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Abstract 

Uncertainty in low-dose ionizing radiation-induced health risks stems from several factors. The 

complex biological pathways leading to diseases like cancer are not fully understood, making it 

difficult to distinguish the contribution of radiation, particularly at low doses which induce only 

small perturbations to background disease risks. Additionally, traditional dose-response models, 

such as the Linear No-Threshold formalism and competing threshold or hormesis models, 

impose rigid assumptions on dose response shapes, causing controversy and increasing model 

selection uncertainty. Furthermore, these modeling strategies operate on the level of 

correlations/associations, and are not designed to directly address the ultimate goal of radiation 

epidemiology – assessing causal links between radiation and disease. A promising and rapidly-

developing approach for addressing some of these challenges is causal machine learning (CML), 

such as double/debiased machine learning (DML), which is designed to model causal effects in 

multi-dimensional data sets. Our study employs DML to elucidate the causal impacts of radiation 

exposure on the incidence of leukemia, all solid tumors, and stomach tumors among Japanese 

atomic bomb survivors. Its goal was not to produce a definitive re-analysis of these data sets, but 

to provide a useful example of implementing CML in radiation epidemiology, which can 

advance the field by supplementing traditional modeling approaches. The results revealed robust 

positive causal effects of radiation for all three tumor types, especially for leukemia and stomach 

tumors. The effect magnitudes, and uncertainties, were not dramatically different at low doses 

than at higher doses. The influences of age at exposure, attained age, sex and other covariates on 

the causal effects of radiation were assessed using Shapley Additive Explanations (SHAP) 

values. We believe that this analysis, based on a flexible machine learning framework with a 
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causal inference motivation and without strict dose response assumptions, provides an important 

contribution to radiation epidemiology.  
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Introduction  

While ionizing radiation is a well-known mutagen, carcinogen and cytotoxic agent, 

uncertainty surrounds radiation-induced health risks at low doses, stemming from several 

interconnected issues1-3. Importantly, the complex biological pathways leading to diseases like 

cancer or cardiovascular disease remain incompletely understood, hindering the ability to 

definitively attribute disease occurrence to radiation exposure4,5. Consequently, radiation risk 

estimation relies on probabilistic calculations, with population-level probabilities modeled as 

function of radiation dose6. In this situation, detecting increases in disease probability due to low 

radiation doses is challenging due to minimal deviations from background levels7.  

In addition, traditional dose response modeling techniques, like the Linear No-Threshold 

(LNT) model, or alternative models with thresholds or hormesis, where radiation-induced risk is 

assumed to be zero or negative below a certain threshold dose8, impose rigid specific 

assumptions on dose-response shapes. One of the consequences of this approach is model 

selection uncertainty, where the researcher needs to decide which of these models to use to 

analyze a particular radiation effects dataset, or perhaps use a weighted ensemble of several 

models9,10. Therefore, model-specific differences in assumed dose response shapes and their 

implications foster controversy11-15.  

The issue of dose response shapes, particularly at low doses, has practical significance 

across radiation epidemiology. For example, dose response shapes for radiation-induced cancer 

incidence and mortality are still not completely understood in Japanese atomic bomb survivors – 

a large and well-studied population which, over decades, provided a great deal of information 

about radiation health effects in humans16,17. Potential changes in dose response shape as 

function of dose are also relevant for other irradiated populations, such as nuclear industry 
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workers from multiple countries investigated by the International Nuclear Workers Study 

(INWORKS), where “restricting the analysis to the low cumulative dose range (0-100 mGy) 

approximately doubled the estimate of association” between solid cancer mortality and radiation 

dose4.  

These challenges make it difficult to discern radiation-induced disease effects from 

background “noise” and establish specific dose-response shapes, hampering current data analysis 

techniques4. Additionally, while epidemiology ultimately seeks to uncover causal relationships, 

such as between radiation dose and health effects, the toolkit of modeling methods that are 

commonly used in this field works predominantly on the level of correlation/association, rather 

than causation. This situation creates a need for expanding this toolkit to include newer methods 

which relax the strict assumptions about dose response shapes, and are specifically designed to 

answer causal questions. 

Methods that fit these criteria are rapidly developing in the artificial intelligence (AI) / 

machine learning (ML) fields.18 Moreover, they can be readily applied to multi-dimensional data 

sets and handle potential nonlinear complex interactions between radiation and multiple other 

variables (e.g. demographics, genetics and lifestyle factors)19. Causal machine learning (CML) 

20-25, such as double/debiased machine learning (DML) introduced by Belloni, Chernozhukov 

and Hansen 26-28, emerges as a cutting-edge field that holds significant promise for addressing the 

intricacies of low-dose radiation risk assessment. Contrary to the common use of ML for 

predictive tasks that hinge on correlations and associations—a method where distinguishing 

correlation from causation is notoriously difficult29 and conceptually distinct 30,31—CML focuses 

on directly exploring causal relationships32. This is of paramount importance in radiation 

epidemiology, where understanding whether and how radiation exposure leads to adverse health 
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outcomes (e.g., cancer) and how these effects vary with individual characteristics (age, sex, 

lifestyle, genetics) is crucial33.  

