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ABSTRACT 
 
Single-nucleus RNA sequencing (snRNA-seq) is often used to define gene expression patterns 
characteristic of brain cell types as well as to identify cell type specific gene expression 
signatures of neurological and mental illnesses in postmortem human brains. As methods to 
obtain brain tissue from living individuals emerge, it is essential to characterize gene expression 
differences associated with tissue originating from either living or postmortem subjects using 
snRNA-seq, and to assess whether and how such differences may impact snRNA-seq studies of 
brain tissue. To address this, human prefrontal cortex single nuclei gene expression was 
generated and compared between 31 samples from living individuals and 21 postmortem 
samples. The same cell types were consistently identified in living and postmortem nuclei, 
though for each cell type, a large proportion of genes were differentially expressed between 
samples from postmortem and living individuals. Notably, estimation of cell type proportions by 
cell type deconvolution of pseudo-bulk data was found to be more accurate in samples from 
living individuals. To allow for future integration of living and postmortem brain gene 
expression, a model was developed that quantifies from gene expression data the probability a 
human brain tissue sample was obtained postmortem. These probabilities are established as a 
means to statistically account for the gene expression differences between samples from living 
and postmortem individuals. Together, the results presented here provide a deep characterization 
of both differences between snRNA-seq derived from samples from living and postmortem 
individuals, as well as qualify and account for their effect on common analyses performed on this 
type of data. 
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INTRODUCTION  
 
In recent years, single-nucleus RNA sequencing (snRNA-seq), which quantifies transcript 
abundance across thousands of genes within nuclei from individual cells in a single tissue 
sample1, has become a preferred approach to studying human brain biology. Applications of 
snRNA-seq for human brain biology research include: (1) defining gene expression patterns 
characteristic of brain cell types and states2,3, (2) identifying differences in gene expression for a 
given cell type between two groups of brain samples (e.g., cases and controls)4–7, and (3) 
estimating the proportions of different brain cell types present in bulk RNA-seq data8,9, which 
represents transcript abundance from RNA pooled across hundreds to millions of heterogeneous 
cells in a single homogenized sample10. These applications of snRNA-seq have resulted in large 
databases (i.e., atlases) characterizing the diversity of cell types in multiple brain regions11,12 as 
well as insights into the cell types and gene expression patterns underlying brain disorders13–16 17–

19.  
 
Since it is difficult to obtain brain tissue for research from living individuals, most applications 
of snRNA-seq to study human molecular neurobiology have used brain tissue obtained from 
postmortem donors. Recently, several research initiatives have highlighted the value of studying 
brain tissue from living individuals12,20–24, including the Living Brain Project (LBP). In a 
companion LBP report by Liharska et al.23, molecular differences between living and 
postmortem brain tissue are characterized using bulk RNA-seq to show greater than 80% of all 
genes analyzed were differentially expressed between living and postmortem samples23. 
However, neither Liharska et al. nor the other recent studies utilizing brain tissues from living 
individuals have adequately explored transcriptional differences between samples obtained from 
living and postmortem individuals at a single-nuclei resolution.   
 
Here, expression differences between living and postmortem brain samples are identified through 
analyses of snRNA-seq data generated from living and postmortem PFC samples (Figure 1a). 
The primary findings of this report are: (1) the same cell types are identified in living and 
postmortem nuclei, (2) there is a differential expression signal between living and postmortem 
nuclei across cell types, (3) estimation of cell type proportions by cell-type deconvolution is 
more accurate in living samples than in postmortem samples, and (4) differences between living 
and postmortem brains can be statistically accounted for in snRNA-seq and bulk RNA-seq 
data. Together, these results help further characterize the molecular differences between living 
and postmortem samples, as well as qualify transcriptional differences on common snRNA-seq 
and bulk RNA-seq based approaches to study human neurobiology. 
 
 
Living Brain Project cohort 
 
The biopsy procedures for obtaining living PFC tissue for the LBP are described in Liharska et 
al23. In brief, PFC samples from living participants are obtained during deep brain stimulation 
(DBS) surgery, an elective neurosurgical treatment for neurological and mental illnesses23. For 
the current report, a total of 33 PFC biopsies (“LIV samples”) from 23 living participants were 
used, including bilateral biopsies from 12 participants and unilateral biopsies from 9 participants 
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(7 from the left hemisphere and 2 from the right hemisphere). For comparison, a cohort of 
postmortem PFC samples (“PM samples”, N = 23) was assembled from two brain banks (the 
Harvard Brain Tissue Resource Center and New York Brain Bank at Columbia University). To 
the extent possible, PM samples were matched to LIV samples for age and sex, and the majority 
of samples were obtained from individuals with Parkinson’s disease (PD), the most common 
indication for DBS (Supplemental Table 1). 
 
Following library preparation, snRNA-seq was performed at the Icahn School of Medicine at 
Mount Sinai in New York City. The quality control procedures applied to the resulting snRNA-
seq data  described fully in the Methods take into consideration a variety of metrics 
characterizing the quality of both samples (e.g., number of nuclei) and nuclei (e.g., sequencing 
depth, percentage of transcripts originating from mitochondria, and detection of doublets). After 
applying filters based on these metrics, a total of 362,390 nuclei were retained for analysis from 
52 samples, including 141,643 nuclei from 31 LIV samples (“LIV nuclei”) and 220,667 nuclei 
from 21 PM samples (“PM nuclei”) (Figure 1b). Hereafter, these 362,390 nuclei will be referred 
to as “the full LBP snRNA-seq nuclei set” and the 52 samples will be referred to as “the full LBP 
snRNA-seq cohort.”  
 
 
Cell types are conserved between living and postmortem human brain tissues 
 
The same primary neural cell types were hypothesized to be present in human PFC samples 
regardless of whether a PFC sample is from a living participant or a postmortem donor (i.e., the 
“LIV-PM status” of a sample). To test this hypothesis, the following procedure was performed: 
(1) all nuclei were assigned to a cell type; (2) for each cell type, cell type markers (i.e., a group 
of genes differentiating that cell type from the other cell types) were defined for either LIV 
nuclei (“LIV markers”) or PM nuclei (“PM markers”) (Supplemental Table 2); (3) for each 
nucleus, two scores were calculated to capture the expression of the markers of its assigned cell 
type identity for LIV markers (“LIV marker scores”) and for PM markers (“PM marker scores”); 
(4) LIV marker scores were compared with PM marker scores (Spearman’s correlation). A total 
of 10 cell types were identified: three types of excitatory neurons (Exc1, Exc2, and Exc3), two 
types of inhibitory neurons (Int1 and Int2), oligodendrocytes (Oli), astrocytes (Ast), microglia 
(MG), oligodendrocyte progenitor cells (OPC), and non-neural cells (NonNeu; omitted from 
most downstream analyses) (Figure 1b & c). Both LIV nuclei and PM nuclei were well 
represented within each cell type (Figure 1e & f; Supplemental Figure 1a & b). The high 
correlation observed between LIV marker scores and PM marker scores (Spearman’s ρ = 0.93, p-
value ≈ 0) confirms that the same main cell types which are identified by the same marker genes 
are present in human PFC samples regardless of the LIV-PM status of a given sample.  
 
 
Ubiquitous cell type specific differential expression between LIV and PM samples 
 
With Liharska et al.23 identifying a large number of genes differentially expressed between LIV 
and PM samples in bulk RNA-seq data, analyses were performed to test the hypothesis that a 
similar pattern of differential expression (DE) would emerge when comparing LIV samples and 
PM samples for each of the 9 neural cell types identified above. The “pseudo-bulk” expression 
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level (i.e., the sum of all counts for a gene across all cells from a sample) of every gene 
expressed in a given cell type was tested for association with LIV-PM status. Sex, PD status (i.e., 
whether a sample is from an individual with PD or not), and several additional technical metrics 
were used as covariates to account for unwanted variation in all statistical models described here. 
The log fold-change (logFC) calculated for each regression model captures both the magnitude 
and direction of the association between LIV-PM status and pseudo-bulk gene expression levels. 
The 9 resulting LIV-PM DE signatures (i.e., summary statistics for all of the genes tested in a 
specific cell type) are provided in Supplemental Table 3. The percentage of significant 
differentially expressed genes (DEGs, FDR ≤ 0.05) was 26% for Exc1, 23% for Exc2, 37% for 
Exc3, 7% for Int1, 22% for Int2, 42% for Oli, 25% for MG, 19% for Ast, and 15% for OPC 
(Figure 2a). For each cell type, the percentage of DEGs that were “LIV DEGs” (i.e., DEGs more 
highly expressed in LIV samples) was generally similar to the percentage of “PM DEGs” (i.e., 
DEGs more highly expressed in PM samples) (proportion of DEGs that LIV DEGs: 50% for 
Exc1, 43% for Exc2, 48% for Exc3, 50% for Int1, 50% for Int2, 47% for Oli, 46% for MG, 50% 
for Ast, and 46% for OPC; Figure 2a, Supplemental Table 3). Using the π1 statistic25, which 
provides a lower bound of the percentage of genes tested that deviate from the null hypothesis of 
no association between gene expression and LIV-PM status, it was estimated that depending on 
the cell type, between 40% and 70% of genes are likely to be differentially expressed, and that 
the expected number of DEGs is not directly related to the number of nuclei in the cluster 
assessed (Supplemental Figure 1c). Of the 27,316 genes expressed in at least one of the 9 neural 
cell types, 16,692 genes (61%) were found to be a DEG in at least one cell type, of which 57% 
were identified as DEGs in greater than one cell type (Supplemental Figure 2). Together, these 
results highlight cell type specific gene expression patterns associated with LIV-PM status in this 
LBP cohort. 
 
