Alzheimers Dement (N Y), 4: 575-90. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

23 
 

Klindworth, A., E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, and F. O. Glockner. 

2013. 'Evaluation of general 16S ribosomal RNA gene PCR primers for classical and 

next-generation sequencing-based diversity studies', Nucleic Acids Res, 41: e1. 

Knopman, D. S., H. Amieva, R. C. Petersen, G. Chetelat, D. M. Holtzman, B. T. Hyman, R. 

A. Nixon, and D. T. Jones. 2021. 'Alzheimer disease', Nat Rev Dis Primers, 7: 33. 

Kress, G. J., F. Liao, J. Dimitry, M. R. Cedeno, G. A. FitzGerald, D. M. Holtzman, and E. S. 

Musiek. 2018. 'Regulation of amyloid-beta dynamics and pathology by the circadian 

clock', J Exp Med, 215: 1059-68. 

Lam, Y. Y., C. W. Ha, C. R. Campbell, A. J. Mitchell, A. Dinudom, J. Oscarsson, D. I. Cook, 

N. H. Hunt, I. D. Caterson, A. J. Holmes, and L. H. Storlien. 2012. 'Increased gut 

permeability and microbiota change associate with mesenteric fat inflammation and 

metabolic dysfunction in diet-induced obese mice', PLoS One, 7: e34233. 

Liu, M., J. C. Devlin, J. Hu, A. Volkova, T. W. Battaglia, M. Ho, J. R. Asplin, A. Byrd, P. Loke, 

H. Li, K. V. Ruggles, A. Tsirigos, M. J. Blaser, and L. Nazzal. 2021. 'Microbial genetic 

and transcriptional contributions to oxalate degradation by the gut microbiota in 

health and disease', Elife, 10. 

Liu, P., L. Wu, G. Peng, Y. Han, R. Tang, J. Ge, L. Zhang, L. Jia, S. Yue, K. Zhou, L. Li, B. 

Luo, and B. Wang. 2019. 'Altered microbiomes distinguish Alzheimer's disease from 

amnestic mild cognitive impairment and health in a Chinese cohort', Brain Behav 

Immun, 80: 633-43. 

Liu, S., E. Li, Z. Sun, D. Fu, G. Duan, M. Jiang, Y. Yu, L. Mei, P. Yang, Y. Tang, and P. 

Zheng. 2019. 'Altered gut microbiota and short chain fatty acids in Chinese children 

with autism spectrum disorder', Sci Rep, 9: 287. 

Mallick, H., A. Rahnavard, L. J. McIver, S. Ma, Y. Zhang, L. H. Nguyen, T. L. Tickle, G. 

Weingart, B. Ren, E. H. Schwager, S. Chatterjee, K. N. Thompson, J. E. Wilkinson, 

A. Subramanian, Y. Lu, L. Waldron, J. N. Paulson, E. A. Franzosa, H. C. Bravo, and 

C. Huttenhower. 2021. 'Multivariable association discovery in population-scale meta-

omics studies', PLoS Comput Biol, 17: e1009442. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

24 
 

Metz, C. E. 1978. 'Basic principles of ROC analysis', Semin Nucl Med, 8: 283-98. 

Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos, 

Stevens M P, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D,, 

Chirico M Carvalho G, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly, 

Furneaux B M, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha 

E,, and Stier A Smith T, Ter Braak C, Weedon J. 2022. 'vegan: Community Ecology 

Package R package version 2.6-4'. 

Panagiotakos, D. B., C. Pitsavos, and C. Stefanadis. 2006. 'Dietary patterns: a 

Mediterranean diet score and its relation to clinical and biological markers of 

cardiovascular disease risk', Nutr Metab Cardiovasc Dis, 16: 559-68. 

Petersen, R. C., R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. 

Rossor, L. Thal, and B. Winblad. 2001. 'Current concepts in mild cognitive 

impairment', Arch Neurol, 58: 1985-92. 

Prosser, L., A. Macdougall, C. H. Sudre, E. N. Manning, I. B. Malone, P. Walsh, O. Goodkin, 

H. Pemberton, F. Barkhof, G. J. Biessels, D. M. Cash, J. Barnes, and Initiative 

Alzheimer's Disease Neuroimaging. 2023. 'Predicting Cognitive Decline in Older 

Adults Using Baseline Metrics of AD Pathologies, Cerebrovascular Disease, and 

Neurodegeneration', Neurology, 100: e834-e45. 

Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. 

Glockner. 2013. 'The SILVA ribosomal RNA gene database project: improved data 

processing and web-based tools', Nucleic Acids Res, 41: D590-6. 

R, Tibshirani. 1996. 'Regression shrinkage and selection via the Lasso', J. R. Stat. Soc. B, 

58: 267-88. 

Sampatakakis, S. N., E. Mamalaki, E. Ntanasi, F. Kalligerou, I. Liampas, M. Yannakoulia, A. 

N. Gargalionis, and N. Scarmeas. 2023. 'Objective Physical Function in the 

Alzheimer's Disease Continuum: Association with Cerebrospinal Fluid Biomarkers in 

the ALBION Study', Int J Mol Sci, 24. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

25 
 

Scarmeas, N., A. Daskalaki, F. Kalligerou, E. Ntanasi, E. Mamalaki, A. N. Gargalionis, K. 