DML works by implementing three distinct models instead of one: (1) Model the causal 

variable/treatment (radiation dose) based on the covariates. This is a “deconfounding” operation. 

(2) Model the outcome (health effect) based on the covariates (but not the treatment). This is a 

“debiasing/denoising” operation. (3) Build a third model to relate the residuals from the first two 

models to each other – this relationship is interpreted as the causal effect. The causal effect can 

be estimated for the population (average treatment effect, ATE, or conditional average treatment 

effect, CATE), but also for each individual/sample. Importantly, DML has doubly robust 

estimator (DRE) properties – remaining unbiased even if either the treatment model or the 

outcome model is correctly specified, but not necessarily both – and can handle many variables 

in the data set. 

Different types of methods can be used for models 1, 2 and 3, increasing overall power and 

flexibility. Essentially any type of popular ML algorithm (e.g. random forest34, XGBoost35, 

elastic net parametric regression36) can be used for models 1 and 2. There are also different 

options for model 3, including a simple linear function. For example, a powerful method for 

building model 3 in multidimensional data sets is causal forests (CF), which are a form of tree 

ensemble modeling derived from random forests9,37,38.  

In CF, the tree splitting criterion aims to create groups of samples where the treatment effect 

is as constant as possible within each group. This helps identify heterogeneous treatment effects 

across different subgroups within the data. Additionally, CF split the dataset into two parts: one 

part is used to determine the tree structure (fitting the trees), while the other part is used to 
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estimate the treatment effects based on that structure. This separation helps prevent overfitting 

and improves the generalization of treatment effect estimates to new data. 

The main assumptions of CML methods are no unmeasured confounding (ignorability) and 

non-zero probability for each patient to be assigned to each treatment group (positivity). The 

ignorability assumption that all confounders (variables that influence both the treatment and 

outcome) are included in the data set usually does not hold completely, but domain knowledge 

about variable selection and in silico refutation/data manipulation methods can help to address 

this limitation16. 

In this study, we employed DML to explore the causal link between radiation exposure and 

the occurrence of leukemia, all solid tumors, and stomach tumors among survivors of the 

Japanese atomic bombings. Despite their considerable potential to propel the field forward, such 

methodologies so far remain underutilized in radiation epidemiology39. We hope that this 

example will encourage more extensive implementation of causal inference machine learning 

techniques - not only DML, but potentially also generalized propensity score matching (GPS40,41) 

and targeted maximum likelihood (TML42,43) - to study ionizing radiation effects.  

 

Methods 

Data collection and pre-processing  

We analyzed the following publicly available data on leukemia, all solid tumor, and 

stomach tumor incidence in Japanese atomic bomb survivors: (1) Incidence data set of leukemia, 

lymphoma and multiple myeloma among atomic bomb survivors: 1950 to 2001 follow-up. It 

contains 402 leukemia cases among 120,005 people with 3,842,918 migration-adjusted person 

years of follow-up. (2) Radiation Effects Research Foundation Life Span Study Solid Cancer 
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Incidence Data Sets. 1958 to 1998 follow-up. It contains 18,645 cancers among 111,952 people 

with 2,939,361 migration-adjusted person years of follow-up. (3) Stomach tumors (4,730 cases) 

were analyzed separately from all solid tumors. The reason for this subset analysis was that all 

solid tumors represents an amalgamation of multiple tumor types with different biological 

mechanisms, whereas stomach tumors form an important and more uniform component of this 

group in the Japanese population.  

The data pre-processing steps for each data set involved the removal of records with 

missing dose values, and recoding dose to Gy instead of mGy (creating the Dose_Gy causal 

variable) based on appropriate organ doses. City was coded as: 0 = Hiroshima, 1=Nagasaki; and 

Sex as: 0=Female, 1=Male. Variables such as "nic" indicating not in city and "ahs" representing 

part of the Adult Health Study clinical cohort (for solid tumors) were also encoded as binary 

features. Additionally, rows with more than one tumor or leukemia count were split into 

duplicates with one count in each row, facilitating the transformation described below. A 

transformed outcome variable Y=ln[(1+C)/P] was created, where C represents the tumor count 

(either 0 or 1) in each row, and P denotes person-years. This transformation aimed to produce an 

approximately normally distributed outcome variable for DML analysis. The data was then 

randomly split into training and testing sets (75:25) to build and evaluate the models described 

below. 

Double/Debiased Machine Learning (DML)   

To implement DML (using Jupyter notebooks in the Python programming language version 

3.10.11), we constructed three separate models on the training data: a treatment model for 

predicting radiation dose (Dose_Gy) as function of covariates, an outcome model for predicting 

transformed tumor incidence (Y) as function of covariates and excluding the treatment, and a 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.30.24306639doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.30.24306639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

causal forest model linking the residuals of these two models. The covariates were: age at 

exposure (agex), attained age (age), city, sex, nic, and ahs (for solid tumors). 