 
PD status does not meaningfully impact LIV-PM DE signatures 
 
Given the neurosurgical procedure where LIV samples were biopsied is often performed for the 
treatment of PD, the percentage of living participants diagnosed with PD (84%) was higher than 
the percentage of postmortem donors diagnosed with PD (48%). To ensure that this imbalance 
was not impacting the identification of DEGs associated with LIV-PM status, the samples in this 
cohort were subset to a PD only cohort (26 LIV samples and 10 PM samples) in which the cell 
type specific LIV-PM DE analyses were repeated. The concordance between the resulting PD-
only LIV-PM DE signatures and the LIV-PM DE signatures described above (Spearman’s ρ 
range = 0.88-0.97, FDR ≈ 0) ; Supplemental Table 4) suggests that these signatures are not 
explained by the imbalance of individuals with PD. This finding is consistent with observations 
made in Liharska et al23.  
 
 
LIV-PM differential expression replicates in independent snRNA-seq dataset 
 
To assess the reproducibility of the LIV-PM DE signatures, the overlap was assessed between 
the DEGs identified here and DEGs from two independent studies that also compared gene 
expression between LIV and PM human brain samples: (1) the companion LBP study by 
Liharska et al.23 and (2) the study by Hodge et al.12. In Liharska et al.23, widespread differences 
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in gene expression were identified in bulk RNA-seq data from PFC samples obtained for the 
LBP23. The bulk RNA-seq LIV-PM DE signature was compared to a LIV-PM DE signature 
generated on pseudo-bulk generated from all nuclei. The concordance between these two DE 
signatures (Spearman’s ρ = 0.61, p-value ≈ 0, Figure 2b) demonstrates the reproducibility of the 
LIV-PM signatures identified here in bulk RNA-seq data. 
 
Hodge et al.12 identified approximately 700 DEGs when comparing neuronal gene expression in 
the middle temporal gyrus (MTG) from four living individuals to neuronal gene expression in the 
MTG of four postmortem donors using snRNA-seq on nuclei positive for the neuronal marker 
NeuN. Hodge et al. DEGs were compared to the LIV-PM DEGs in the primary snRNA-seq LIV-
PM DE signatures across all cell types that express RBFOX3, the gene encoding the NeuN 
protein (i.e., Exc1, Exc3, Int1, and Int2; Supplemental Figure 3), DEGs with higher expression 
in PM samples relative to LIV samples in the Hodge et al. study significantly enriched for PM 
DEGs (ORs 2.25 – 3.11; all FDR < 7.03e-6) and the DEGs with higher expression in LIV 
samples relative to PM samples in the Hodge et al. study significantly overlapped with LIV 
DEGs (ORs 3.54 – 4.89; all FDR < 1.05e-10) (Figure 2c; Supplemental Table 4). These 
observations demonstrate that the LIV-PM DE signatures identified here are reproducible in 
independent snRNA-seq data.  
 
 
Differing pathway annotations for cell-type-specific LIV-PM DE signatures 
 
The large number of DEGs identified suggests that many biological processes may be affected 
by LIV-PM status. To verify this, biological processes defined in the Gene Ontology (GO) 
database26 were tested for enrichment of DEGs. The statistically significant GO gene set 
enrichment test results (FDR ≤ 0.05) for LIV DEGs and PM DEGs are provided in Supplemental 
Tables 5A and 5B. GO gene sets which show the most consistent (across the most cell types) and 
significant (lowest FDR) enrichment for LIV DEGs included terms related to energy 
metabolism, RNA processing, splicing, and myelination. Whereas, GO gene sets which show the 
most consistent and significant enrichment for PM DEGs included terms related to cell signaling, 
nervous system development, cellular response to stimuli, and protein modifications. While the 
LIV DEG and PM DEG associated GO enrichment presented here largely recapitulates what was 
presented in the Liharska et al.23, novel findings include the LIV DEG enrichment of transfer-
RNA metabolism and processing in Oli nuclei, and the PM DEG enrichment of ubiquitin-
dependent protein catabolic processes specific to Exc1 neurons. Additionally, the PM DEG 
enrichment of cell signaling previously identified in bulk RNA-seq extends across 8 of the 9 
main cell types analyzed (Figure 2d).  Together, the GO enrichment results presented here both 
replicates and extends the findings from Liharska et al.23 by providing a cell type level 
understanding of the biological processes associated with LIV-PM DEGs. 
     
 
Cell type marker genes are enriched for either LIV DEGs or PM DEGs 
 
The results presented up until now suggest that cell type identity is conserved regardless of LIV-
PM status but that within a cell type many genes are LIV-PM DEGs. These two observations led 
to the hypothesis that cell type markers would also be differentially expressed between LIV and 
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PM samples (Figure 2e; Supplemental Figure 4). To test this hypothesis, for each of the 9 
neural cell types, the cell type markers defined above were tested for enrichment of the 
corresponding cell type specific LIV or PM DEGs. Oli and MG cell type markers were 
significantly depleted of PM DEGs (Fisher’s exact tests ORs = 0.03 for Oli and 0.64 for MG; 
FDR < 0.04) and significantly enriched for LIV DEGs (ORs = 2.42 for Oli and 1.83 for MG, 
FDR < 3.14e-4). In contrast, Exc1, Exc3, Int2, and OPC cell type markers were significantly 
enriched for PM DEGs (Fisher’s exact tests ORs = 2.00 – 7.97, FDR = 1.46 x 10-4) and 
significantly depleted for LIV DEGs (ORs 0.00 – 0.43, FDR = 2.90 x 10-3). LIV DEGs were also 
found to be depleted of Int1 markers in Int1 nuclei (Fisher’s exact test OR = 0.00, FDR = 0.02) 
and enriched for Ast markers in Ast nuclei (Fisher’s exact test OR = 2.38, FDR = 1.07e-6). These 
findings show that while cell type identity is conserved regardless of LIV-PM status, the 
expression levels of the genes that define cell type identity are often associated with LIV-PM 
status. Moreover, these marker genes display opposite enrichments for LIV or PM DEGs, 
potentially impacting results from downstream analyses of snRNA-seq data that leverage cell 
type specific marker gene expression.   
 
 
Estimation of cell-type composition is significantly more accurate in living PFC mixtures 
 
In a bulk RNA-seq experiment, the cell type composition of each sample is unknown, and 
analyses of this type of data may be confounded by sample differences in cell type compositions. 
At present, sample sizes of bulk RNA-seq datasets are generally orders of magnitude larger than 
sample sizes of snRNA-seq datasets. Therefore, one important use of snRNA-seq data is as a 
reference to estimate the cell type proportions of samples in bulk RNA-seq data (i.e., cell type 
deconvolution)30. Estimated cell type proportions are often used in statistical models to account 
for the unmeasured differences in cell type composition between samples. While previous work 
has shown that choice of reference or method used for cell type deconvolution influences the 
accuracy of cell type proportion estimates27, determining whether deconvolution accuracy is 
impacted by the LIV-PM status of either the snRNA-seq reference used or the bulk samples 
deconvolved (i.e., mixtures) has yet to be determined.  
 