Patas, S. Chatzipanagiotou, M. Yannakoulia, and V. C. Constantinides. 2022. 'Initial 

Data and a Clinical Diagnosis Transition for the Aiginition Longitudinal Biomarker 

Investigation of Neurodegeneration (ALBION) Study', Medicina (Kaunas), 58. 

Siddiqui, M. T., and G. A. M. Cresci. 2021. 'The Immunomodulatory Functions of Butyrate', J 

Inflamm Res, 14: 6025-41. 

Tahami Monfared, A. A., S. Fu, N. Hummel, L. Qi, A. Chandak, R. Zhang, and Q. Zhang. 

2023. 'Estimating Transition Probabilities Across the Alzheimer's Disease Continuum 

Using a Nationally Representative Real-World Database in the United States', Neurol 

Ther, 12: 1235-55. 

Teunissen, C. E., H. Tumani, S. Engelborghs, and B. Mollenhauer. 2014. 'Biobanking of 

CSF: international standardization to optimize biomarker development', Clin 

Biochem, 47: 288-92. 

Tijms, B. M., D. Bertens, R. E. Slot, A. A. Gouw, C. E. Teunissen, P. Scheltens, W. M. van 

der Flier, and P. J. Visser. 2017. 'Low normal cerebrospinal fluid Abeta42 levels 

predict clinical progression in nondemented subjects', Ann Neurol, 81: 749-53. 

Troci, A., S. Philippen, P. Rausch, J. Rave, G. Weyland, K. Niemann, K. Jessen, L. P. 

Schmill, S. Aludin, A. Franke, D. Berg, C. Bang, and T. Bartsch. 2024. 'Disease- and 

stage-specific alterations of the oral and fecal microbiota in Alzheimer's disease', 

PNAS Nexus, 3: pgad427. 

Tsai, C. F., C. H. Chuang, Y. P. Wang, Y. B. Lin, P. C. Tu, P. Y. Liu, P. S. Wu, C. Y. Lin, and 

C. L. Lu. 2022. 'Differences in gut microbiota correlate with symptoms and regional 

brain volumes in patients with late-life depression', Front Aging Neurosci, 14: 

885393. 

Verhaar, B. J. H., H. M. A. Hendriksen, F. A. de Leeuw, A. S. Doorduijn, M. van 

Leeuwenstijn, C. E. Teunissen, F. Barkhof, P. Scheltens, R. Kraaij, C. M. van Duijn, 

M. Nieuwdorp, M. Muller, and W. M. van der Flier. 2021. 'Gut Microbiota Composition 

Is Related to AD Pathology', Front Immunol, 12: 794519. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

26 
 

Vogt, N. M., R. L. Kerby, K. A. Dill-McFarland, S. J. Harding, A. P. Merluzzi, S. C. Johnson, 

C. M. Carlsson, S. Asthana, H. Zetterberg, K. Blennow, B. B. Bendlin, and F. E. Rey. 

2017. 'Gut microbiome alterations in Alzheimer's disease', Sci Rep, 7: 13537. 

Wegmann, S., J. Biernat, and E. Mandelkow. 2021. 'A current view on Tau protein 

phosphorylation in Alzheimer's disease', Current Opinion in Neurobiology, 69: 131-

38. 

Yildirim, S., O. U. Nalbantoglu, A. Bayraktar, F. B. Ercan, A. Gundogdu, H. A. Velioglu, M. F. 

Gol, A. E. Soylu, F. Koc, E. A. Gulpinar, K. S. Kadak, M. Arikan, A. Mardinoglu, M. 

Kocak, E. Koseoglu, and L. Hanoglu. 2022. 'Stratification of the Gut Microbiota 

Composition Landscape across the Alzheimer's Disease Continuum in a Turkish 

Cohort', mSystems, 7: e0000422. 

Zadka, L., M. Sochocka, N. Hachiya, J. Chojdak-Lukasiewicz, P. Dziegiel, E. Piasecki, and 

J. Leszek. 2024. 'Endocytosis and Alzheimer's disease', Geroscience, 46: 71-85. 

Zhang, X. Y., Z. H. Fu, L. X. Meng, M. Y. He, and Z. T. Zhang. 2018. 'The Early Events That 

Initiate β-Amyloid Aggregation in Alzheimer's Disease', Frontiers in Aging 

Neuroscience, 10. 

Zhu, Z., X. Ma, J. Wu, Z. Xiao, W. Wu, S. Ding, L. Zheng, X. Liang, J. Luo, D. Ding, and Q. 