Several machine learning algorithms were assessed through cross-validation (10-fold, 

repeated 10 times) to select which algorithm provided the best fit for the treatment and outcome 

models. The algorithms were: CatBoost44, elastic net (EN)36 regression, light GBM (LGBM)45, 

linear boost (LinBoost, implemented by the linear-tree Python package)46, linear regression (LR), 

random forest (RF), and XGBoost. The performance metrics (averaged over cross-validation 

folds and repeats) used in their comparison were: root mean squared error (RMSE), mean 

absolute error (MAE) and coefficient of determination (R2). The decision of which algorithm 

performed best for which model type and for which tumor type was made manually by 

inspecting all three performance metrics.  

Based on this information, DML was constructed and applied to each tumor data set, using 

the EconML Python package (https://econml.azurewebsites.net/). The syntax for DML 

implementation was CausalForestDML(model_y=A, model_t=B, cv=10, mc_iters=10, 

n_estimators=200, random_state=N), which represents an instance of the CausalForestDML 

class from the EconML library - a machine learning model designed to estimate the causal effect 

of a treatment variable (Dose_Gy) on an outcome variable (Y). Here model_y is the outcome 

model, where A is the best-performing algorithm for the particular tumor type (e.g. RF). 

Analogously, model_t is the treatment model, where B is the best-performing algorithm for the 

particular tumor type (e.g. XGBoost). The argument cv=10 is specifying that 10-fold cross-

validation should be used when training the models, mc_iters=10 is specifying that the model 

should perform 10 Monte Carlo iterations, n_estimators=200 is specifying that the model should 

use 200 trees in the causal forest, and random_state is setting the seed for the random number 
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generator, which ensures that the results are reproducible. Sensitivity calculations were 

performed on the cv (5 or 10), mc_iters (5 or 10) and n_estimators (100 or 200) parameters, 

which found little change in the resulting causal effect estimates.  

The conditional average treatment effect (CATE) estimates generated by this approach 

represent locally linear approximations to the dependence of the response variable Y on the 

treatment variable Dose_Gy. In simpler terms, the CATE is an estimate of how much the 

response variable Y changes for a small change in the treatment variable Dose_Gy, given the 

covariates X. This is analogous to the derivative of Y with respect to Dose_Gy, denoted as 

dY/dDose_Gy, in a local region determined by the covariates X. Therefore, the CATE estimates 

provide a measure of the local sensitivity of the response variable to changes in the treatment 

variable, taking into account the influence of the covariates. This is particularly useful in 

scenarios where the treatment effect may vary across different levels or groups of the covariates. 

To assess their robustness and generalizability, the trained models were then applied to the 

separate testing dataset for each tumor type. Additionally, SHapley Additive exPlanations 

(SHAP)47 values were employed to interpret the causal forest model. SHAP values provide an 

importance value to each relevant feature (variable) in the model, quantifying the influence of 

each feature on the model's output for any given sample. These values are particularly useful for 

understanding the relative impact of different features on the model’s predictions, aiding in 

model interpretation and insight generation. By analyzing SHAP values, one can gain deeper 

insights into the underlying mechanisms driving the model's predictions and identify critical 

factors influencing the outcomes of interest.  
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Results 

Data Set Structure 

The covariates (features) used in our analysis were: agex (age at exposure), age (attained 

age), sex (0=female, 1=male), city (0 = Hiroshima, 1=Nagasaki), nic (not in city indicator), and 

ahs (adult health study indicator, present only for solid tumors and not for leukemia). Gdist 

(distance from the atomic bombing) was not used because it is strongly correlated with Dose_Gy 

(which is the causal variable), and with nic. Pearson correlations between these variables were 

assessed on the training data sets for all three tumor types. They were generally not strong, 

except for the expected strong correlation (about +0.75 on each data set) between age and agex. 

Selection of Optimal Algorithms for the Treatment and Outcome Sub-Models of DML 

Results for comparing multiple ML algorithms to construct treatment-specific and outcome-

specific sub-models of DML are shown in Supplementary Table 1. Random forest (RF) or 

XGBoost turned out to have the best performances for these models for different analyzed tumor 

types. The treatment/causal variable (Dose_Gy) was relatively poorly fitted based on the 

covariates (R2 < 0.5), which supports the expectation that radiation dose in this population 

should not be strongly predictable based on variables like age at exposure, attained age, sex, etc. 

In other words, the poor fits of the treatment models were expected and indicate that radiation 

dose is not “redundant” to the covariates. In comparison, the outcome variable (Y) was fitted 

better based on the covariates (R2 > 0.7), suggesting that attained age, sex etc. have decent (but 

not perfect) predictive power for cancer incidence even if radiation dose is not considered.  