Given the availability of snRNA-seq data from both LIV samples and PM samples collected for 
this report, the following research questions were addressed: Is the accuracy of cell-type 
proportion estimates from cell type deconvolution affected by the LIV-PM status of the bulk 
RNA-seq mixtures being deconvolved, or the LIV-PM status of the snRNA-seq data used as 
reference. Using as input the 52 samples with snRNA-seq data generated for this report, the 
following procedure was performed: (1) a LIV reference dataset was created by randomly 
selecting 5 LIV samples, (2) a PM reference dataset was created by randomly selecting 5 PM 
samples; (3) mixtures to be deconvolved were generated as pseudo-bulk from all nuclei for each 
of the 42 remaining samples for which the true cell type proportions are known, and (4) the 
mixtures were deconvolved using the LIV and PM references. To account for the stochasticity 
introduced by the random selection of samples to serve as a reference, the procedure described 
above was performed 50 times. For each cell type, two estimates were calculated for each 
mixture: one from the LIV references (i.e., the mean of the estimates calculated using the LIV 
references) and one from the PM references (i.e., the mean of the estimates calculated using the 
PM references). The accuracy of these estimates was calculated as the absolute difference 
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between the estimate and the true cell type proportion (i.e., the number of nuclei of that cell type 
/ total number nuclei in the mixture). Regardless of the LIV-PM status of the samples used for 
the reference, deconvolution accuracy was significantly greater in LIV mixtures compared to PM 
mixtures for Exc1 (FDR: LIV reference = 5.29e-3, PM reference = 1.89e-3) and Ast (FDR: LIV 
reference = 1.72e-5, PM reference = 1.37e-2) (Figure 3a). When using the LIV reference, 
accuracy was significantly greater in LIV mixtures compared to PM mixtures for Int1 (FDR = 
0.02) (Figure 3a). For PM mixtures, accuracy was significantly greater when (1) using PM 
references compared to LIV references for Exc3 in PM mixtures (FDR = 0.02) and (2) using LIV 
references compared to PM references for Int1 (FDR = 1.47e-4) (Figure 3b). No other 
comparisons were significant after adjusting for multiple testing. Together, these results suggest 
that, while the choice of LIV or PM references appear to have limited impact on deconvolution 
accuracy, expression differences between LIV and PM samples can result in higher accuracies of 
cell type estimations for a subset of neural cell types in LIV mixtures.  
 
 
Quantifying and accounting for differences between living and postmortem samples 
 
One of the findings of Liharska et al23. was that disease-associated genes identified using RNA-
seq in postmortem human brain tissues demonstrated a pattern of overlap with LIV-PM DEGs 
(i.e., case DEGs overlap PM DEGs and control DEGs overlap LIV DEGs), raising the possibility 
that brain gene expression signatures of neurological and mental illnesses may be confounded by 
differences observed between living and postmortem samples. To allow brain researchers to 
effectively model and account for LIV-PM differences in gene expression, an approach was 
developed to summarize the effects of LIV-PM status on the gene expression of a human brain 
sample into a single metric that can, in turn, be used to account for these effects. 
 
Towards this end, the following procedure (Figure 4a) was performed 50 times on the pseudo-
bulk data for each cell type from the 52 samples in the full snRNA-seq LBP cohort: (1) the 52 
samples were randomly split into 3 sets (a training set, a testing set, and a holdout set) each 
comprised of both LIV samples and PM samples; (2) by applying elastic net binomial regression 
to the training set pseudo-bulk data, a model was derived to calculate the probability a set of 
gene expression values are from a postmortem sample (hereafter, this probability is referred to as 
“PMlink”); (3) the model was applied to the testing set pseudo-bulk data, resulting in a PMlink 
value for each sample in the testing set; (4) the ability of PMlink to classify a sample as either a 
LIV sample or a PM sample in the testing set was examined; (5) two versions of LIV-PM DE 
were performed on the testing set data – one version that included PMlink as a covariate in the 
model and one version that did not included PMlink as a covariate in the model – and the 
resulting LIV-PM DE signatures were compared to one another and the LIV-PM DE signature 
from the holdout set as reference; (6) DE of the PMlink variable was performed in only the PM 
samples in the testing set, resulting in a PMlink DE signature; (7) LIV-PM DE was performed in 
the samples of the holdout set, and the resulting LIV-PM DE signature was compared to the 
PMlink DE signature from the PM samples from the testing set. From this procedure, four 
observations were made. First, PMlink accurately classified LIV samples and PM samples in the 
testing set (receiver operating characteristic [ROC] - area under the curve [AUC] score ~ 1 for all 
permutations and cell types; Figure 4c, Supplemental Table 7). Second, the median correlations 
between the two LIV-PM DE signatures identified in the testing set (i.e., the signature with 
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PMlink as a covariate in the model (Supplemental Table 8a) and the signature without PMlink 
as a covariate in the model (Supplemental Table 8b) were 0.17 for Exc1, 0.35 for Exc2, 0.24 for 
Exc3, 0.12 for Int1, 0.23 for Int2, 0.20 for Oli, 0.36 for Ast, 0.35 for MG, and 0.30 for OPC, all 
of which were less than their respective reference LIV-PM DE comparison (Figure 5a). Third, 
including PMlink as a covariate in the LIV-PM DE analysis performed on the testing set 
decreased the number of LIV-PM DEGs identified by an average of 99% for Exc1, 50% for 
Exc2, 99% for Exc3, 90% for Int1, 99% for Int2, 92% for Oli, 98% for Ast, 54% for MG, and 
96% for OPC (Figure 5b). Fourth, the PMlink DE signatures from the PM samples of the testing 
set (Supplemental Table 8c) were generally positively correlated with LIV-PM DE signatures 
from the holdout set (Supplemental Table 8d) (median ρ: Exc1 = 0.23, Exc2 = 0.07, Exc3 = 
0.25, Int1 = 0.22, Int2 = 0.28, Oli = 0.25, Ast = 0.12, MG = 0.09, OPC = 0.21; Figure 5c). The 
procedure described here for each cell type in the pseudo-bulk gene expression data was also 
performed on the all-nuclei pseudo-bulk and the bulk RNA-seq gene expression data and all of 
these findings were replicated (Supplemental Figure 5).  
 
Next, the ability of PMlink to identify the effects of LIV-PM status on gene expression was 
assessed in external human brain gene expression datasets22,28–35. External snRNA-seq datasets 
were obtained from a recently published repository of 16 postmortem snRNA-seq datasets and 1 
snRNA-seq dataset obtained via neurosurgery36. From this repository, 6 snRNA-seq datasets 
(Bakken et al.31: samples=14 (PM), nulcei=74,813; Jäkel et al.34, samples=20 (PM), 
nuclei=10,783; Kamath et al.32: samples=18 (PM), nuclei=241,307; Lau et al..35: samples=21 
(PM), nuclei=133,533; Otero-Garcia et al..28: samples=19 (PM), nuclei=50,478; Velmeshev et 
al..33: samples=41 (PM), nuclei=79,630; Gazestani et al..36: samples=52 (LIV), nuclei=892,828) 
were selected based on samples sizes (>10) and the number of annotated cell types present in the 
dataset (>4). For each of the external datasets studied, the following procedure was performed 50 
times from cell type and all-nuclei pseudo-bulk for the 52 samples in the full snRNA-seq LBP 
cohort: (1) the 52 LBP samples were randomly split into 2 sets (a training set and a holdout set) 
each comprised of both LIV samples and PM samples; (2) the external dataset was defined as the 
testing set; (3) by applying elastic net linear regression to the training set pseudo-bulk data, a 
model was derived to calculate PMlink in the testing set; (4) the model was applied to the testing 
set cell-type and all-nuclei pseudo-bulk data, resulting in a PMlink value for each sample in the 
testing set; (5) DE of the PMlink variable was performed in the testing set, resulting in a PMlink 
DE signature; (6) LIV-PM DE was performed in the samples of the holdout set, and the resulting 
LIV-PM DE signature was compared to the PMlink DE signature from the testing set. The 
median of this correlation coefficient across 50 permutations of testing and holdout data splits 
was then averaged across the analyzed external datasets (ρ: Exc = 0.10, Int = 0.11, Oli = 0.11, 
Ast = 0.15, MG = 0.13, OPC = 0.10, All-nuclei = 0.16; Figure 5d).  
 
In addition to testing the ability of PMlink to capture LIV-PM expression differences in snRNA-
seq data, we sought to assess whether PMlink trained and tested on bulk RNA-seq data could 
also recapitulate the correlations of LIV-PM and PMlink DE signatures observed above. The 
procedure described in the previous paragraph was thus repeated 50 times using: (1) the bulk 
RNA-seq presented in Lihaska et al., splitting that data into training (26 samples) and holdout 
sets (26 samples); and (2) two external bulk RNA-seq datasets generated from the CommonMind 
Consortium research iniative as testing sets30 (CMC: n = 516; HBC: n = 305). Estimates of the 
correlation between LIV-PM and PMlink DE signatures were similar to those obtained when 
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applying the PMlink procedure to the snRNA-seq data (median Spearman’s ρ: CMC= 0.16, HBC 
= 0.28, Supplemental Figure 5e). Overall these results present and characterize a unique method 
to estimate and account for differences in gene expression between LIV and PM samples in both 
snRNA-seq and bulk RNA-seq datasets consisting exclusively of either PM samples or LIV 
samples. 
 