Zhao. 2022. 'Altered Gut Microbiota and Its Clinical Relevance in Mild Cognitive 

Impairment and Alzheimer's Disease: Shanghai Aging Study and Shanghai Memory 

Study', Nutrients, 14. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.24306673doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.01.24306673


   

27 
 

Table 1 Descriptive characteristics of participants in groups according to diagnosis 
criteria 

  CSF amyloid-based 
diagnosis 

Clinically-based 
diagnosis 

 All Amyloid- 
normal 

Amyloid-
pathology 

P CN MCI P 

N (% of total) 50 (100) 29 (58) 21 (42) NA 40 (80) 10 (20) NA 
Female (%) 35 (70) 20 (68.9) 15 (71.4) 0.85a 30 (75) 5 (50) 0.12a 
Age (yrs) 64.3 

(8.4) 
[47-79] 

63.3 
(8.4) 
[47-79] 

65.6 
(8.3) 
[50-76] 

0.35b  62.9 
(8.1) 
[47-77] 

70 
(7.2) 
[59-79] 

0.02b 

ApoE4 
carriers (%)  

14 (28) 6 (20.7) 8 (38.1) 0.09a 12 (30) 2 (20) 0.76a 

Smokers (%) 21 (52.5) 14 (48.3) 7 (33.3) 0.29a 15 (37.5) 6 (60) 0.20a 
CSF Aβ42 
(pg/mL) 

1215 
(490) 
[386-
2366] 

1557 
(319) 
[1033-
2366] 

742 
(200)  
[386- 
982] 

1.2e-
14b 

1301 
(449)  
[472-
2366] 

868 
(514) 
[386-
1700] 

0.03b 

CSF pTau 
(pg/mL) 

17  
(8)  
[5-42] 

16  
(6)  
[10-36] 

19  
(10)  
[5-42] 

0.61c 16  
(7)  
[5-36] 

23  
(10) 
[11-42] 

0.03c 

CSF tTau 
(pg/mL) 

209  
(84)  
[80-446] 

204  
(73)  
[116-446] 

217  
(97)  
[80-427] 

0.70c 197  
(77)  
[80-446] 

258  
(94)  
[161-
427] 

0.06c 

MDSd 31.1 
(6.4) 
[19-45] 

31.8 
(6.0) 
[23-45] 

30.3 
(6.9) 
[19-45] 

0.46b 31.4 
(7) 
[19-45] 

30.1 
(3.4) 
[26-35] 

0.41b 

MCI (%) NA 3/29 
(10.3) 

7/21 
(33.3) 

0.07a NA NA NA 

Amyloid- 
pathology (%) 

NA NA NA NA 14/40 
(35) 

7/10 
(70) 

0.07a 

 
Abbreviations: CN=Cognitively Normal; MCI=Mild Cognitive Impairment; Αβ42=amyloid-beta 42; 
pTau=phosphorylated Tau; tTau=total Tau; MDS: Mediterranean Diet Score; NA=non-applicable. 
Data are shown as n (%) or mean (SD) [range]. 
a Fisher’s exact test 
b Welch’s samples t-test 
c Mann-Whitney U test  
d MDS was available for n=47 (94%). All other variables were available for n=50 (100%). 
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Figure 1 Alpha and beta diversity are similar among groups, according to diagnosis 

status. In the upper panel, boxplots of alpha diversity measures (richness and Shannon 

diversity) are shown. P-values are from Wilcoxon rank sum test. In the bottom panel, beta 

diversity is presented by PCoA (measured by Bray-Curtis distance). P-values are from 

PERMANOVA test (999 permutations), adjusted for age, sex and Mediterranean diet score. 

Abbreviations: PCoA=Principal coordinate analysis; CN=cognitively normal; MCI=Mild 

cognitive impairment. 

Figure 2 Specific gut microbial genera are associated with amyloid-pathology or MCI. 

Differentially abundant genera with a minimum prevalence of 30% and FDR adjusted p-

value<0.10 identified through the statistical MaAsLin2 R package are shown. The x axis 

shows the effect size represented by MaAsLin2 coefficient. Taxa coefficients are from 

negative binomial regression models (as implemented in MaAsLin2) that additionally 

included age, sex and Mediterranean diet score as predictors. Positive number means 

enrichment in amyloid-pathology or MCI group (red color), while negative value means 

enrichment in the amyloid-normal or CN group (grey color)). All regression model results are 

presented in Tables S2 and S3. Abbreviations: CN=Cognitively normal; MCI=Mild cognitive 

impairment. 

Figure 3 Gut microbiota have a fairly good discriminative performance for amyloid 

pathology and MCI. Confusion matrix obtained from the regularized logistic regression 

model and genera ranked from the highest to the lowest elastic net positive and negative 

regression coefficients are shown for A) CSF amyloid-based and B) clinically-based 

diagnosis. For a given confusion matrix, the x-axis shows each of the two targets while the y-

axis shows each of the two predicted labels. The upper left and lower right squares display 

the values of correct classification, while the upper right and lower left squares display the 

values of misclassification. 

Figure 4 Heatmap of spearman correlation analysis between genera of interest and 

levels of CSF biomarkers. The genera of interest are the differentially abundant genera, as 
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detected from MaAsLin2 (in ≥30% of individuals), and genera selected from elastic net 

regression models (including those from sensitivity analysis). CLR-transformed counts were 

used for the correlation analysis. The rho values are represented with gradient colors, where 

blue and red cells indicate negative and positive correlations, respectively. Significant 

correlations are highlighted with an asterisk (* p<0.05, unadjusted). 
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