DML Implementation 

These sub-models were then used as the basis for fitting causal forests, which relate the sub-

model residuals and interpret this relationship as the causal effect of Dose_Gy on Y. The causal 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.30.24306639doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.30.24306639
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

effects generated here serve as locally linear approximations of how the response variable Y 

varies with changes in the treatment variable Dose_Gy. Essentially, the CATE quantifies the 

extent to which the response variable Y changes in response to slight adjustments in the 

treatment variable Dose_Gy, while considering the covariates X. In simpler terms, it resembles 

the derivative of Y concerning Dose_Gy, symbolized as dY/dDose_Gy, within a specific local 

region determined by the covariates X.  

Therefore, these CATE estimates offer insights into the local sensitivity of the response 

variable to variations in the treatment variable, while considering the influence of the covariates. 

This aspect proves especially beneficial in scenarios where the treatment effect may differ 

among various levels or groups of the covariates. CATE values might also provide information 

about the dose-response shape. In this analysis, the tumor incidence outcome was log-

transformed as described above, so a constant CATE at different dose levels indicates an 

upwardly-curving (convex) dose response shape. 

Causal Effects of Radiation Dose 

The population-level summary of resulting causal effect estimates on training data for the 

three studied tumor types is shown in Table 1. For leukemia and stomach tumors, the causal 

effects were clearly positive and statistically different from zero, indicating that increasing 

radiation dose increased transformed tumor incidence in a robust manner. For all solid tumors 

the uncertainty was somewhat larger, with 95% CIs for the distribution of individual treatment 

effects slightly overlapping zero (Table 1). The likely reason is that the all solid tumors dataset is 

an amalgamation of multiple different solid tumor types with potentially different dose response 

patterns. 
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Individual-sample level causal effects for all analyzed tumor types as function of radiation 

dose are displayed in Figure 1. Each semi-transparent blue circle in Figure 1 represents a CATE 

estimate for an individual sample (row in the data set), with darker blue regions indicating a 

higher density of overlapping values. This visualization shows the almost exclusively positive 

nature of CATE values for the studied tumor types, particularly for leukemia and stomach 

tumors. This pattern persists across both training and testing datasets, demonstrating the 

consistency of DML estimates across different portions of the data. 
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Table 1. Population summary of causal effect estimates on training data for the three studied 

tumor types. “Uncertainty of Mean Point Estimate” contains statistics that describe the average 

treatment effect (ATE). They provide a summary of the central tendency (Estimate), the 

uncertainty (SE, standard error), the statistical significance (z value and p-value), and the range 

within which the true ATE to expected lie with 95% confidence (95% CIs). “Total Variance of 

Point Estimate” provides similar information, but for the distribution of individual treatment 

effects rather than the average: their standard error and 95% CIs. 

 

Leukemia: 

Uncertainty of Mean Point Estimate 

Estimate SE z p-value 95% CIs 

0.831 0.161 5.145 0.000 0.514 1.147 

Total Variance of Point Estimate 

  0.303     0.287 1.474 

Solid tumors: 

Uncertainty of Mean Point Estimate 

Estimate SE z p-value 95% CIs 

0.734 0.320 2.294 0.022 0.107 1.360 

Total Variance of Point Estimate 

  0.659     -0.111 2.368 

Stomach tumors: 

Uncertainty of Mean Point Estimate 

Estimate SE z p-value 95% CIs 

0.906 0.164 5.524 0.000 0.584 1.227 

Total Variance of Point Estimate 

  0.336     0.257 1.589 
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Figure 1. Distributions of individual-sample level CATE estimates as a function of radiation 

dose (Dose_Gy) on training (left) and testing (right) data for leukemia, solid tumors, and 

stomach tumors. Each semi-transparent blue circle is a CATE estimate for a given sample (row 

in the data set). Darker blue regions show where many CATE values overlap. 

Stomach tumors

Leukemia

Solid tumors
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To better visualize how individual-sample CATE estimates varied with radiation dose, they 

were grouped into arbitrary dose bins (Table 2 and Figure 2). The grouping into bins was not part 

of the DML analysis – it was a post hoc procedure used for visualization only. These results 

showed relatively small variability in CATE estimates across different doses for all tested tumor 

types. For example, mean and median CATE estimates at very low doses of 0-0.01 Gy were 

generally similar to those at higher doses like 1-2 Gy. Notably, the uncertainties of these causal 

effect values (e.g. standard errors of the mean) were also comparable at low and high doses 

(Table 2 and Figure 2). 