 
DISCUSSION 
 
Understanding the molecular underpinnings of human brain function is a necessary step towards 
studying brain illnesses. Technological advances such as snRNA-seq have greatly improved the 
resolution of molecular signatures associated with disease, but molecular studies of human brain 
are limited by access to brain tissue. Although many important findings have emerged from the 
use of postmortem tissue37–40, results here and from the Lihaska et al.23 suggest that 
transcriptome-wide differences in gene expression between LIV and PM samples need to be 
recognized and contextualized for past and future postmortem brain studies. Analyses from a 
unique dataset containing snRNA-seq from both living and postmortem donors allows for the 
profiling of these expression differences across annotated neural cell types. Although snRNA-seq 
data from both LIV and PM nuclei generally clustered into the same neural cell types, DE 
analyses revealed consistent gene expression signatures across all nuclei and cell types, including 
for genes used to define many of these cell types. This DE signal was also shown to be present in 
a PD-only subset of the cohort, and replicated in both an independent bulk RNA-seq cohort23 and 
an external snRNA-seq dataset12. Key biological processes, such as neurosignalling, 
neurogenesis, stimulus response, and protein modifications, were identified as upregulated in PM 
samples while pathways such as energy metabolism, myelin synthesis, and RNA processing were 
found to be upregulated in LIV samples. Additionally, differences in gene expression between 
LIV and PM samples significantly impacted the accuracy of cell type deconvolution, with Exc1 
and Ast cell type proportions more accurately estimated in LIV mixtures regardless of reference. 
Finally, we present a unique method (PMlink) that leverages data generated from this type of 
study to successfully identify and account for transcriptomic differences between LIV and PM 
samples in other datasets. 
 
The PM DE signature identified by Liharska et al.23, which captures genes with higher 
expression in postmortem brain tissue than in brain tissue obtained through neurological 
procedure, and the biological processes associated with them, was characterized by an 
enrichment of stress response, apoptosis, and inflammation associated pathways23. This pattern 
of upregulation is consistent with changes that occur during periods of cerebral ischemia 
followed by hypoxia as the heart stops and blood circulation to the brain ceases41–43. The 
snRNA-seq PM DE signature presented here shows a subset of non-overlapping biological 
processes that may reflect cell type specific expression changes associated with perimortem 
ischemia. For example, increased neurogenesis and neurosignaling have been linked to cerebral 
ischemia as a neuroprotective factor to apoptosis44,45, and terms related to neurogenesis and 
neurosignaling appear amongst the most enriched pathways  for PM DEGs across all cell types. 
One hypothesis for the increased neurosignaling reflected by the pathway enrichments for PM 
DEGs could be a response to neuronal depolarization in the low energy ischemic environment 
resulting in cytotoxic Ca+ concentrations and glutamate release, effectively triggering activity-
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dependent transcription factors in the nucleus 46–48. Additionally, in Exc1 PM DEGs we see 
enrichment of modification-dependent protein catabolism which represents an important 
mechanism for recycling biological material back into usable energy49, which may represent 
another protective response to the energy depleted conditions within dying neurons. Together, 
these findings suggest that genes with increased transcript abundance in PM samples may 
represent expression changes associated with biological processes responding to perimortem 
injury and pre-agonal ischemia/hypoxia in the dying brain.  
 
As previously shown, the expression of genes involved in cellular respiration processes are 
detected at a higher level in living tissue23. This result is once again compatible with the presence 
of postmortem hypoxia/ischemia, as oxygen is no longer transported to the brain (>90% of the 
ATP present in the brain is depleted within 5 minutes)50. Here, genes with higher expression in 
LIV samples than in PM samples are enriched for many energy-dependent biological processes 
such as oligodendrocyte function and RNA metabolism. Oligodendrocytes represent the most 
energy demanding neural cell type and require high levels of ATP to perform their most basic 
function of myelin synthesis and maintenance51. This process has been shown to be especially 
susceptible to oxidative stress under pathological, hypoxic, and ischemic conditions52,53. 
Additionally, problems associated with myelination have been shown to have deleterious 
downstream effects which often results in pathology54. The vulnerability of oligodendrocytes to 
apoptosis in the postmortem environment is potentially captured by both the magnitude of the 
oligodendrocyte DE signal and the enrichment of myelination and oligodendrocyte development 
pathways in LIV DEGs across all cell types. Oligodendrocyte markers were also present at a 
significantly higher level in living nuclei across non-myelinating cells. This is consistent with 
previous reports showing myelin synthesis associated genes are expressed in the nuclei of 
neurons and other non-myelinating cells55,56. Beyond myelin associated genes, the other key 
process upregulated in LIV nuclei is RNA metabolism at various stages. Specifically, RNA 
splicing not only requires ATP hydrolysis for the RNA-protein rearrangements needed for 
spliceosome assembly, but also in the function of ATP-dependent RNA helicase, which helps 
regulate splicing57. Additionally, transfer-RNA (tRNA) metabolism shows significant 
enrichment for LIV DEGs, highlighting another energy dependent process important for 
initiating translation58. For tRNAs to interact with amino acids that will be incorporated into the 
polypeptide chain, they must first become charged via aminoacytlation, a process which requires 
ATP and is enriched among LIV DEGs across cell types but most significantly in 
oligodendrocytes59. The enrichment of energy-related processes in genes with increased 
abundance in living samples is reassuring based on the understanding that energy levels are 
depleted and cellular respiration is halted in the hypoxic perimortem and postmortem 
environment. More importantly, disruption of oligodendrocyte function and RNA 
transcription/translation emphasizes the need to understand the differences between LIV and PM 
samples to best interpret disease gene expression and protein signatures identified postmortem 
which implicate oligodendrocytes or transcriptional/translational regulatory factors in 
neuropathology.  
 
The transcriptomic differences between living and postmortem brain tissue mentioned above 
present compelling evidence for the utility of living brain tissue samples as an additional 
resource in the study of human molecular neurobiology. As shown in the results section, 
clustering of cells in snRNA-seq data and the annotation of cell clusters to specific cell types was 
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not impacted by the living/postmortem state of the tissue assessed. This was expected given the 
vast differences in gene expression that have been regularly observed between cell types, that 
often dwarfs those differences that could be explained by cell state (e.g., disease or, in this case 
living/postmortem states)12,60,61. This finding confirms that, to the best of our knowledge and for 
the purpose of generating brain cell type atlases or references, living and postmortem tissue can 
be interchangeably used, a crucial consideration given the relative complexity of living brain 
tissue access and the impossibility to obtain complete brains for molecular profiling from living 
individuals. However, the strength of the DE signal within these defined cell types has 
consequences for downstream applications of snRNA-seq data. Here, cell type deconvolution 
accuracy was assessed using independent LIV or PM references against LIV or PM pseudo-bulk 
mixtures to determine the impact of DE on this commonly used application of snRNA-seq data. 
Interestingly, while LIV-PM status of reference samples did not seem to impact the accuracy of 
the deconvolution procedure, for some cell types, the LIV-PM status of the mixtures showed 
significantly better accuracy for LIV mixtures. This could be explained by the choice of 
deconvolution method, where the one tested here (CIBERSORTx) uses a signature matrix, which 
is defined using cell type specific gene expression profiles from input sc/sn-RNAseq 
references62, to calculate estimates from bulk mixtures. Generating cell type specific signature 
matrices requires well defined marker genes63 and thus, DE of these markers might help explain 
differences in deconvolution accuracy between living and postmortem mixtures in our data. 
Living and postmortem references impact deconvolution accuracy in a meaningful way only for 
specific neuronal subtypes in PM mixtures, further highlighting that cell type identity of living 
and postmortem nuclei remains consistent and living snRNA-seq could be used as a suitable 
reference for deconvolution procedures, especially for broad neuronal and glial cell types.  
 