Data Perturbations for Testing DML Reliability 

The DML framework implemented here uses tree ensemble-based algorithms for all of its 

three components (RF or XGBoost for the treatment and outcome sub-models, and causal forest 

for the causal model component). Thus, no specific dose response shape is assumed a priori, and 

the tree ensembles should be able to reproduce even complex nonlinear dose response shapes if 

they exist. We conducted a series of data perturbation tests to test this in practice on the analyzed 

data. Specifically, we manipulated the leukemia data to generate a nonlinear dose-response curve 

with a derivative that changed sign within the studied dose range. This was achieved by applying 

the transformation Y∗ =Y−D−D2+0.3×D4, where Y represents the original response values, Y∗ 

are the perturbed outcome values, and D is Dose_Gy. The derivative dY∗/D=-1-2×D+1.2×D3, 

which changes sign from negative to positive at D=1.492.  The results of DML analysis of this 

perturbed data set are shown in Supplementary Figure 1. They confirm that indeed the DML 

method generated negative CATE values at low doses, and increasingly positive values at high 

doses, as consistent based on the behavior of dY∗/D. The behavior on testing data was very 

similar to the one on training data. 
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To further validate the reliability of the DML CATE estimates as a “negative control” where 

no actual causal effect exists in the data, another perturbation experiment was conducted. In this 

case, we replaced the response variable Y with standard normal random numbers, with the 

expectation that any CATE estimates would center around 0. The results from this analysis 

(Supplementary Figure 2) corroborated our expectations. This finding was consistent across both 

training and testing data, further affirming the reliability of the DML method in generating 

CATE estimates even under simulated conditions of no actual treatment effect. 
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Table 2. Grouped individual-sample CATE estimates as a function of dose bins on training and 

testing data for leukemia, solid tumors, and stomach tumors. As described in the Methods 

section, CATE was estimated by DML for each individual row/sample of the data set (shown in 

Figure 1), but here these CATE values were binned by dose to facilitate visualization of their 

potential dose dependences. The summary statistics are: mean = average, med = median, min = 

minimum, max = maximum, sem = standard error of the mean. “Testing / training med” 

represents the ratio of median CATE values for each dose bin on testing vs. training data. The 

very high dose bins (>1 Gy) are not shown to reduce table length, but they are shown graphically 

in Figure 2.  

Dose bin 

(Gy) 

Leukemia Testing / 

training 

med 
  Training data Testing data 

  mean med min max sem mean med min max sem 

0 - 0.005 0.88 0.87 0.12 2.15 0.01 0.83 0.81 0.17 1.98 0.01 0.93 

0.005 - 0.02 0.87 0.86 0.08 2.15 0.01 0.84 0.82 0.20 2.07 0.01 0.95 

0.02 - 0.04 0.85 0.84 0.11 1.97 0.01 0.85 0.84 0.21 2.10 0.01 1.00 

0.04 - 0.06 0.83 0.83 0.04 2.13 0.01 0.82 0.81 0.04 1.58 0.01 0.98 

0.06 - 0.08 0.84 0.82 0.18 1.84 0.01 0.83 0.83 0.18 1.53 0.01 1.01 

0.08 - 0.1 0.81 0.81 0.08 1.73 0.01 0.81 0.79 0.06 1.93 0.01 0.98 

0.1 - 0.125 0.82 0.82 0.12 1.92 0.01 0.82 0.82 0.17 2.14 0.01 1.00 

0.125 - 0.15 0.82 0.81 0.09 2.16 0.01 0.84 0.82 0.26 1.81 0.01 1.01 

0.15 - 0.175 0.81 0.80 0.17 2.07 0.01 0.82 0.80 0.18 1.67 0.01 1.00 

0.175 - 0.2 0.81 0.81 0.11 2.06 0.01 0.82 0.83 0.20 1.98 0.01 1.02 

0.2 - 0.25 0.84 0.83 0.19 2.13 0.01 0.82 0.81 0.30 1.57 0.01 0.98 

0.25 - 0.3 0.82 0.80 0.18 2.11 0.01 0.84 0.83 0.33 1.61 0.01 1.04 

0.3 - 0.5 0.84 0.83 0.10 2.19 0.01 0.84 0.83 0.15 2.11 0.01 1.00 

0.5 - 0.75 0.82 0.80 0.15 2.07 0.01 0.82 0.82 0.09 1.91 0.01 1.02 

0.75 - 1 0.82 0.80 0.24 1.85 0.01 0.79 0.78 0.19 1.66 0.01 0.98 

  Solid tumors   

  Training data Testing data   

  mean med min max sem mean med min max sem   

0 - 0.005 0.93 0.94 -0.18 2.18 0.01 0.90 0.90 -0.03 2.15 0.01 0.96 

0.005 - 0.02 0.93 0.94 -0.06 2.46 0.01 0.91 0.91 0.12 1.98 0.02 0.97 
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0.02 - 0.04 0.92 0.91 -0.13 1.96 0.01 0.91 0.91 -0.13 2.21 0.02 1.00 

0.04 - 0.06 0.89 0.90 -0.10 1.93 0.01 0.91 0.91 0.21 1.90 0.02 1.01 

0.06 - 0.08 0.90 0.91 0.12 1.83 0.01 0.90 0.92 0.16 1.65 0.02 1.01 

0.08 - 0.1 0.90 0.90 0.16 2.05 0.01 0.90 0.91 0.10 1.74 0.02 1.01 

0.1 - 0.125 0.89 0.88 0.10 1.86 0.01 0.90 0.92 0.08 2.26 0.02 1.05 

0.125 - 0.15 0.90 0.91 0.09 2.02 0.01 0.90 0.89 0.09 1.86 0.02 0.98 

0.15 - 0.175 0.87 0.88 -0.05 2.42 0.01 0.91 0.91 0.14 2.07 0.02 1.03 

0.175 - 0.2 0.91 0.92 0.14 2.04 0.01 0.94 0.94 0.21 1.90 0.02 1.02 

0.2 - 0.25 0.89 0.90 0.08 2.02 0.01 0.93 0.92 0.25 1.91 0.02 1.02 

0.25 - 0.3 0.90 0.89 -0.07 2.29 0.01 0.89 0.90 0.11 2.09 0.02 1.01 

0.3 - 0.5 0.89 0.89 -0.17 1.90 0.01 0.93 0.93 -0.10 1.81 0.02 1.04 

0.5 - 0.75 0.89 0.90 0.05 2.05 0.01 0.90 0.89 0.24 1.68 0.02 0.99 

0.75 - 1 0.87 0.89 -0.14 1.77 0.01 0.90 0.90 0.26 1.73 0.02 1.01 

  Stomach tumors   

  Training data Testing data   

  mean med min max sem mean med min max sem   

0 - 0.005 0.82 0.68 -0.81 3.81 0.01 0.82 0.69 -1.01 3.38 0.01 1.01 

0.005 - 0.02 0.97 0.88 -1.07 3.46 0.01 0.97 0.90 -0.24 3.46 0.02 1.02 

0.02 - 0.04 0.86 0.72 -0.83 3.27 0.01 0.85 0.70 -0.22 2.89 0.02 0.97 

0.04 - 0.06 0.74 0.57 -0.80 3.75 0.01 0.74 0.57 -0.29 3.16 0.02 1.00 

0.06 - 0.08 0.74 0.57 -0.67 2.81 0.01 0.77 0.60 -0.59 2.84 0.03 1.05 

0.08 - 0.1 0.73 0.54 -0.64 3.03 0.02 0.76 0.58 -0.86 3.54 0.03 1.07 

0.1 - 0.125 0.72 0.53 -0.87 3.83 0.01 0.68 0.48 -0.60 2.95 0.03 0.91 

0.125 - 0.15 0.73 0.54 -1.06 3.41 0.01 0.76 0.54 -0.13 2.47 0.03 1.00 

0.15 - 0.175 0.73 0.53 -0.21 3.78 0.02 0.73 0.51 -0.99 2.67 0.03 0.96 

0.175 - 0.2 0.74 0.56 -0.57 2.76 0.02 0.74 0.51 -0.46 2.70 0.03 0.91 

0.2 - 0.25 0.72 0.53 -0.43 3.69 0.01 0.70 0.50 -0.12 2.85 0.02 0.94 

0.25 - 0.3 0.72 0.51 -0.38 3.32 0.02 0.74 0.53 -0.11 2.69 0.03 1.04 

0.3 - 0.5 0.72 0.52 -0.46 2.97 0.01 0.67 0.48 -0.21 2.64 0.02 0.92 

0.5 - 0.75 0.64 0.46 -1.04 3.21 0.01 0.66 0.47 -0.53 2.79 0.02 1.02 

0.75 - 1 0.61 0.42 -0.52 2.74 0.01 0.63 0.42 -0.19 2.39 0.02 1.00 
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Figure 2. Boxplots of grouped individual-sample CATE estimates as a function of dose bins on 

training data for leukemia, solid tumors, and stomach tumors. As described in the Methods 

section, CATE was estimated by DML for each individual row/sample of the data set (shown in 

Figure 1), but here these CATE values were binned by dose to facilitate visualization of their 

potential dose dependences.  
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SHAP Value Analysis 

SHAP (SHapley Additive exPlanations) values are very useful for interpreting various ML 

model types such as tree ensemble models used here because they offer insight into the 

contribution of each feature to the model's predictions. What makes SHAP values particularly 

valuable is their additive nature, meaning that the sum of the SHAP values for all features equals 

the difference between the actual model output and the average output. This property facilitates 

decomposing the model's prediction for each specific sample and understanding the impact of 

each feature on the prediction. Additionally, SHAP values account for different combinations of 

features, facilitating the understanding of how interactions between features influence the 

model's decision-making process.  

In the context used here, SHAP values for a particular feature (covariate, like age at 

exposure) indicate how that feature contributed to the causal effect of radiation for the particular 

sample (i.e. increased or decreased the effect, and by how much). Detailed SHAP value 

summaries for leukemia, solid tumors, and stomach tumors are shown in Figure 3. Since CATE 

in this analysis represents the “slope” of the log-transformed dose response, their contribution is 

not on a linear scale and modest-looking changes in Figure 3 may have considerable influence on 

the causal effects of radiation on cancer incidence. 