This study also provides and characterizes an elastic-net based approach that was employed to 
successfully and effectively account for the differences in gene expression between LIV and PM 
samples when included as a covariate in the linear mixed model used for differential expression 
purposes. The development of this method that, using similar underlying concept as 
deconvolution, identifies and accounts for differences in gene expression observed between LIV 
and PM samples has the potential to help brain molecular researchers to better understand 
healthy and diseased brain neurobiology. This approach is also analogous to disease risk 
prediction methods, in which computationally selected factors (genes, genetic variants, 
phenotypic variables, etc.) are used to generate scores that represent risk approximations64–66. 
The transferability of this method was also tested through replicating LIV-PM DE using PMlink 
calculated on external snRNA-seq datasets curated as part of another study22 and selected bulk 
RNAseq datasets29,30. The success of this preliminary assessment of a method to correct for gene 
expression differences between LIV and PM samples reflects the strength of the overall DE 
signal between LIV and PM samples which allowed for near perfect accuracy when predicting 
LIV or PM state in independent pseudo-bulk and bulk testing datasets. Additional investigation 
is still required to better understand how study design and cell type specific variation impacts the 
ability for PMlink to recapitulate our LIV-PM DE results. It is important to note that the 
preliminary implementation of this correction method likely represents the lower bounds for a 
meaningful postmortem linear predictor variable such as PMlink. Furthermore, to avoid data 
leakage, LBP datasets needed to be split into testing, training, and holdout sets, greatly reducing 
the statistical power for PMlink and LIV-PM DE comparisons, and likely contributing to the 
variance among correlation coefficients. A curated training set of samples and/or nuclei that 
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reflect LIV-PM differences with low variability across other dimensions might improve elastic-
net accuracy and consistency in generating postmortem probabilities. New large-scale snRNA-
seq atlases of the human postmortem brain67 provide robust resources for developing, 
optimizing, and testing a scalable correction method to account for living and postmortem 
expression differences in future studies of human neurobiology and brain disease. 
 
The novel characterization of living and postmortem expression difference within in the context 
of common snRNA-seq approaches presented in this report has a number of limitations and 
remaining questions that will require further investigation. Most prominent is the inability to, 
given the study design, account for all possible confounder of gene expression, such as those that 
might be caused by either the neurosurgical procedure or any other technical effect unique to 
LIV samples. While results were, when possible, replicated using many independent resources, 
functional validation studies in animal or cell models were not performed as part of this study. 
Such experimental studies may, beyond simply validating the LIV-PM differences observed 
here, help assess the putative confounding effects described above in a highly controlled setting. 
Additionally, as it is not possible to obtain brain tissue from healthy individuals neurosurgically, 
the living cohort lacks neurotypical controls and is limited to mainly PD diagnosed individuals. 
Although LIV-PM DE performed on only PD individuals almost perfectly recapitulates the 
original LIV-PM DE signal, future studies should focus on corroborating these results using 
different clinical phenotypes and neurosurgeries. Expanding biopsy procedures to different 
neurosurgeries will also provide the opportunity to profile LIV-PM expression differences in 
brain regions other than the PFC. Finally, while we have shown that there are vast expression 
differences between living and postmortem samples that need to be taken into consideration for 
future snRNA-seq studies of the human brain, it is important to note that this alone does not 
prove that either living or postmortem tissue is superior to the other for profiling disease 
signatures in the human brain. 
 
Overall, this study provides the first characterization of: (1) snRNA-seq expression differences 
between LIV and PM brain samples, (2) the potential biological underpinnings of this DE signal, 
and (3) a novel approach to integrate living samples into future postmortem snRNA-seq study 
designs to account for differences in gene expression observed between LIV and PM samples. 
Beyond results presented here, the use of living tissue that was ethically biopsied at scale with no 
recorded deleterious consequences to patients for the sole purpose of research presents an 
exciting future for the study of the human brain. Finally, this study presents a large body of 
evidence that many gene expression differences exist at the single nuclei level between LIV and 
PM samples, highlights the utility of living brain tissue as an emerging resource to study the 
brain, and suggests that the use of postmortem tissue for the study of human molecular 
neurobiology could benefit from being integrated with knowledge derived from living brain 
tissue.  
 
 
METHODS 
 
Ethics Statement: All living cohort participants consented to sample collection, genomic 
profiling, clinical data extraction from medical records, and public sharing of de-identified data 
as part of STUDY-13-00415 of the Human Research Protection Program at the Icahn School of 
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Medicine at Mount Sinai. All IDs for living tissue samples have been de-identified and are not 
traceable back to patients. 
 
Living and Postmortem Cortical Samples: Living (LIV) PFC samples were collected from 
patients undergoing deep-brain stimulation surgery. For a detailed description of the living 
cohort, the adapted neurosurgery protocol, and post biopsy tissue processing refer to the Liharska 
et al23. Postmortem (PM) PFC samples used for this study were obtained from two different 
postmortem brain banks: Harvard Brain Tissue Resource Center and New York Brain Bank at 
Columbia University. PM samples were matched to LIV samples in respect to age and sex when 
possible. The standard PM tissue processing following autopsy was performed as described 
previously68,69,. Lab protocols for storing postmortem tissue samples are also described in 
Liharska et al23.  In total, 9 unilateral biopsies and 13 bilateral biopsies were collected from 23 
LIV individuals (LIV samples= 35) and 23 PM samples were selected for single-nuclei RNA 
isolation and processing.  
 
Nuclei Extraction with Kit: Nuclei were extracted from 58 frozen brain tissue samples (35 LIV 
and 23 PM) using the Minute Single Nucleus Isolation Kit for Neuronal Tissues and Cells 
(Invent Biotechnologies, #BN-020) following the manufacturer’s protocol. Briefly, around 10-
20mg of frozen tissue was added to an Eppendorf tube. 200uL of cold buffer was added in with 
5uL of RNase inhibitor and homogenized. Another 500uL of cold buffer was added to the tube 
with 12.5uL of RNase Inhibitor and further homogenized. The sample was then incubated on ice 
for 5 minutes (min). After incubation, the cell lysate was pipetted through a filter and into a 
collection tube. The sample was then incubated at –20C for 10 min. After incubation, the sample 
was centrifuged at 13000xg for 20 seconds (sec). Next, the filter was discarded and the pellet 
was suspended via pipette followed by another centrifuge step (600xg for 5 min). From this step, 
the supernatant was discarded, and the pellet was resuspended in 200uL 5% BSA in PBS with 
5uL of RNase inhibitor. Next, 25uL of RNase inhibitor was added with another buffer into a new 
Eppendorf tube with 200uL of nuclear suspension fluid. This tube was then centrifuged at 
1000xg for 10 min and the milky layer was then carefully removed via pipette. The rest of the 
supernatant was then removed without disturbing the pellet, and the pellet was resuspended in 
200uL of 1x PBS. Finally, the quality and quantity of the extracted nuclei was checked with a 
cell counter. 
 
10x Chromium Single Cell 3’ Gene Expression Profiling: After single nuclei isolation, 58 
samples were processed with the 10x Chromium Single Cell Gene Expression assay using the 
Chromium Next GEM Single Cell 3′ Reagent Kits v3.1 (10X Genomics, #CG000204 Rev D). 
Gel bead emulsion (GEM) barcoding and subsequent library generation was performed 
following the manufacture's protocol. Briefly, a target of 700-1200 cells/uL were loaded into a 
chip and then loaded into the Chromium machine. GEM quality was visibly checked to ensure 
that no clogs occurred before GEMs proceeded to the cleanup stage. After cleanup, cDNA was 
generated through PCR amplification. The quality of the cDNA was checked on an Agilent 
TapeStation using the High Sensitivity DNA ScreenTape Analysis (Agilent, #5067-5592) and 
quantification of cDNA was determined using the Qubit dsDNA HS Assay Kit (ThermoFisher, 
#Q32851). Following cDNA amplification, 3′ gene expression libraries were constructed using 
10uL of cDNA product. Next, the number of total amplification cycles were determined based on 
the quantity of cDNA input as part of the sample index PCR step following the chart provided in 
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the manual. After the libraries were constructed, quality was checked using the Agilent 
TapeStation and quantity checked with the Qubit dsDNA HS Assay Kit. 3 samples (2 LIV and 1 
PM) failed QC during GEM preparation step stage and were not included for sequencing. 
 
Single Cell Sequencing of 3′ Gene Expression Libraries: After library construction, the 
libraries were pooled for sequencing. Before sequencing the pooled libraries were again checked 
for quality and quantity with the Agilent TapeStation. Sequencing was done on the NovaSeq 
with the NovaSeq 6000 S2 Reagent Kit v1.5 kit (Illumina, #20028315) for a target of 300M 
reads per sample. Sequencing followed the suggested 10X Chromium protocol generating reads 
with 28 base pairs for the cell barcodes and UMI, reads with 8 base pairs for the index sequence, 
and reads with 91 base pairs for the main inserts used for transcript quantification. 
 