For leukemia (left column of three panels in Figure 3), age at exposure (agex) and attained 

age (age) appear to be more important contributors than city, sex and nic (not-in city indicator). 

Low (young) values of agex and age tend to have positive SHAP values, suggesting a larger 

causal effect of radiation in younger groups, but there is variability between samples. A possible 

second maximum in SHAP values is visible at old agex and age. Sex does not seem to have a big 

effect. Correlations between SHAP values for different features were assessed using a matrix of 
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Pearson correlation coefficients. SHAP values for age and agex were correlated +0.62, other 

SHAP value pairs had much lower correlations. The results suggest that most variables in the 

model had relatively independent contributions to the causal effect of radiation, but age and agex 

had correlated contributions, as could be expected since old agex cannot be associated with 

young age. 

For all solid tumors combined (middle column of three panels in Figure 3), membership in 

the AHS clinical cohort (ahs) has an important influence. Age at exposure (agex) and attained 

age (age) appear to be more important contributors than sex, city, and nic (not-in city indicator). 

The direction of agex, age and sex effects has a lot of uncertainty due to variations between 

samples. Young agex and old age seem to have somewhat higher SHAP values, but not 

dramatically. SHAP values for age and agex were correlated +0.68, age and city +0.49, agex and 

city +0.47, agex and sex +0.45. The results suggest that age and agex had correlated 

contributions, as could be expected since old agex cannot be associated with young age. Other 

variable SHAP values were correlated more than in the leukemia analysis, suggesting that age-

related, sex-related and city-related contributions in the model are inter-related. However, none 

of the variables came close to being completely redundant (e.g. correlations >|0.8|). Overall, 

these results for all solid tumors show a less clear pattern than for leukemia, likely because all 

solid tumors are an artificial category that includes numerous biologically distinct cancer types 

which are commonly grouped together in modeling analyses for convenience/statistical power, 

rather than for mechanistic reasons. 

For stomach tumors (right column of three panels in Figure 3), age at exposure (agex), city 

and attained age (age) appear to be more important contributors than sex and nic (not-in city 

indicator). Low (young) values of agex and age tend to have positive SHAP values, suggesting a 
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larger causal effect of radiation in younger groups – this is clearer here than for all solid tumors 

combined. Male sex (red values) is associated with positive SHAP values, increasing CATE. 

SHAP values for age and agex were expectedly correlated (+0.77), other SHAP value pairs had 

much lower correlations. 

 

 

Figure 3. Detailed SHAP value summaries for leukemia, solid tumors, and stomach tumors. 

Each vertical column of three panels represents one tumor type, as labeled on top. Each circle in 

each panel represents the SHAP value generated by the DML model for a specific sample in the 

testing data set. The top horizontal row of three panels represents SHAP summary plots for the 

tree different studied tumor types. The features (covariates) are listed on the left side (y axis) of 

each panel, and the SHAP value scale is on the x axis. Positive SHAP values indicate that the 

feature increased the causal effect of radiation dose on the cancer outcome Y, whereas negative 

SHAP values indicate the opposite - that the feature decreased the causal effect of radiation. Blue 

Leukemia                                            Solid tumors                                                             Stomach tumors
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circles represent low feature values, and red circles represent high feature values, according to 

the color scale on the right of each panel. The middle row of three panels shows a closer look at 

SHAP values of age at exposure (agex) as function of agex values, with the blue-red color scale 

indicating attained age (age). The bottom row of three panels shows a complementary closer 

look at SHAP values of attained age (age) as function of age values, with the blue-red color scale 

indicating age at exposure (agex).  

 

Discussion and Conclusions 

Biological effects of ionizing radiation are studied for over 100 years. However, several 

factors continue to contribute to uncertainty in estimating radiation-induced health risks, 

particularly at low doses. Complex biological pathways leading to diseases like cancer remain 

poorly understood, particularly in distinguishing radiation's contribution at low doses, which 

minimally affect background disease risks. Traditional dose-response models, such as the Linear 

No-Threshold model, impose specific assumptions on dose-response shapes, causing controversy 

and increased uncertainty. These models primarily rely on correlations/associations and do not 

directly address the main goal of radiation epidemiology – assessing causal links between 

radiation and disease. Causal machine learning (CML), including double/debiased machine 

learning (DML), has emerged as a promising approach to address these challenges.  

In this study, we used state-of-the-art CML methods to investigate the relationship between 

radiation exposure and incidence of leukemia, all solid tumors and stomach tumors in Japanese 

atomic bomb survivors. To our knowledge, these techniques remain under-utilized in radiation 

epidemiology, despite holding great promise for advancing the field.  
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The DMA-based modeling approach we implemented here did not use either parametric 

functions or dose bins. It used flexible tree-based ensemble models for all three components of 

DML, and generated conditional average treatment effect (CATE) estimates for each sample 

(each row in the data set). The CATE results were visualized in different ways, including being 

subsequently grouped into arbitrary dose bins. We also assessed how the causal effect of 

radiation varied as function of radiation dose, age at exposure, attained age, sex, and other 

covariates. The DML approach behaved reliably when translated from training to testing data, 

and during in data perturbation tests such as replacing the response variable with random 

numbers or modifying it according to a known polynomial dose response function. 