Processing Raw Sequencing Reads and Sample Level QC: Raw fastq files were generated 
from sequenced libraries for 55 samples (33 LIV and 22 PM). CellRanger software (pipeline ver. 
7.0) was used for genome alignment against the GRCh38-2020-A reference, generating BAM 
files and raw count feature-barcode matrices representing reads (UMI counts) aligned to genes 
(features) for each barcode assigned to a droplet. Reads mapped to introns and exons were 
incorporated into final count matrices in order to include both pre-mRNA and mature mRNA, 
which is representative of nuclear RNA populations. 1 LIV sample was removed for downstream 
analyses based on low number of cells relative to the rest of the samples. Identity concordance of 
snRNA-seq, bulk RNAseq, and whole genome sequencing (WGS) data is described in Liharska 
et al23. 1 PM sample was removed after identifying potential discrepancies between WGS and 
snRNA-seq data. 
 
Cell Level QC: Raw UMI feature-barcode count matrices which contains all droplets with valid 
GEM barcodes were first filtered in CellRanger (pipeline ver. 7.0) by removing “empty droplets” 
defined using the EmptyDrops procedure70. Briefly, empty droplets are defined from raw count 
matrices by first classifying high RNA count droplets as nuclei, and then calculating the cell-free 
expression profile of the remaining low count droplets, presumed to represent the ambient RNA 
in the fluid surrounding nuclei from destroyed or lysed cells. Barcodes of droplets containing 
expression profiles similar to the cell-free expression profile are then removed from the raw 
count matrices to generate filtered UMI count matrices for downstream processing. Removal of 
contaminating ambient RNA from nuclei containing droplets was done via SoupX (ver. 1.3.6), 
which takes the cell-free expression profile and background-corrects the filtered UMI count 
matrices accordingly71. Background-corrected count matrices were loaded into R (ver. 4.1) via 
Seurat (ver. 3.0)72. Empty droplets not previously identified and low quality cells were removed 
if the total number of unique genes per droplet and UMI counts per droplet was less than 200 or 
if greater than 1% of counts originated from mitochondria RNA (mt%). This conservative mt% 
threshold was selected for QC to reflect that snRNA-seq data should contain close to 0% 
mitochondrial RNA under ideal circumstances73. 1 LIV sample was removed for containing a 
high mt% in a majority of cells. Droplets predicted to contain multiple nuclei, termed doublets, 
were classified and removed using scDblFinder, a simulation and cluster based doublet detection 
method. The scDblFinder package (ver. 3.16) calculates a score for each cell based on the 
predicted expression profile of simulated doublets within a single sample74. To classify cells for 
doublet removal, count matrices from all samples were merged, normalized and clustered as 
described below, then an outlier-based threshold was used to remove clusters with a higher mean 
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doublet score than average calculated doublet score. Then, all droplets not removed from outlier 
clusters with a doublet score > 0.25 were removed. This is a conservative threshold relative to 
the recommended threshold of 0.574. 
 
Normalization, Integration and Clustering: For each sample (n = 52, LIV = 31, PM = 21), 
filtered and background-corrected UMI count matrices containing nuclei (droplets that passed 
cell level QC) were merged together and normalized using a scale factor of 10,000. The top 2000 
highly variable genes were selected for principal component analysis (PCA) using the “vst” 
method within the Seurat package. From the first 15 principal components, Harmony (ver. 1.1)75 
was utilized to perform a sample level correction to remove any variability that could confound 
cell type determination in dimensionally reduced space. To visualize the Harmony-corrected 
PCA embedding, the uniform manifold approximation and projection (UMAP) coordinates were 
calculated via the RunUMAP() function within Seurat. Next, the FindClusters() function was 
used for cluster identification, which performs Louvain-algorithm-based shared nearest neighbor 
(SNN) modularity optimization based clustering by calculating the k-nearest neighbors from 
Harmony embedding followed by the construction of an SNN graph72. A low clustering 
resolution of 0.6 was selected to isolate larger clusters that could be annotated into broad cell 
types. This normalization and integration process was performed prior to doublet removal, to 
identify and remove outlier doublet clusters, and then again on the final nuclei count after low 
quality droplets and doublets were removed.  
 
Cell Type Annotation: SNN clustering revealed 23 individual clusters from the integrated 
dataset. In an effort to annotate neural cell types from these 23 clusters, a marker gene analysis 
via the FindAllMarkers() function in Seurat was performed. Markers are defined as genes 
significantly upregulated (FDR ≤ 0.05) in one cluster relative to all other clusters as calculated 
using a Wilcoxon ranked sum test72. Markers calculated here were then cross-referenced to other 
snRNA-seq studies and literature on canonical markers for neuronal and glial cell types to merge 
and classify similar smaller clusters into 10 broad neural cell types representing excitatory 
neurons (Exc1, Exc2, and Exc3), inhibitory neurons (Int1 and Int2), oligodendrocytes (Oli), 
astrocytes (Ast), microglia (MG), oligodendrocyte progenitor cells (OPC), and non-neural cells 
(NonNeu). Non-neural cells represent endothelial or epithelial cells and were omitted from all 
downstream analyses. 
 
Scoring LIV and PM Marker Gene-sets: After annotation, samples were split into LIV and 
PM subsets and normalized, Harmony corrected, and clustered using the same parameters 
defined in the “Normalization, Integration and Clustering” section above. Marker genes from the 
original cell type annotations (Exc1, Exc2, Exc3, Int1, Int2, Oli, Ast, MG, OPC, and NonNeu) 
were then defined for the LIV subset and PM subsets independently using the procedure 
described in “Cell Type Annotation”. Next, a score representative of cell type identity was 
calculated for each nucleus from the aggregate expression of each marker gene set calculated in 
LIV samples and marker gene sets calculated in PM samples. This was completed for each 
nucleus using the AddModuleScore() function, which calculates the average expressions of 
selected gene sets subtracted by the aggregated expression of control genes selected randomly 
from all genes with a similar distribution of expression to the gene set in question76. The 
calculated scores for each cell type for either LIV or PM defined marker set were then compared 
across all nuclei using a Spearman’s correlation coefficient (ρ).  
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Generating Pseudo-bulk: For downstream analyses (differential expression, cell type 
deconvolution, and PMlink analyses) nucleus-level counts were converted into pseudo-bulk 
counts representing gene expression at the sample level by aggregating counts per sample. 
Pseudo-bulk was generated as the sum of counts per sample within each cell type (i.e. Exc1 
pseudo-bulk, Exc2 pseudo-bulk, etc.) and across all-nuclei for a given sample (all-nuclei pseudo-
bulk) using the aggregateAcrossCells() function within the scuttle package (ver. 1.12)77. 
 
Differential Expression Analysis: To assess differential expression between living and 
postmortem nuclei, raw pseudo-bulk counts are first filtered to remove genes with low 
expression (sum of all counts per across all samples in either the LIV or PM group <10 for cell 
specific pseudo-bulk and <20 for all-nuclei pseudo-bulk). Normalization factors were calculated 
based on library size using the calcNormFactors() function in edgeR (ver. 3.14)78 and counts 
were transformed to log2-counts per million (logCPM) with observation-level weights based on 
the mean-variance relationship72. The relevant demographic covariates included as random 
effects in the linear mixed model (LMM) were sex, PD phenotype, and batch. Then, based on the 
correlation of technical covariates to the first 5 principal components following a principal 
component analysis of the normalized data, the final formula used for the LMM defining all 
LIV-PM differential expression analyses was:  
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where the syntax “
1|��” denotes a random effect for categorical variable �, while all other 
variables are modeled as fixed effects. Differential expression (DE) with LIV-PM status as the 
dependent variable was then calculated using the dream function from the variancePartition 
package (ver. 1.29)79, which is designed to use LMMs in calculating DE from 
voomWithDreamWeights normalized count matrices80. DE was calculated for each cell type 
pseudo-bulk count matrix and the all-nuclei pseudo-bulk count matrix. Significant differentially 
expressed genes (DEGs) were determined based on a FDR ≤ 0.05 after using the Benjamin-
Hochberg method for multiple testing correction81. Each list of DEGs was further subdivided 
into LIV DEGs as the genes with higher abundance in living samples, denoted by with negative 
log fold-changes (logFCs); and PM DEGs as the genes with higher abundance in postmortem 
samples, denoted by positive logFCs. 
 
Replication of Differential Expression: Replication of all-cells pseudo-bulk DE was performed 
in an external bulk RNAseq dataset generated from living and postmortem cortical tissue as part 
of another LBP report (n=499, LIV=275, PM=224)23. Two changes were made from the original 
study when utilizing this dataset for the purpose of replication: 1) Any overlapping samples 
between the cohorts were removed from this replication cohort, and 2) neuronal cell fraction was 
omitted as a covariate in the LMM to maintain DE that might be specific to unique cell types. 
Spearman’s correlation was used to examine the relationship between the discovery (pseudo-
bulk) and replication (bulk) logFC Next, LIV-PM DE was calculated in an independent single-
nuclei dataset additional replication12. Since a majority of the Hodge et al. dataset represents 
NeuN+ sorted neurons, clusters representative of these neurons were identified by examining the 
expression of RBFOX3, the gene that encodes the NeuN protein. Only DE signatures from these 
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clusters expressing RBFOX3 in at least 50% of cells were compared to the LIV-PM DE 
signatures define in Hodge et al.12. Next, the overlap between the LIV DEGs or PM DEGs 
identified here was compared to the 695 DEGs identified in the Hodge et al paper which 
contrasts nuclear gene expression of middle temporal gyrus (MTG) samples obtained from four 
living individuals to neuronal gene expression in the MTG of four postmortem donors. 
Enrichment tests were performed via a one-sided Fisher’s exact test to quantify overlap between 
(1) LIV DEGs across RBFOX3 expressing cell types from the LBP dataset and Hodge et al. LIV 
DEGs, and (2) PM DEGs across RBFOX3 expressing cell types from the LBP dataset and Hodge 
et al. PM DEGs. Odds ratios were calculated from these Fisher’s exact tests and significance was 
determined after adjusting for multiple testing (FDR ≤ 0.05). To test the impact of Parkinson’s 
disease on the LIV-PM DE signal across cell types, the same DE pipeline was utilized in only the 
PD diagnosed samples. Once again, all DE comparisons to test reproducibility of the LIV-PM 
signature were done using a Spearman’s correlation of logFC from the original LIV-PM DE and 
logFC from the replication LIV-PM DE.   
 
Biological Process Gene Ontology Enrichment: Biological processes gene ontology (GO) 
enrichment was performed from the full biological processes ontology term set82 using topGO 
(ver. 3.16)83 on the LIV DEGs and PM DEGs from the primary DE analyses on pseudo-bulk 
generated for the 9 main cell-types and the all-nuclei set.  Significant GO term enrichment was 
determined using a Fisher’s exact test (FDR ≤ 0.05) with all genes defined as expressed (sum of 
all counts per across all samples in either the LIV or PM group <10 for cell specific pseudo-bulk 
and <20 for all-nuclei pseudo-bulk) for the background. Summarized GO term lists were 
generated from annotated terms containing <2500 genes, as to remove non-informative broad 
GO terms.  
 
Cell Type Deconvolution: Pseudo-bulk mixtures were deconvoluted via CIBERSORTx62 using 
50 permutations of non-overlapping LIV or PM references. First, 50 subsets of 10 random 
samples (5 living and 5 postmortem) each were selected to be used as the LIV and PM single-
cell references respectively. Each reference set was used for deconvolution with the existing 42 
non-overlapping pseudo-bulk mixtures. Then, for each reference defined as described above 
iterations of CIBERSORTx were run with the standard recommended settings62 to generate 
predicted cell type proportions for each sample (100 CIBERSORTx total runs generating ~100 
sets of estimated cell type fractions per mixture). The predicted cell type proportions were 
averaged across all permutations to get a single LIV and PM reference prediction for each 
mixture. The accuracy of the predicted deconvolution estimates was quantified by calculating the 
absolute value of the differences between mean estimate per mixture and that same mixture true 
cell proportions (sum of nuclei in a specific cell type / total nuclei per sample). Finally, 
significant differences between estimates calculated on LIV or PM mixtures and estimates 
calculated from LIV or PM references were tested via Wilcoxon ranked sum test and corrected 
for multiple testing using the Benjamini-Hochberg procedure.  
 
Calculating a Postmortem Prediction Score via ElasticNet: To create a score capable of 
accounting for gene expression difference between LIV and PM samples, a single continuous 
variable capturing the probability for a given sample to be classified as postmortem (PMlink) 
was calculated using a cross-validated elastic-net binomial regression via cv.glmnet() (ver.4.1).  
First, cell level and all-nuclei pseudo-bulk were split into three groups of approximately equal 
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sizes:  training (samples for elastic net feature selection; LIV = 10±1, PM=7±1), testing (sample 
to be assigned a PMlink score, LIV=10±1, PM=7±1), and holdout (holdout samples for LIV-PM 
DE; LIV = 11±1, PM=7±1). For PMlink calculations, the training set and testing set are first 
subset to include only genes with > 0 counts in at least one sample. Then the training set and 
testing set are normalized independently using voom from the limma package (ver. 3.58)84 and 
additional genes were removed so only genes present in both datasets were retained. The 
normalized training dataset was scaled and centered to 0 and the normalized testing dataset was 
scaled to the mean and standard deviation of the scaled training set. Using the normalized and 
scaled training set with genes as features, the elastic net binomial regression performs a 
combination of L1 (LASSO, α = 1) and L2 (ridge, α = 0) regularization using an α = 0.5 to 
shrink irrelevant feature coefficients to 0.  The optimal regularization penalty (λ) is calculated 
through 10-fold cross-validation. We choose the largest value of λ (i.e. the most regularized 
model) for which cross-validated error is the smallest (lambda.min)85. Using the fitted binomial 
elastic-net model of non-zero coefficients in concert with the optimized λ, PMlink was calculated 
as the scaled probability of a sample from the normalized and scaled testing set being a 
postmortem sample. This process was then repeated with each pseudo-bulk sample being 
randomly assigned to either the training, testing or holdout set 50 times. PMlink calculations 
were also done on the external bulk data generated following the same procedure for the initial 
LBP flagship report23.  
 
Validating PMlink: We first assessed the accuracy of each PMlink score in classifying a 
sample’s origin as postmortem or living within each of the 50 permutations by calculating the 
area under the ROC curve (AUC) via the prediction() and performance() function from the 
ROCR package (ver. 1.11)86. The AUC represents the degree of separation between linear 
predictor scores with respect to actual LV-PM status of a sample by comparing false positives 
(FP) and true positives (TP). We then validated the utility of PMlink as a continuous metric for 
recapitulating the LIV-PM DE signature in two ways. (1) We assessed changes to the LIV-PM 
DE signal calculated from each testing set when PMlink is added as a covariate in a linear model 
with LIV-PM status as the dependent variable (DV). From the resulting two DE analyses per 
random split, we compared the number of number of DEGs (FDR ≥ 0.05) with and without 
including PMlink as an additional fixed effect in the LIV-PM DE model. Overall changes to the 
LIV-PM DE signatures were assessed by comparing logFCs from each DE analysis (with 
PMlink and without PMlink) using Spearman’s correlation (ρ). These correlations coefficients 
were then compared to a reference of Spearman’s correlation coefficients calculated between 
logFCs from LIV-PM DE calculated on the testing set without PMlink in the model and LIV-PM 
DE logFCs calculated on the holdout set. (2) We performed a DE analysis on only the PM 
samples from each testing set substituting PMlink as the primary DV in a linear model (no 
additional covariates); performed a second DE analysis for comparison on the holdout set using 
LIV-PM status as the primary DV in a simple linear model; and compared the logFCs from these 
2 analyses using a Spearman’s correlation (ρ).  
 
Selecting and Processing External Datasets of PMlink Replication: Publicly available 
external datasets were selected to test if the PMlink calculation procedure presented here is 
informative to other snRNA-seq and bulk gene expression studies of human brain. To select 
adequate snRNA-seq datasets for testing, we focused on datasets that were curated as part of a 
recent study36 in which 26 human and mouse single-cell and single-nuclei RNA-seq datasets 
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were integrated together and then re-annotated to broad neural cell types (excitatory neurons, 
inhibitory neurons, oligodendrocytes, astrocytes, microglia, oligodendrocytes progenitor cells, 
and endothelial). From this repository, 6 snRNA-seq datasets28,31–36 were chosen based on: (1) 
number of unique samples > 10 and (2) cell types overlapping with the LBP snRNA-seq dataset 
> 4. In addition to testing PMlink on external snRNA-seq datasets, we selected two bulk RNA-
seq datasets generated as part of the CommonMind Consortium to assess the informativeness of 
PMlink derived from the bulk data presented in Liharska et al23,30. PMlink calculations on the 
external datasets were performed using the approach mentioned above with the following 
exception: the pseudo-bulk generated from the LBP snRNA-seq dataset and the bulk RNA-seq 
data presented in Liharska et al.23 were split evenly between training and holdout 50 times. The 
full external snRNA-seq pseudo-bulk and bulk datasets were used as the testing dataset. To test 
the ability of PMlink to recapitulate the LIV-PM DE signature presented here, two DE analyses 
were performed: (1) DE performed in the external pseudo-bulk and bulk datasets with PMlink as 
the DV in simple linear model and (2) LIV-PM DE calculated in the holdout pseudo-bulk. The 
relationship between these two DE analyses was assessed through comparing logFCs using a 
Spearman’s correlation (ρ). 
 