The results of this study support a positive causal relationship between radiation exposure 

and all three studied tumor types. The estimated causal effect of radiation is very robust and 

positive for leukemia and stomach tumors, and somewhat less robust but still positive for all 

solid tumors combined. Importantly, the effect magnitudes, and also the uncertainties, were not 

dramatically different at low doses than at higher doses for all three tumor types. These results 

provide evidence against threshold or hormesis-like dose response models where the radiation 

effect is assumed to be zero or negative at low doses and to become positive only at higher 

doses. The influences of covariates such as age at exposure and attained age on these causal 

effects of radiation were assessed in detail using SHAP values.  

The intent of this study was not to conduct a definitive analysis of Japanese atomic bomb 

survivor cancer incidence data, but to provide an example of using state of the art CML methods 

for modeling radiation effects in human populations. We believe that this example provides a 

useful contribution to radiation epidemiology by implementing causal inference techniques to 

advance the field and supplement traditional approaches that operate on the level of associations. 
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Supplementary Material  

Supplementary Table 1. Comparative performance metrics of various machine learning 

algorithms for constructing the first two sub-models of DM: a treatment model for predicting 

radiation dose (Dose_Gy) as function of covariates, an outcome model for predicting 

transformed tumor incidence (Y) as function of covariates and excluding the treatment. The 

algorithms were: CatBoost, elastic net (EN) regression, light GBM (LGBM), linear boost 

(LinBoost), linear regression (LR), random forest (RF), and XGBoost. These algorithms were 

assessed through cross-validation (10-fold, repeated 10 times) on training data to select which 

algorithm provided the best fit for the treatment and outcome models for each analyzed tumor 

type. The performance metrics (averaged over cross-validation folds and repeats) used in this 

model comparison were: root mean squared error (RMSE), mean absolute error (MAE) and 

coefficient of determination (R2). For each tumor type and model type, bold font indicates which 

algorithm appeared to have the best performance. 

 

Leukemia: 

Models for the outcome variable 

Models for the treatment 

variable 

Model type RMSE MAE R2 RMSE MAE R2 

CatBoost 1.210 0.939 0.710 0.801 0.609 0.199 

EN 2.126 1.700 0.106 0.877 0.682 0.040 

LGBM 1.247 0.976 0.693 0.805 0.616 0.190 

LinBoost 1.413 1.115 0.605 0.840 0.636 0.119 

LR 2.123 1.694 0.109 0.876 0.681 0.041 

RF 1.130 0.848 0.748 0.698 0.469 0.391 

XGBoost 1.113 0.863 0.755 0.729 0.546 0.337 

              

Solid tumors: 

Models for the outcome variable 

Models for the treatment 

variable 

Model type RMSE MAE R2 RMSE MAE R2 
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CatBoost 0.923 0.696 0.767 0.584 0.394 0.255 

EN 1.768 1.354 0.147 0.632 0.449 0.126 

LGBM 0.978 0.739 0.739 0.593 0.408 0.231 

LinBoost 1.207 0.927 0.602 0.621 0.434 0.157 

LR 1.767 1.354 0.147 0.631 0.445 0.129 

RF 0.827 0.537 0.813 0.517 0.307 0.416 

XGBoost 0.867 0.646 0.798 0.525 0.351 0.396 

              

Stomach tumors: 

Models for the outcome variable 

Models for the treatment 

variable 

Model type RMSE MAE R2 RMSE MAE R2 

CatBoost 1.107 0.856 0.747 0.724 0.538 0.262 

EN 2.084 1.668 0.103 0.821 0.628 0.051 

LGBM 1.162 0.907 0.721 0.732 0.546 0.246 

LinBoost 1.313 1.030 0.644 0.772 0.573 0.161 

LR 2.082 1.664 0.105 0.817 0.623 0.058 

RF 1.026 0.737 0.783 0.615 0.409 0.466 

XGBoost 1.017 0.787 0.786 0.643 0.467 0.418 
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Supplementary Figure 1. Results of DML analysis of artificially perturbed leukemia data to test 

the ability of the DML framework to capture complex dose response shapes. This was achieved 

by applying the transformation Y∗ =Y−D−D2+0.3×D4, where Y represents the original leukemia 

response values, Y∗ are the perturbed outcome values, and D is Dose_Gy. Y∗ values are plotted 

in panel A. A boxplot of individual-sample CATE estimates generated on this perturbed data set, 

grouped into arbitrary dose bins, is shown in panel B.  

 

 

  

Dose_Gy

Y
*

A                                                                                                         B
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Supplementary Figure 2. Results of DML analysis of artificially perturbed leukemia data when 

the outcome variable was replaced with standard normal random numbers. This was intended as 

a “negative control” for DML reliability. 
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