 
FIGURE LEGENDS 
 
Figure 1: Study overview and snRNA-seq clustering. – A) Overview of study design. Nuclei 
from living (LIV=31) and postmortem (PM=21) samples were sequenced using snRNA-seq. 
After QC, nuclei were clustered and annotated into cell types. For each cell type, differential 
expression (DE) analyses were performed to identify genes with increased abundance in LIV 
sample and genes with increased abundance in PM samples. DE signatures were replicated and 
the effect of the LIV-PM status on cell type marker genes was defined. Annotated nuclei were 
used to establish differences in deconvolution accuracy between LIV and PM mixtures using 
LIV or PM references. A continuous metric (PMlink) capable of accounting for differences in 
gene expression between LIV and PM samples was developed and characterized. B) Post-QC 
LIV (pink) and PM (blue) nuclei counts/proportions for the entire cohort for all nuclei (left, pie 
chart) and for each cell type (right, barplot). The x and y axes of the barplot represent 
respectively cell type and percent of nuclei present in the cohort for that cell type. The total 
number of nuclei for each cell type is defined on the top of each bar. C) Dotplot of the expression 
of selected canonical markers used for cell annotation. The x and y axes are cell type and the 
union of the top 2 gene markers for each cell types. Dot size represents the percentage of cells in 
a specific cluster expressing the marker and color intensity represents the scaled expression of 
each marker. D) Uniform manifold approximation and projection (UMAP) coordinates for all-
nuclei colored and annotated based on cell type identity as defined in the legend. E) UMAP 
coordinates for clustering performed on only LIV nuclei colored based on cell type 
classifications from the all-nuclei annotations as defined in the legend. F) UMAP coordinates for 
clustering performed on only PM nuclei colored based on cell type classifications from the all-
nuclei annotations as defined in the legend. 
 
Figure 2: Differential expression between living and postmortem pseudo-bulk. – A) Volcano 
plots presenting cell specific pseudo-bulk DE between LIV and PM samples. The x-axis 
represents the log fold-change (logFC) of the differential expression, the y-axis the -log10(p-
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value) of the association, and the color of each point represents the direction of association of 
each gene with the phenotype assessed as defined in the legend. The cell type assessed is defined 
above each plot. The proportion and number of significant DEGs (FDR ≤ 0.05) that are either 
LIV DEGs (higher transcript abundance in LIV; pink) or PM DEGs (higher transcript abundance 
in PM; blue) is presented above each volcano plot. B) Spearman’s correlation coefficient (ρ) 
between all-nuclei pseudo-bulk LIV-PM DE logFC and replication bulk LIV-PM DE logFC. The 
dashed purple line is best fitted line, and the grey contours represent the density of points. The ρ 
and associated p-value are defined above the plot. C) Plot of the replication of LIV-PM DEGs in 
external validation data. The x-axis is the odds ratios for the one sided Fisher’s exact tests of 
enrichment of LBP DEGs from cell types expressing RBFOX3 that overlap with DEGs from the 
Hodge et al. study, the y-axis is the cell types expressing RBFOX3, and the lines the 95% 
confidence interval. Each colored faced represents the enrichments of LIV DEGs (pink) and PM 
DEGs (blue). All odds ratios are significant with a FDR ≤ 0.005. D) Heatmap of biological 
processes gene ontology (GO) fold enrichment (low = blue, high = red) for LIV DEGs and PM 
DEGs from cell type and all-nuclei DE analyses with significant GO enrichment adjusted for 
multiple testing. The x-axis is the cell type, the y-axis selected representative significant GO 
term associated to the LIV-PM DEGs, the color is the fold enrichment as defined in the legend, 
the presence of a dot in each block represent significance (FDR ≤ 0.05), and the facets represent 
GO terms enriched for PM DEGs (top) and LIV DEGs (bottom). E) Boxplots of cell type 
markers DE for LIV-PM status. The facets represents different cell types, the y-axis is the logFC 
for the marker’s DE for LIV-PM status, and the color of point represents significance as defined 
in the legend. The proportion of marker genes from each cell type differentially expressed is 
defined above each box-plot with color representing direction of association as defined in the 
legend.  
 
Figure 3: Assessing cell type deconvolution accuracy. – The absolute value of the difference 
between CIBERSORTx cell type proportion estimates and true proportion (ABSDIFF; y-axis) 
for each cell type (x-axis). Each point and represents the average ABSDIFF per sample across all 
permutations of the deconvolution calculations, boxplots represent the median ABSDIFF per 
group (LIV or PM) depending on whether samples or references are being compared.  Point 
shape represents the LIV-PM status of the mixtures being used in the comparison (LIV = square, 
PM = circle). Additionally, points and boxplots are colored based on the LIV-PM status of the 
sample (LIV = pink, PM = blue). A) ABSDIFF comparisons between estimates calculated on 
either LIV or PM samples faceted by whether a LIV or PM reference was used to estimate cell 
type proportions. Significant differences (*) between LIV and PM sample ABSDIFF is 
calculated based on Wilcoxon ranked-sum test and adjusted for multiple testing (FDR ≤ 0.05). B) 
ABSDIFF comparisons between estimates calculated from either LIV or PM snRNA-seq 
references faceted by whether predictions were performed on LIV or PM samples. Significant 
differences (*) in ABSDIFF between whether a LIV and PM reference was used is calculated 
based on Wilcoxon ranked-sum test and adjusted for multiple testing (FDR ≤ 0.05). 
 
Figure 4: Calculating postmortem probability score (PMlink) across 50 testing, training, 
and holdout data splits. – A) PMlink calculation and testing flowchart presenting how training, 
testing, and holdout sets are used in the calculation and validation of PMlink as a metric 
recapitulating expression difference between LIV and PM pseudo-bulk samples. B) Technical 
parameters (mean number of starting genes as features (left barplot), number of selected non-
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zero features after regularization (center boxplot), and the selected lambda used for postmortem 
probability predictions (right boxplot); y-axis) used for the 50 cross-validated elastic-net 
calculations colored by cell type. C) Violin plots presenting the distribution of PMlink scores (y-
axis) calculated from the scaled postmortem probability across all 50 elastic-net iterations 
separated by the LIV-PM status of samples (LIV = pink, PM = blue). Each point represents a 
sample also colored by LIV-PM status with paired samples within the same testing set connected 
by a purple line. The violin plots are faceted for each of the 9 analyzed cell types for which 
PMlink scores were calculated.  
 
Figure 5: Testing the ability of PMlink to replicate LIV-PM DE across internal holdout sets 
and external snRNA-seq and bulk datasets. – A) Spearman’s correlation coefficients (ρ; y-
axis) comparing the logFCs from LIV-PM DE calculated on the testing set before and after 
including PMlink in the linear model. Points represent the ρ for each testing sample split iteration 
faceted by cell type in which PMlink is calculated. Within each facet, the colored boxplot 
represents the with and without PMlink comparison (Comp; x-axis) and the grey boxplot 
represents the reference comparison the testing set LIV-PM DE without PMlink and the holdout 
set LIV-PM DE (Ref; x-axis). B) Bar plots depicting the average number of significant DEGs 
(FDR ≤ 0.05) across testing set LIV-PM DE analyses before (left) and after (right) including 
PMlink in the simple linear model across all cell types (x-axis). C) Spearman’s correlation 
coefficients (ρ; y-axis) comparing the logFCs from LIV-PM DE calculated on the holdout set 
and PMlink DE calculated on the postmortem subset of each testing set. Points represent the ρ 
for each testing sample split iteration with the x-axis and colors representing the cell-type each 
comparison was performed in. D) Heat map of median Spearman’s ρ (low = blue, high = red) 
comparing logFCs from PMlink DE in the external snRNA-seq datasets (y-axis) with internal 
holdout set LIV-PM DE analysis for each of the shared annotated cell types across all datasets 
(x-axis).   
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